- f59c2332341d6b1a3e045d61eb0065f7a226f807 Avoid preprocessing '__CUDACC_VER__ >= 70000' on CUDA 9,... by Abseil Team <absl-team@google.com> - 12dd22cf967603e9a12d58abfe877989d61844e3 Internal change. by Greg Falcon <gfalcon@google.com> GitOrigin-RevId: f59c2332341d6b1a3e045d61eb0065f7a226f807 Change-Id: If4f5274e6d638a2ac86f1377e6ac0481dc584f19
		
			
				
	
	
		
			238 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			238 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "absl/base/internal/spinlock.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <atomic>
 | 
						|
#include <limits>
 | 
						|
 | 
						|
#include "absl/base/internal/atomic_hook.h"
 | 
						|
#include "absl/base/internal/cycleclock.h"
 | 
						|
#include "absl/base/internal/spinlock_wait.h"
 | 
						|
#include "absl/base/internal/sysinfo.h" /* For NumCPUs() */
 | 
						|
 | 
						|
// Description of lock-word:
 | 
						|
//  31..00: [............................3][2][1][0]
 | 
						|
//
 | 
						|
//     [0]: kSpinLockHeld
 | 
						|
//     [1]: kSpinLockCooperative
 | 
						|
//     [2]: kSpinLockDisabledScheduling
 | 
						|
// [31..3]: ONLY kSpinLockSleeper OR
 | 
						|
//          Wait time in cycles >> PROFILE_TIMESTAMP_SHIFT
 | 
						|
//
 | 
						|
// Detailed descriptions:
 | 
						|
//
 | 
						|
// Bit [0]: The lock is considered held iff kSpinLockHeld is set.
 | 
						|
//
 | 
						|
// Bit [1]: Eligible waiters (e.g. Fibers) may co-operatively reschedule when
 | 
						|
//          contended iff kSpinLockCooperative is set.
 | 
						|
//
 | 
						|
// Bit [2]: This bit is exclusive from bit [1].  It is used only by a
 | 
						|
//          non-cooperative lock.  When set, indicates that scheduling was
 | 
						|
//          successfully disabled when the lock was acquired.  May be unset,
 | 
						|
//          even if non-cooperative, if a ThreadIdentity did not yet exist at
 | 
						|
//          time of acquisition.
 | 
						|
//
 | 
						|
// Bit [3]: If this is the only upper bit ([31..3]) set then this lock was
 | 
						|
//          acquired without contention, however, at least one waiter exists.
 | 
						|
//
 | 
						|
//          Otherwise, bits [31..3] represent the time spent by the current lock
 | 
						|
//          holder to acquire the lock.  There may be outstanding waiter(s).
 | 
						|
 | 
						|
namespace absl {
 | 
						|
namespace base_internal {
 | 
						|
 | 
						|
static int adaptive_spin_count = 0;
 | 
						|
 | 
						|
namespace {
 | 
						|
struct SpinLock_InitHelper {
 | 
						|
  SpinLock_InitHelper() {
 | 
						|
    // On multi-cpu machines, spin for longer before yielding
 | 
						|
    // the processor or sleeping.  Reduces idle time significantly.
 | 
						|
    if (base_internal::NumCPUs() > 1) {
 | 
						|
      adaptive_spin_count = 1000;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Hook into global constructor execution:
 | 
						|
// We do not do adaptive spinning before that,
 | 
						|
// but nothing lock-intensive should be going on at that time.
 | 
						|
static SpinLock_InitHelper init_helper;
 | 
						|
 | 
						|
ABSL_CONST_INIT static base_internal::AtomicHook<void (*)(const void *lock,
 | 
						|
                                                          int64_t wait_cycles)>
 | 
						|
    submit_profile_data;
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
void RegisterSpinLockProfiler(void (*fn)(const void *contendedlock,
 | 
						|
                                         int64_t wait_cycles)) {
 | 
						|
  submit_profile_data.Store(fn);
 | 
						|
}
 | 
						|
 | 
						|
// Uncommon constructors.
 | 
						|
SpinLock::SpinLock(base_internal::SchedulingMode mode)
 | 
						|
    : lockword_(IsCooperative(mode) ? kSpinLockCooperative : 0) {
 | 
						|
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
 | 
						|
}
 | 
						|
 | 
						|
SpinLock::SpinLock(base_internal::LinkerInitialized,
 | 
						|
                   base_internal::SchedulingMode mode) {
 | 
						|
  ABSL_TSAN_MUTEX_CREATE(this, 0);
 | 
						|
  if (IsCooperative(mode)) {
 | 
						|
    InitLinkerInitializedAndCooperative();
 | 
						|
  }
 | 
						|
  // Otherwise, lockword_ is already initialized.
 | 
						|
}
 | 
						|
 | 
						|
// Static (linker initialized) spinlocks always start life as functional
 | 
						|
// non-cooperative locks.  When their static constructor does run, it will call
 | 
						|
// this initializer to augment the lockword with the cooperative bit.  By
 | 
						|
// actually taking the lock when we do this we avoid the need for an atomic
 | 
						|
// operation in the regular unlock path.
 | 
						|
//
 | 
						|
// SlowLock() must be careful to re-test for this bit so that any outstanding
 | 
						|
// waiters may be upgraded to cooperative status.
 | 
						|
void SpinLock::InitLinkerInitializedAndCooperative() {
 | 
						|
  Lock();
 | 
						|
  lockword_.fetch_or(kSpinLockCooperative, std::memory_order_relaxed);
 | 
						|
  Unlock();
 | 
						|
}
 | 
						|
 | 
						|
// Monitor the lock to see if its value changes within some time period
 | 
						|
// (adaptive_spin_count loop iterations).  A timestamp indicating
 | 
						|
// when the thread initially started waiting for the lock is passed in via
 | 
						|
// the initial_wait_timestamp value.  The total wait time in cycles for the
 | 
						|
// lock is returned in the wait_cycles parameter.  The last value read
 | 
						|
// from the lock is returned from the method.
 | 
						|
uint32_t SpinLock::SpinLoop(int64_t initial_wait_timestamp,
 | 
						|
                            uint32_t *wait_cycles) {
 | 
						|
  int c = adaptive_spin_count;
 | 
						|
  uint32_t lock_value;
 | 
						|
  do {
 | 
						|
    lock_value = lockword_.load(std::memory_order_relaxed);
 | 
						|
  } while ((lock_value & kSpinLockHeld) != 0 && --c > 0);
 | 
						|
  uint32_t spin_loop_wait_cycles =
 | 
						|
      EncodeWaitCycles(initial_wait_timestamp, CycleClock::Now());
 | 
						|
  *wait_cycles = spin_loop_wait_cycles;
 | 
						|
 | 
						|
  return TryLockInternal(lock_value, spin_loop_wait_cycles);
 | 
						|
}
 | 
						|
 | 
						|
void SpinLock::SlowLock() {
 | 
						|
  // The lock was not obtained initially, so this thread needs to wait for
 | 
						|
  // it.  Record the current timestamp in the local variable wait_start_time
 | 
						|
  // so the total wait time can be stored in the lockword once this thread
 | 
						|
  // obtains the lock.
 | 
						|
  int64_t wait_start_time = CycleClock::Now();
 | 
						|
  uint32_t wait_cycles;
 | 
						|
  uint32_t lock_value = SpinLoop(wait_start_time, &wait_cycles);
 | 
						|
 | 
						|
  int lock_wait_call_count = 0;
 | 
						|
  while ((lock_value & kSpinLockHeld) != 0) {
 | 
						|
    // If the lock is currently held, but not marked as having a sleeper, mark
 | 
						|
    // it as having a sleeper.
 | 
						|
    if ((lock_value & kWaitTimeMask) == 0) {
 | 
						|
      // Here, just "mark" that the thread is going to sleep.  Don't store the
 | 
						|
      // lock wait time in the lock as that will cause the current lock
 | 
						|
      // owner to think it experienced contention.
 | 
						|
      if (lockword_.compare_exchange_strong(
 | 
						|
              lock_value, lock_value | kSpinLockSleeper,
 | 
						|
              std::memory_order_acquire, std::memory_order_relaxed)) {
 | 
						|
        // Successfully transitioned to kSpinLockSleeper.  Pass
 | 
						|
        // kSpinLockSleeper to the SpinLockWait routine to properly indicate
 | 
						|
        // the last lock_value observed.
 | 
						|
        lock_value |= kSpinLockSleeper;
 | 
						|
      } else if ((lock_value & kSpinLockHeld) == 0) {
 | 
						|
        // Lock is free again, so try and acquire it before sleeping.  The
 | 
						|
        // new lock state will be the number of cycles this thread waited if
 | 
						|
        // this thread obtains the lock.
 | 
						|
        lock_value = TryLockInternal(lock_value, wait_cycles);
 | 
						|
        continue;   // Skip the delay at the end of the loop.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    base_internal::SchedulingMode scheduling_mode;
 | 
						|
    if ((lock_value & kSpinLockCooperative) != 0) {
 | 
						|
      scheduling_mode = base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL;
 | 
						|
    } else {
 | 
						|
      scheduling_mode = base_internal::SCHEDULE_KERNEL_ONLY;
 | 
						|
    }
 | 
						|
    // SpinLockDelay() calls into fiber scheduler, we need to see
 | 
						|
    // synchronization there to avoid false positives.
 | 
						|
    ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
 | 
						|
    // Wait for an OS specific delay.
 | 
						|
    base_internal::SpinLockDelay(&lockword_, lock_value, ++lock_wait_call_count,
 | 
						|
                                 scheduling_mode);
 | 
						|
    ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
 | 
						|
    // Spin again after returning from the wait routine to give this thread
 | 
						|
    // some chance of obtaining the lock.
 | 
						|
    lock_value = SpinLoop(wait_start_time, &wait_cycles);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SpinLock::SlowUnlock(uint32_t lock_value) {
 | 
						|
  base_internal::SpinLockWake(&lockword_,
 | 
						|
                              false);  // wake waiter if necessary
 | 
						|
 | 
						|
  // If our acquisition was contended, collect contentionz profile info.  We
 | 
						|
  // reserve a unitary wait time to represent that a waiter exists without our
 | 
						|
  // own acquisition having been contended.
 | 
						|
  if ((lock_value & kWaitTimeMask) != kSpinLockSleeper) {
 | 
						|
    const uint64_t wait_cycles = DecodeWaitCycles(lock_value);
 | 
						|
    ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
 | 
						|
    submit_profile_data(this, wait_cycles);
 | 
						|
    ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// We use the upper 29 bits of the lock word to store the time spent waiting to
 | 
						|
// acquire this lock.  This is reported by contentionz profiling.  Since the
 | 
						|
// lower bits of the cycle counter wrap very quickly on high-frequency
 | 
						|
// processors we divide to reduce the granularity to 2^PROFILE_TIMESTAMP_SHIFT
 | 
						|
// sized units.  On a 4Ghz machine this will lose track of wait times greater
 | 
						|
// than (2^29/4 Ghz)*128 =~ 17.2 seconds.  Such waits should be extremely rare.
 | 
						|
enum { PROFILE_TIMESTAMP_SHIFT = 7 };
 | 
						|
enum { LOCKWORD_RESERVED_SHIFT = 3 };  // We currently reserve the lower 3 bits.
 | 
						|
 | 
						|
uint32_t SpinLock::EncodeWaitCycles(int64_t wait_start_time,
 | 
						|
                                    int64_t wait_end_time) {
 | 
						|
  static const int64_t kMaxWaitTime =
 | 
						|
      std::numeric_limits<uint32_t>::max() >> LOCKWORD_RESERVED_SHIFT;
 | 
						|
  int64_t scaled_wait_time =
 | 
						|
      (wait_end_time - wait_start_time) >> PROFILE_TIMESTAMP_SHIFT;
 | 
						|
 | 
						|
  // Return a representation of the time spent waiting that can be stored in
 | 
						|
  // the lock word's upper bits.  bit_cast is required as Atomic32 is signed.
 | 
						|
  const uint32_t clamped = static_cast<uint32_t>(
 | 
						|
      std::min(scaled_wait_time, kMaxWaitTime) << LOCKWORD_RESERVED_SHIFT);
 | 
						|
 | 
						|
  // bump up value if necessary to avoid returning kSpinLockSleeper.
 | 
						|
  const uint32_t after_spinlock_sleeper =
 | 
						|
     kSpinLockSleeper + (1 << LOCKWORD_RESERVED_SHIFT);
 | 
						|
  return clamped == kSpinLockSleeper ? after_spinlock_sleeper : clamped;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t SpinLock::DecodeWaitCycles(uint32_t lock_value) {
 | 
						|
  // Cast to uint32_t first to ensure bits [63:32] are cleared.
 | 
						|
  const uint64_t scaled_wait_time =
 | 
						|
      static_cast<uint32_t>(lock_value & kWaitTimeMask);
 | 
						|
  return scaled_wait_time
 | 
						|
      << (PROFILE_TIMESTAMP_SHIFT - LOCKWORD_RESERVED_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace base_internal
 | 
						|
}  // namespace absl
 |