-- 91ca367a7548270155721bdda74611aeea2a2153 by Abseil Team <absl-team@google.com>: Replace the only usage of btree_node::swap with simpler logic using transfers and delete btree_node::swap. Add a benchmark for constructing small containers. PiperOrigin-RevId: 301169874 -- ff9d73a7125b7f8ab5733cda877204dfbfac138e by Derek Mauro <dmauro@google.com>: Ensure ABSL_CXX_STANDARD is set. Fixes #640 PiperOrigin-RevId: 301160106 -- 14ca0beee8c109e532134e7e9da7b072da1bf911 by Abseil Team <absl-team@google.com>: Rollback the change to make Cord iterators a fixed size. That change increased the iterator size, which can cause a deep recursion call to hit the stack memory limit, in turn causing a signal 11 failure. PiperOrigin-RevId: 301084915 -- 619e3cd9e56408bdb8b3b5a1e08dda1e95242264 by Matthew Brown <matthewbr@google.com>: Internal Change PiperOrigin-RevId: 300832828 -- 64f8d62ab4c4c78077dbe85a9595a8eeb6d16608 by Gennadiy Rozental <rogeeff@google.com>: Fix for empty braces support. We will call proper aggregate construction in case when {} is used as default value. In other words instead of "new T", we'll call "new T{}". PiperOrigin-RevId: 300715686 -- db3f65594d6db8b104b01262f884dff465b696ef by Abseil Team <absl-team@google.com>: Emscripten supports thread-local storage nowadays. PiperOrigin-RevId: 300675185 GitOrigin-RevId: 91ca367a7548270155721bdda74611aeea2a2153 Change-Id: I3344f745f9c3fc78775532b1808442fabd98e34a
		
			
				
	
	
		
			2017 lines
		
	
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2017 lines
		
	
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2020 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/strings/cord.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstddef>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <iomanip>
 | |
| #include <limits>
 | |
| #include <ostream>
 | |
| #include <sstream>
 | |
| #include <type_traits>
 | |
| #include <unordered_set>
 | |
| #include <vector>
 | |
| 
 | |
| #include "absl/base/casts.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/container/fixed_array.h"
 | |
| #include "absl/container/inlined_vector.h"
 | |
| #include "absl/strings/escaping.h"
 | |
| #include "absl/strings/internal/cord_internal.h"
 | |
| #include "absl/strings/internal/resize_uninitialized.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| #include "absl/strings/str_format.h"
 | |
| #include "absl/strings/str_join.h"
 | |
| #include "absl/strings/string_view.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| using ::absl::cord_internal::CordRep;
 | |
| using ::absl::cord_internal::CordRepConcat;
 | |
| using ::absl::cord_internal::CordRepExternal;
 | |
| using ::absl::cord_internal::CordRepSubstring;
 | |
| 
 | |
| // Various representations that we allow
 | |
| enum CordRepKind {
 | |
|   CONCAT        = 0,
 | |
|   EXTERNAL      = 1,
 | |
|   SUBSTRING     = 2,
 | |
| 
 | |
|   // We have different tags for different sized flat arrays,
 | |
|   // starting with FLAT
 | |
|   FLAT          = 3,
 | |
| };
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Type used with std::allocator for allocating and deallocating
 | |
| // `CordRepExternal`. std::allocator is used because it opaquely handles the
 | |
| // different new / delete overloads available on a given platform.
 | |
| struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType {
 | |
|   unsigned char value[absl::cord_internal::ExternalRepAlignment()];
 | |
| };
 | |
| 
 | |
| // Returns the number of objects to pass in to std::allocator<ExternalAllocType>
 | |
| // allocate() and deallocate() to create enough room for `CordRepExternal` with
 | |
| // `releaser_size` bytes on the end.
 | |
| constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) {
 | |
|   // Be sure to round up since `releaser_size` could be smaller than
 | |
|   // `sizeof(ExternalAllocType)`.
 | |
|   return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) -
 | |
|           1) /
 | |
|          sizeof(ExternalAllocType);
 | |
| }
 | |
| 
 | |
| // Allocates enough memory for `CordRepExternal` and a releaser with size
 | |
| // `releaser_size` bytes.
 | |
| void* AllocateExternal(size_t releaser_size) {
 | |
|   return std::allocator<ExternalAllocType>().allocate(
 | |
|       GetExternalAllocNumObjects(releaser_size));
 | |
| }
 | |
| 
 | |
| // Deallocates the memory for a `CordRepExternal` assuming it was allocated with
 | |
| // a releaser of given size and alignment.
 | |
| void DeallocateExternal(CordRepExternal* p, size_t releaser_size) {
 | |
|   std::allocator<ExternalAllocType>().deallocate(
 | |
|       reinterpret_cast<ExternalAllocType*>(p),
 | |
|       GetExternalAllocNumObjects(releaser_size));
 | |
| }
 | |
| 
 | |
| // Returns a pointer to the type erased releaser for the given CordRepExternal.
 | |
| void* GetExternalReleaser(CordRepExternal* rep) {
 | |
|   return rep + 1;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| namespace cord_internal {
 | |
| 
 | |
| inline CordRepConcat* CordRep::concat() {
 | |
|   assert(tag == CONCAT);
 | |
|   return static_cast<CordRepConcat*>(this);
 | |
| }
 | |
| 
 | |
| inline const CordRepConcat* CordRep::concat() const {
 | |
|   assert(tag == CONCAT);
 | |
|   return static_cast<const CordRepConcat*>(this);
 | |
| }
 | |
| 
 | |
| inline CordRepSubstring* CordRep::substring() {
 | |
|   assert(tag == SUBSTRING);
 | |
|   return static_cast<CordRepSubstring*>(this);
 | |
| }
 | |
| 
 | |
| inline const CordRepSubstring* CordRep::substring() const {
 | |
|   assert(tag == SUBSTRING);
 | |
|   return static_cast<const CordRepSubstring*>(this);
 | |
| }
 | |
| 
 | |
| inline CordRepExternal* CordRep::external() {
 | |
|   assert(tag == EXTERNAL);
 | |
|   return static_cast<CordRepExternal*>(this);
 | |
| }
 | |
| 
 | |
| inline const CordRepExternal* CordRep::external() const {
 | |
|   assert(tag == EXTERNAL);
 | |
|   return static_cast<const CordRepExternal*>(this);
 | |
| }
 | |
| 
 | |
| }  // namespace cord_internal
 | |
| 
 | |
| static const size_t kFlatOverhead = offsetof(CordRep, data);
 | |
| 
 | |
| // Largest and smallest flat node lengths we are willing to allocate
 | |
| // Flat allocation size is stored in tag, which currently can encode sizes up
 | |
| // to 4K, encoded as multiple of either 8 or 32 bytes.
 | |
| // If we allow for larger sizes, we need to change this to 8/64, 16/128, etc.
 | |
| static constexpr size_t kMaxFlatSize = 4096;
 | |
| static constexpr size_t kMaxFlatLength = kMaxFlatSize - kFlatOverhead;
 | |
| static constexpr size_t kMinFlatLength = 32 - kFlatOverhead;
 | |
| 
 | |
| // Prefer copying blocks of at most this size, otherwise reference count.
 | |
| static const size_t kMaxBytesToCopy = 511;
 | |
| 
 | |
| // Helper functions for rounded div, and rounding to exact sizes.
 | |
| static size_t DivUp(size_t n, size_t m) { return (n + m - 1) / m; }
 | |
| static size_t RoundUp(size_t n, size_t m) { return DivUp(n, m) * m; }
 | |
| 
 | |
| // Returns the size to the nearest equal or larger value that can be
 | |
| // expressed exactly as a tag value.
 | |
| static size_t RoundUpForTag(size_t size) {
 | |
|   return RoundUp(size, (size <= 1024) ? 8 : 32);
 | |
| }
 | |
| 
 | |
| // Converts the allocated size to a tag, rounding down if the size
 | |
| // does not exactly match a 'tag expressible' size value. The result is
 | |
| // undefined if the size exceeds the maximum size that can be encoded in
 | |
| // a tag, i.e., if size is larger than TagToAllocatedSize(<max tag>).
 | |
| static uint8_t AllocatedSizeToTag(size_t size) {
 | |
|   const size_t tag = (size <= 1024) ? size / 8 : 128 + size / 32 - 1024 / 32;
 | |
|   assert(tag <= std::numeric_limits<uint8_t>::max());
 | |
|   return tag;
 | |
| }
 | |
| 
 | |
| // Converts the provided tag to the corresponding allocated size
 | |
| static constexpr size_t TagToAllocatedSize(uint8_t tag) {
 | |
|   return (tag <= 128) ? (tag * 8) : (1024 + (tag - 128) * 32);
 | |
| }
 | |
| 
 | |
| // Converts the provided tag to the corresponding available data length
 | |
| static constexpr size_t TagToLength(uint8_t tag) {
 | |
|   return TagToAllocatedSize(tag) - kFlatOverhead;
 | |
| }
 | |
| 
 | |
| // Enforce that kMaxFlatSize maps to a well-known exact tag value.
 | |
| static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");
 | |
| 
 | |
| constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
 | |
|   return n == 0 ? a : Fibonacci(n - 1, b, a + b);
 | |
| }
 | |
| 
 | |
| static_assert(Fibonacci(63) == 6557470319842,
 | |
|               "Fibonacci values computed incorrectly");
 | |
| 
 | |
| // Minimum length required for a given depth tree -- a tree is considered
 | |
| // balanced if
 | |
| //      length(t) >= min_length[depth(t)]
 | |
| // The root node depth is allowed to become twice as large to reduce rebalancing
 | |
| // for larger strings (see IsRootBalanced).
 | |
| static constexpr uint64_t min_length[] = {
 | |
|     Fibonacci(2),
 | |
|     Fibonacci(3),
 | |
|     Fibonacci(4),
 | |
|     Fibonacci(5),
 | |
|     Fibonacci(6),
 | |
|     Fibonacci(7),
 | |
|     Fibonacci(8),
 | |
|     Fibonacci(9),
 | |
|     Fibonacci(10),
 | |
|     Fibonacci(11),
 | |
|     Fibonacci(12),
 | |
|     Fibonacci(13),
 | |
|     Fibonacci(14),
 | |
|     Fibonacci(15),
 | |
|     Fibonacci(16),
 | |
|     Fibonacci(17),
 | |
|     Fibonacci(18),
 | |
|     Fibonacci(19),
 | |
|     Fibonacci(20),
 | |
|     Fibonacci(21),
 | |
|     Fibonacci(22),
 | |
|     Fibonacci(23),
 | |
|     Fibonacci(24),
 | |
|     Fibonacci(25),
 | |
|     Fibonacci(26),
 | |
|     Fibonacci(27),
 | |
|     Fibonacci(28),
 | |
|     Fibonacci(29),
 | |
|     Fibonacci(30),
 | |
|     Fibonacci(31),
 | |
|     Fibonacci(32),
 | |
|     Fibonacci(33),
 | |
|     Fibonacci(34),
 | |
|     Fibonacci(35),
 | |
|     Fibonacci(36),
 | |
|     Fibonacci(37),
 | |
|     Fibonacci(38),
 | |
|     Fibonacci(39),
 | |
|     Fibonacci(40),
 | |
|     Fibonacci(41),
 | |
|     Fibonacci(42),
 | |
|     Fibonacci(43),
 | |
|     Fibonacci(44),
 | |
|     Fibonacci(45),
 | |
|     Fibonacci(46),
 | |
|     Fibonacci(47),
 | |
|     0xffffffffffffffffull,  // Avoid overflow
 | |
| };
 | |
| 
 | |
| static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);
 | |
| 
 | |
| // The inlined size to use with absl::InlinedVector.
 | |
| //
 | |
| // Note: The InlinedVectors in this file (and in cord.h) do not need to use
 | |
| // the same value for their inlined size. The fact that they do is historical.
 | |
| // It may be desirable for each to use a different inlined size optimized for
 | |
| // that InlinedVector's usage.
 | |
| //
 | |
| // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
 | |
| // the inlined vector size (47 exists for backward compatibility).
 | |
| static const int kInlinedVectorSize = 47;
 | |
| 
 | |
| static inline bool IsRootBalanced(CordRep* node) {
 | |
|   if (node->tag != CONCAT) {
 | |
|     return true;
 | |
|   } else if (node->concat()->depth() <= 15) {
 | |
|     return true;
 | |
|   } else if (node->concat()->depth() > kMinLengthSize) {
 | |
|     return false;
 | |
|   } else {
 | |
|     // Allow depth to become twice as large as implied by fibonacci rule to
 | |
|     // reduce rebalancing for larger strings.
 | |
|     return (node->length >= min_length[node->concat()->depth() / 2]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static CordRep* Rebalance(CordRep* node);
 | |
| static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
 | |
| static bool VerifyNode(CordRep* root, CordRep* start_node,
 | |
|                        bool full_validation);
 | |
| 
 | |
| static inline CordRep* VerifyTree(CordRep* node) {
 | |
|   // Verification is expensive, so only do it in debug mode.
 | |
|   // Even in debug mode we normally do only light validation.
 | |
|   // If you are debugging Cord itself, you should define the
 | |
|   // macro EXTRA_CORD_VALIDATION, e.g. by adding
 | |
|   // --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
 | |
| #ifdef EXTRA_CORD_VALIDATION
 | |
|   assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
 | |
| #else   // EXTRA_CORD_VALIDATION
 | |
|   assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
 | |
| #endif  // EXTRA_CORD_VALIDATION
 | |
|   static_cast<void>(&VerifyNode);
 | |
| 
 | |
|   return node;
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Memory management
 | |
| 
 | |
| inline CordRep* Ref(CordRep* rep) {
 | |
|   if (rep != nullptr) {
 | |
|     rep->refcount.Increment();
 | |
|   }
 | |
|   return rep;
 | |
| }
 | |
| 
 | |
| // This internal routine is called from the cold path of Unref below. Keeping it
 | |
| // in a separate routine allows good inlining of Unref into many profitable call
 | |
| // sites. However, the call to this function can be highly disruptive to the
 | |
| // register pressure in those callers. To minimize the cost to callers, we use
 | |
| // a special LLVM calling convention that preserves most registers. This allows
 | |
| // the call to this routine in cold paths to not disrupt the caller's register
 | |
| // pressure. This calling convention is not available on all platforms; we
 | |
| // intentionally allow LLVM to ignore the attribute rather than attempting to
 | |
| // hardcode the list of supported platforms.
 | |
| #if defined(__clang__) && !defined(__i386__)
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wattributes"
 | |
| __attribute__((preserve_most))
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| static void UnrefInternal(CordRep* rep) {
 | |
|   assert(rep != nullptr);
 | |
| 
 | |
|   absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
 | |
|   while (true) {
 | |
|     if (rep->tag == CONCAT) {
 | |
|       CordRepConcat* rep_concat = rep->concat();
 | |
|       CordRep* right = rep_concat->right;
 | |
|       if (!right->refcount.Decrement()) {
 | |
|         pending.push_back(right);
 | |
|       }
 | |
|       CordRep* left = rep_concat->left;
 | |
|       delete rep_concat;
 | |
|       rep = nullptr;
 | |
|       if (!left->refcount.Decrement()) {
 | |
|         rep = left;
 | |
|         continue;
 | |
|       }
 | |
|     } else if (rep->tag == EXTERNAL) {
 | |
|       CordRepExternal* rep_external = rep->external();
 | |
|       absl::string_view data(rep_external->base, rep->length);
 | |
|       void* releaser = GetExternalReleaser(rep_external);
 | |
|       size_t releaser_size = rep_external->releaser_invoker(releaser, data);
 | |
|       rep_external->~CordRepExternal();
 | |
|       DeallocateExternal(rep_external, releaser_size);
 | |
|       rep = nullptr;
 | |
|     } else if (rep->tag == SUBSTRING) {
 | |
|       CordRepSubstring* rep_substring = rep->substring();
 | |
|       CordRep* child = rep_substring->child;
 | |
|       delete rep_substring;
 | |
|       rep = nullptr;
 | |
|       if (!child->refcount.Decrement()) {
 | |
|         rep = child;
 | |
|         continue;
 | |
|       }
 | |
|     } else {
 | |
|       // Flat CordReps are allocated and constructed with raw ::operator new
 | |
|       // and placement new, and must be destructed and deallocated
 | |
|       // accordingly.
 | |
| #if defined(__cpp_sized_deallocation)
 | |
|       size_t size = TagToAllocatedSize(rep->tag);
 | |
|       rep->~CordRep();
 | |
|       ::operator delete(rep, size);
 | |
| #else
 | |
|       rep->~CordRep();
 | |
|       ::operator delete(rep);
 | |
| #endif
 | |
|       rep = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (!pending.empty()) {
 | |
|       rep = pending.back();
 | |
|       pending.pop_back();
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void Unref(CordRep* rep) {
 | |
|   // Fast-path for two common, hot cases: a null rep and a shared root.
 | |
|   if (ABSL_PREDICT_TRUE(rep == nullptr ||
 | |
|                         rep->refcount.DecrementExpectHighRefcount())) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   UnrefInternal(rep);
 | |
| }
 | |
| 
 | |
| // Return the depth of a node
 | |
| static int Depth(const CordRep* rep) {
 | |
|   if (rep->tag == CONCAT) {
 | |
|     return rep->concat()->depth();
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
 | |
|                               CordRep* right) {
 | |
|   concat->left = left;
 | |
|   concat->right = right;
 | |
| 
 | |
|   concat->length = left->length + right->length;
 | |
|   concat->set_depth(1 + std::max(Depth(left), Depth(right)));
 | |
| }
 | |
| 
 | |
| // Create a concatenation of the specified nodes.
 | |
| // Does not change the refcounts of "left" and "right".
 | |
| // The returned node has a refcount of 1.
 | |
| static CordRep* RawConcat(CordRep* left, CordRep* right) {
 | |
|   // Avoid making degenerate concat nodes (one child is empty)
 | |
|   if (left == nullptr || left->length == 0) {
 | |
|     Unref(left);
 | |
|     return right;
 | |
|   }
 | |
|   if (right == nullptr || right->length == 0) {
 | |
|     Unref(right);
 | |
|     return left;
 | |
|   }
 | |
| 
 | |
|   CordRepConcat* rep = new CordRepConcat();
 | |
|   rep->tag = CONCAT;
 | |
|   SetConcatChildren(rep, left, right);
 | |
| 
 | |
|   return rep;
 | |
| }
 | |
| 
 | |
| static CordRep* Concat(CordRep* left, CordRep* right) {
 | |
|   CordRep* rep = RawConcat(left, right);
 | |
|   if (rep != nullptr && !IsRootBalanced(rep)) {
 | |
|     rep = Rebalance(rep);
 | |
|   }
 | |
|   return VerifyTree(rep);
 | |
| }
 | |
| 
 | |
| // Make a balanced tree out of an array of leaf nodes.
 | |
| static CordRep* MakeBalancedTree(CordRep** reps, size_t n) {
 | |
|   // Make repeated passes over the array, merging adjacent pairs
 | |
|   // until we are left with just a single node.
 | |
|   while (n > 1) {
 | |
|     size_t dst = 0;
 | |
|     for (size_t src = 0; src < n; src += 2) {
 | |
|       if (src + 1 < n) {
 | |
|         reps[dst] = Concat(reps[src], reps[src + 1]);
 | |
|       } else {
 | |
|         reps[dst] = reps[src];
 | |
|       }
 | |
|       dst++;
 | |
|     }
 | |
|     n = dst;
 | |
|   }
 | |
| 
 | |
|   return reps[0];
 | |
| }
 | |
| 
 | |
| // Create a new flat node.
 | |
| static CordRep* NewFlat(size_t length_hint) {
 | |
|   if (length_hint <= kMinFlatLength) {
 | |
|     length_hint = kMinFlatLength;
 | |
|   } else if (length_hint > kMaxFlatLength) {
 | |
|     length_hint = kMaxFlatLength;
 | |
|   }
 | |
| 
 | |
|   // Round size up so it matches a size we can exactly express in a tag.
 | |
|   const size_t size = RoundUpForTag(length_hint + kFlatOverhead);
 | |
|   void* const raw_rep = ::operator new(size);
 | |
|   CordRep* rep = new (raw_rep) CordRep();
 | |
|   rep->tag = AllocatedSizeToTag(size);
 | |
|   return VerifyTree(rep);
 | |
| }
 | |
| 
 | |
| // Create a new tree out of the specified array.
 | |
| // The returned node has a refcount of 1.
 | |
| static CordRep* NewTree(const char* data,
 | |
|                         size_t length,
 | |
|                         size_t alloc_hint) {
 | |
|   if (length == 0) return nullptr;
 | |
|   absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1);
 | |
|   size_t n = 0;
 | |
|   do {
 | |
|     const size_t len = std::min(length, kMaxFlatLength);
 | |
|     CordRep* rep = NewFlat(len + alloc_hint);
 | |
|     rep->length = len;
 | |
|     memcpy(rep->data, data, len);
 | |
|     reps[n++] = VerifyTree(rep);
 | |
|     data += len;
 | |
|     length -= len;
 | |
|   } while (length != 0);
 | |
|   return MakeBalancedTree(reps.data(), n);
 | |
| }
 | |
| 
 | |
| namespace cord_internal {
 | |
| 
 | |
| ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
 | |
|     absl::string_view data, ExternalReleaserInvoker invoker,
 | |
|     size_t releaser_size) {
 | |
|   assert(!data.empty());
 | |
| 
 | |
|   void* raw_rep = AllocateExternal(releaser_size);
 | |
|   auto* rep = new (raw_rep) CordRepExternal();
 | |
|   rep->length = data.size();
 | |
|   rep->tag = EXTERNAL;
 | |
|   rep->base = data.data();
 | |
|   rep->releaser_invoker = invoker;
 | |
|   return {VerifyTree(rep), GetExternalReleaser(rep)};
 | |
| }
 | |
| 
 | |
| }  // namespace cord_internal
 | |
| 
 | |
| static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
 | |
|   // Never create empty substring nodes
 | |
|   if (length == 0) {
 | |
|     Unref(child);
 | |
|     return nullptr;
 | |
|   } else {
 | |
|     CordRepSubstring* rep = new CordRepSubstring();
 | |
|     assert((offset + length) <= child->length);
 | |
|     rep->length = length;
 | |
|     rep->tag = SUBSTRING;
 | |
|     rep->start = offset;
 | |
|     rep->child = child;
 | |
|     return VerifyTree(rep);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Cord::InlineRep functions
 | |
| 
 | |
| // This will trigger LNK2005 in MSVC.
 | |
| #ifndef COMPILER_MSVC
 | |
| const unsigned char Cord::InlineRep::kMaxInline;
 | |
| #endif  // COMPILER_MSVC
 | |
| 
 | |
| inline void Cord::InlineRep::set_data(const char* data, size_t n,
 | |
|                                       bool nullify_tail) {
 | |
|   static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
 | |
| 
 | |
|   cord_internal::SmallMemmove(data_, data, n, nullify_tail);
 | |
|   data_[kMaxInline] = static_cast<char>(n);
 | |
| }
 | |
| 
 | |
| inline char* Cord::InlineRep::set_data(size_t n) {
 | |
|   assert(n <= kMaxInline);
 | |
|   memset(data_, 0, sizeof(data_));
 | |
|   data_[kMaxInline] = static_cast<char>(n);
 | |
|   return data_;
 | |
| }
 | |
| 
 | |
| inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) {
 | |
|   size_t len = data_[kMaxInline];
 | |
|   CordRep* result;
 | |
|   if (len > kMaxInline) {
 | |
|     memcpy(&result, data_, sizeof(result));
 | |
|   } else {
 | |
|     result = NewFlat(len + extra_hint);
 | |
|     result->length = len;
 | |
|     memcpy(result->data, data_, len);
 | |
|     set_tree(result);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline void Cord::InlineRep::reduce_size(size_t n) {
 | |
|   size_t tag = data_[kMaxInline];
 | |
|   assert(tag <= kMaxInline);
 | |
|   assert(tag >= n);
 | |
|   tag -= n;
 | |
|   memset(data_ + tag, 0, n);
 | |
|   data_[kMaxInline] = static_cast<char>(tag);
 | |
| }
 | |
| 
 | |
| inline void Cord::InlineRep::remove_prefix(size_t n) {
 | |
|   cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n);
 | |
|   reduce_size(n);
 | |
| }
 | |
| 
 | |
| void Cord::InlineRep::AppendTree(CordRep* tree) {
 | |
|   if (tree == nullptr) return;
 | |
|   size_t len = data_[kMaxInline];
 | |
|   if (len == 0) {
 | |
|     set_tree(tree);
 | |
|   } else {
 | |
|     set_tree(Concat(force_tree(0), tree));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Cord::InlineRep::PrependTree(CordRep* tree) {
 | |
|   if (tree == nullptr) return;
 | |
|   size_t len = data_[kMaxInline];
 | |
|   if (len == 0) {
 | |
|     set_tree(tree);
 | |
|   } else {
 | |
|     set_tree(Concat(tree, force_tree(0)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Searches for a non-full flat node at the rightmost leaf of the tree. If a
 | |
| // suitable leaf is found, the function will update the length field for all
 | |
| // nodes to account for the size increase. The append region address will be
 | |
| // written to region and the actual size increase will be written to size.
 | |
| static inline bool PrepareAppendRegion(CordRep* root, char** region,
 | |
|                                        size_t* size, size_t max_length) {
 | |
|   // Search down the right-hand path for a non-full FLAT node.
 | |
|   CordRep* dst = root;
 | |
|   while (dst->tag == CONCAT && dst->refcount.IsOne()) {
 | |
|     dst = dst->concat()->right;
 | |
|   }
 | |
| 
 | |
|   if (dst->tag < FLAT || !dst->refcount.IsOne()) {
 | |
|     *region = nullptr;
 | |
|     *size = 0;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const size_t in_use = dst->length;
 | |
|   const size_t capacity = TagToLength(dst->tag);
 | |
|   if (in_use == capacity) {
 | |
|     *region = nullptr;
 | |
|     *size = 0;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   size_t size_increase = std::min(capacity - in_use, max_length);
 | |
| 
 | |
|   // We need to update the length fields for all nodes, including the leaf node.
 | |
|   for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) {
 | |
|     rep->length += size_increase;
 | |
|   }
 | |
|   dst->length += size_increase;
 | |
| 
 | |
|   *region = dst->data + in_use;
 | |
|   *size = size_increase;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
 | |
|                                       size_t max_length) {
 | |
|   if (max_length == 0) {
 | |
|     *region = nullptr;
 | |
|     *size = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Try to fit in the inline buffer if possible.
 | |
|   size_t inline_length = data_[kMaxInline];
 | |
|   if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) {
 | |
|     *region = data_ + inline_length;
 | |
|     *size = max_length;
 | |
|     data_[kMaxInline] = static_cast<char>(inline_length + max_length);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   CordRep* root = force_tree(max_length);
 | |
| 
 | |
|   if (PrepareAppendRegion(root, region, size, max_length)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Allocate new node.
 | |
|   CordRep* new_node =
 | |
|       NewFlat(std::max(static_cast<size_t>(root->length), max_length));
 | |
|   new_node->length =
 | |
|       std::min(static_cast<size_t>(TagToLength(new_node->tag)), max_length);
 | |
|   *region = new_node->data;
 | |
|   *size = new_node->length;
 | |
|   replace_tree(Concat(root, new_node));
 | |
| }
 | |
| 
 | |
| void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) {
 | |
|   const size_t max_length = std::numeric_limits<size_t>::max();
 | |
| 
 | |
|   // Try to fit in the inline buffer if possible.
 | |
|   size_t inline_length = data_[kMaxInline];
 | |
|   if (inline_length < kMaxInline) {
 | |
|     *region = data_ + inline_length;
 | |
|     *size = kMaxInline - inline_length;
 | |
|     data_[kMaxInline] = kMaxInline;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   CordRep* root = force_tree(max_length);
 | |
| 
 | |
|   if (PrepareAppendRegion(root, region, size, max_length)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Allocate new node.
 | |
|   CordRep* new_node = NewFlat(root->length);
 | |
|   new_node->length = TagToLength(new_node->tag);
 | |
|   *region = new_node->data;
 | |
|   *size = new_node->length;
 | |
|   replace_tree(Concat(root, new_node));
 | |
| }
 | |
| 
 | |
| // If the rep is a leaf, this will increment the value at total_mem_usage and
 | |
| // will return true.
 | |
| static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
 | |
|   if (rep->tag >= FLAT) {
 | |
|     *total_mem_usage += TagToAllocatedSize(rep->tag);
 | |
|     return true;
 | |
|   }
 | |
|   if (rep->tag == EXTERNAL) {
 | |
|     *total_mem_usage += sizeof(CordRepConcat) + rep->length;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
 | |
|   ClearSlow();
 | |
| 
 | |
|   memcpy(data_, src.data_, sizeof(data_));
 | |
|   if (is_tree()) {
 | |
|     Ref(tree());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Cord::InlineRep::ClearSlow() {
 | |
|   if (is_tree()) {
 | |
|     Unref(tree());
 | |
|   }
 | |
|   memset(data_, 0, sizeof(data_));
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Constructors and destructors
 | |
| 
 | |
| Cord::Cord(const Cord& src) : contents_(src.contents_) {
 | |
|   Ref(contents_.tree());  // Does nothing if contents_ has embedded data
 | |
| }
 | |
| 
 | |
| Cord::Cord(absl::string_view src) {
 | |
|   const size_t n = src.size();
 | |
|   if (n <= InlineRep::kMaxInline) {
 | |
|     contents_.set_data(src.data(), n, false);
 | |
|   } else {
 | |
|     contents_.set_tree(NewTree(src.data(), n, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The destruction code is separate so that the compiler can determine
 | |
| // that it does not need to call the destructor on a moved-from Cord.
 | |
| void Cord::DestroyCordSlow() {
 | |
|   Unref(VerifyTree(contents_.tree()));
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Mutators
 | |
| 
 | |
| void Cord::Clear() {
 | |
|   Unref(contents_.clear());
 | |
| }
 | |
| 
 | |
| Cord& Cord::operator=(absl::string_view src) {
 | |
| 
 | |
|   const char* data = src.data();
 | |
|   size_t length = src.size();
 | |
|   CordRep* tree = contents_.tree();
 | |
|   if (length <= InlineRep::kMaxInline) {
 | |
|     // Embed into this->contents_
 | |
|     contents_.set_data(data, length, true);
 | |
|     Unref(tree);
 | |
|     return *this;
 | |
|   }
 | |
|   if (tree != nullptr && tree->tag >= FLAT &&
 | |
|       TagToLength(tree->tag) >= length && tree->refcount.IsOne()) {
 | |
|     // Copy in place if the existing FLAT node is reusable.
 | |
|     memmove(tree->data, data, length);
 | |
|     tree->length = length;
 | |
|     VerifyTree(tree);
 | |
|     return *this;
 | |
|   }
 | |
|   contents_.set_tree(NewTree(data, length, 0));
 | |
|   Unref(tree);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| // TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
 | |
| // we keep it here to make diffs easier.
 | |
| void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
 | |
|   if (src_size == 0) return;  // memcpy(_, nullptr, 0) is undefined.
 | |
|   // Try to fit in the inline buffer if possible.
 | |
|   size_t inline_length = data_[kMaxInline];
 | |
|   if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) {
 | |
|     // Append new data to embedded array
 | |
|     data_[kMaxInline] = static_cast<char>(inline_length + src_size);
 | |
|     memcpy(data_ + inline_length, src_data, src_size);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   CordRep* root = tree();
 | |
| 
 | |
|   size_t appended = 0;
 | |
|   if (root) {
 | |
|     char* region;
 | |
|     if (PrepareAppendRegion(root, ®ion, &appended, src_size)) {
 | |
|       memcpy(region, src_data, appended);
 | |
|     }
 | |
|   } else {
 | |
|     // It is possible that src_data == data_, but when we transition from an
 | |
|     // InlineRep to a tree we need to assign data_ = root via set_tree. To
 | |
|     // avoid corrupting the source data before we copy it, delay calling
 | |
|     // set_tree until after we've copied data.
 | |
|     // We are going from an inline size to beyond inline size. Make the new size
 | |
|     // either double the inlined size, or the added size + 10%.
 | |
|     const size_t size1 = inline_length * 2 + src_size;
 | |
|     const size_t size2 = inline_length + src_size / 10;
 | |
|     root = NewFlat(std::max<size_t>(size1, size2));
 | |
|     appended = std::min(src_size, TagToLength(root->tag) - inline_length);
 | |
|     memcpy(root->data, data_, inline_length);
 | |
|     memcpy(root->data + inline_length, src_data, appended);
 | |
|     root->length = inline_length + appended;
 | |
|     set_tree(root);
 | |
|   }
 | |
| 
 | |
|   src_data += appended;
 | |
|   src_size -= appended;
 | |
|   if (src_size == 0) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Use new block(s) for any remaining bytes that were not handled above.
 | |
|   // Alloc extra memory only if the right child of the root of the new tree is
 | |
|   // going to be a FLAT node, which will permit further inplace appends.
 | |
|   size_t length = src_size;
 | |
|   if (src_size < kMaxFlatLength) {
 | |
|     // The new length is either
 | |
|     // - old size + 10%
 | |
|     // - old_size + src_size
 | |
|     // This will cause a reasonable conservative step-up in size that is still
 | |
|     // large enough to avoid excessive amounts of small fragments being added.
 | |
|     length = std::max<size_t>(root->length / 10, src_size);
 | |
|   }
 | |
|   set_tree(Concat(root, NewTree(src_data, src_size, length - src_size)));
 | |
| }
 | |
| 
 | |
| inline CordRep* Cord::TakeRep() const& {
 | |
|   return Ref(contents_.tree());
 | |
| }
 | |
| 
 | |
| inline CordRep* Cord::TakeRep() && {
 | |
|   CordRep* rep = contents_.tree();
 | |
|   contents_.clear();
 | |
|   return rep;
 | |
| }
 | |
| 
 | |
| template <typename C>
 | |
| inline void Cord::AppendImpl(C&& src) {
 | |
|   if (empty()) {
 | |
|     // In case of an empty destination avoid allocating a new node, do not copy
 | |
|     // data.
 | |
|     *this = std::forward<C>(src);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For short cords, it is faster to copy data if there is room in dst.
 | |
|   const size_t src_size = src.contents_.size();
 | |
|   if (src_size <= kMaxBytesToCopy) {
 | |
|     CordRep* src_tree = src.contents_.tree();
 | |
|     if (src_tree == nullptr) {
 | |
|       // src has embedded data.
 | |
|       contents_.AppendArray(src.contents_.data(), src_size);
 | |
|       return;
 | |
|     }
 | |
|     if (src_tree->tag >= FLAT) {
 | |
|       // src tree just has one flat node.
 | |
|       contents_.AppendArray(src_tree->data, src_size);
 | |
|       return;
 | |
|     }
 | |
|     if (&src == this) {
 | |
|       // ChunkIterator below assumes that src is not modified during traversal.
 | |
|       Append(Cord(src));
 | |
|       return;
 | |
|     }
 | |
|     // TODO(mec): Should we only do this if "dst" has space?
 | |
|     for (absl::string_view chunk : src.Chunks()) {
 | |
|       Append(chunk);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   contents_.AppendTree(std::forward<C>(src).TakeRep());
 | |
| }
 | |
| 
 | |
| void Cord::Append(const Cord& src) { AppendImpl(src); }
 | |
| 
 | |
| void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }
 | |
| 
 | |
| void Cord::Prepend(const Cord& src) {
 | |
|   CordRep* src_tree = src.contents_.tree();
 | |
|   if (src_tree != nullptr) {
 | |
|     Ref(src_tree);
 | |
|     contents_.PrependTree(src_tree);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // `src` cord is inlined.
 | |
|   absl::string_view src_contents(src.contents_.data(), src.contents_.size());
 | |
|   return Prepend(src_contents);
 | |
| }
 | |
| 
 | |
| void Cord::Prepend(absl::string_view src) {
 | |
|   if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
 | |
|   size_t cur_size = contents_.size();
 | |
|   if (!contents_.is_tree() && cur_size + src.size() <= InlineRep::kMaxInline) {
 | |
|     // Use embedded storage.
 | |
|     char data[InlineRep::kMaxInline + 1] = {0};
 | |
|     data[InlineRep::kMaxInline] = cur_size + src.size();  // set size
 | |
|     memcpy(data, src.data(), src.size());
 | |
|     memcpy(data + src.size(), contents_.data(), cur_size);
 | |
|     memcpy(reinterpret_cast<void*>(&contents_), data,
 | |
|            InlineRep::kMaxInline + 1);
 | |
|   } else {
 | |
|     contents_.PrependTree(NewTree(src.data(), src.size(), 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
 | |
|   if (n >= node->length) return nullptr;
 | |
|   if (n == 0) return Ref(node);
 | |
|   absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
 | |
| 
 | |
|   while (node->tag == CONCAT) {
 | |
|     assert(n <= node->length);
 | |
|     if (n < node->concat()->left->length) {
 | |
|       // Push right to stack, descend left.
 | |
|       rhs_stack.push_back(node->concat()->right);
 | |
|       node = node->concat()->left;
 | |
|     } else {
 | |
|       // Drop left, descend right.
 | |
|       n -= node->concat()->left->length;
 | |
|       node = node->concat()->right;
 | |
|     }
 | |
|   }
 | |
|   assert(n <= node->length);
 | |
| 
 | |
|   if (n == 0) {
 | |
|     Ref(node);
 | |
|   } else {
 | |
|     size_t start = n;
 | |
|     size_t len = node->length - n;
 | |
|     if (node->tag == SUBSTRING) {
 | |
|       // Consider in-place update of node, similar to in RemoveSuffixFrom().
 | |
|       start += node->substring()->start;
 | |
|       node = node->substring()->child;
 | |
|     }
 | |
|     node = NewSubstring(Ref(node), start, len);
 | |
|   }
 | |
|   while (!rhs_stack.empty()) {
 | |
|     node = Concat(node, Ref(rhs_stack.back()));
 | |
|     rhs_stack.pop_back();
 | |
|   }
 | |
|   return node;
 | |
| }
 | |
| 
 | |
| // RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the
 | |
| // exception that removing a suffix has an optimization where a node may be
 | |
| // edited in place iff that node and all its ancestors have a refcount of 1.
 | |
| static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
 | |
|   if (n >= node->length) return nullptr;
 | |
|   if (n == 0) return Ref(node);
 | |
|   absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
 | |
|   bool inplace_ok = node->refcount.IsOne();
 | |
| 
 | |
|   while (node->tag == CONCAT) {
 | |
|     assert(n <= node->length);
 | |
|     if (n < node->concat()->right->length) {
 | |
|       // Push left to stack, descend right.
 | |
|       lhs_stack.push_back(node->concat()->left);
 | |
|       node = node->concat()->right;
 | |
|     } else {
 | |
|       // Drop right, descend left.
 | |
|       n -= node->concat()->right->length;
 | |
|       node = node->concat()->left;
 | |
|     }
 | |
|     inplace_ok = inplace_ok && node->refcount.IsOne();
 | |
|   }
 | |
|   assert(n <= node->length);
 | |
| 
 | |
|   if (n == 0) {
 | |
|     Ref(node);
 | |
|   } else if (inplace_ok && node->tag != EXTERNAL) {
 | |
|     // Consider making a new buffer if the current node capacity is much
 | |
|     // larger than the new length.
 | |
|     Ref(node);
 | |
|     node->length -= n;
 | |
|   } else {
 | |
|     size_t start = 0;
 | |
|     size_t len = node->length - n;
 | |
|     if (node->tag == SUBSTRING) {
 | |
|       start = node->substring()->start;
 | |
|       node = node->substring()->child;
 | |
|     }
 | |
|     node = NewSubstring(Ref(node), start, len);
 | |
|   }
 | |
|   while (!lhs_stack.empty()) {
 | |
|     node = Concat(Ref(lhs_stack.back()), node);
 | |
|     lhs_stack.pop_back();
 | |
|   }
 | |
|   return node;
 | |
| }
 | |
| 
 | |
| void Cord::RemovePrefix(size_t n) {
 | |
|   ABSL_INTERNAL_CHECK(n <= size(),
 | |
|                       absl::StrCat("Requested prefix size ", n,
 | |
|                                    " exceeds Cord's size ", size()));
 | |
|   CordRep* tree = contents_.tree();
 | |
|   if (tree == nullptr) {
 | |
|     contents_.remove_prefix(n);
 | |
|   } else {
 | |
|     CordRep* newrep = RemovePrefixFrom(tree, n);
 | |
|     Unref(tree);
 | |
|     contents_.replace_tree(VerifyTree(newrep));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Cord::RemoveSuffix(size_t n) {
 | |
|   ABSL_INTERNAL_CHECK(n <= size(),
 | |
|                       absl::StrCat("Requested suffix size ", n,
 | |
|                                    " exceeds Cord's size ", size()));
 | |
|   CordRep* tree = contents_.tree();
 | |
|   if (tree == nullptr) {
 | |
|     contents_.reduce_size(n);
 | |
|   } else {
 | |
|     CordRep* newrep = RemoveSuffixFrom(tree, n);
 | |
|     Unref(tree);
 | |
|     contents_.replace_tree(VerifyTree(newrep));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Work item for NewSubRange().
 | |
| struct SubRange {
 | |
|   SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
 | |
|       : node(a_node), pos(a_pos), n(a_n) {}
 | |
|   CordRep* node;  // nullptr means concat last 2 results.
 | |
|   size_t pos;
 | |
|   size_t n;
 | |
| };
 | |
| 
 | |
| static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
 | |
|   absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
 | |
|   absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
 | |
|   todo.push_back(SubRange(node, pos, n));
 | |
|   do {
 | |
|     const SubRange& sr = todo.back();
 | |
|     node = sr.node;
 | |
|     pos = sr.pos;
 | |
|     n = sr.n;
 | |
|     todo.pop_back();
 | |
| 
 | |
|     if (node == nullptr) {
 | |
|       assert(results.size() >= 2);
 | |
|       CordRep* right = results.back();
 | |
|       results.pop_back();
 | |
|       CordRep* left = results.back();
 | |
|       results.pop_back();
 | |
|       results.push_back(Concat(left, right));
 | |
|     } else if (pos == 0 && n == node->length) {
 | |
|       results.push_back(Ref(node));
 | |
|     } else if (node->tag != CONCAT) {
 | |
|       if (node->tag == SUBSTRING) {
 | |
|         pos += node->substring()->start;
 | |
|         node = node->substring()->child;
 | |
|       }
 | |
|       results.push_back(NewSubstring(Ref(node), pos, n));
 | |
|     } else if (pos + n <= node->concat()->left->length) {
 | |
|       todo.push_back(SubRange(node->concat()->left, pos, n));
 | |
|     } else if (pos >= node->concat()->left->length) {
 | |
|       pos -= node->concat()->left->length;
 | |
|       todo.push_back(SubRange(node->concat()->right, pos, n));
 | |
|     } else {
 | |
|       size_t left_n = node->concat()->left->length - pos;
 | |
|       todo.push_back(SubRange(nullptr, 0, 0));  // Concat()
 | |
|       todo.push_back(SubRange(node->concat()->right, 0, n - left_n));
 | |
|       todo.push_back(SubRange(node->concat()->left, pos, left_n));
 | |
|     }
 | |
|   } while (!todo.empty());
 | |
|   assert(results.size() == 1);
 | |
|   return results[0];
 | |
| }
 | |
| 
 | |
| Cord Cord::Subcord(size_t pos, size_t new_size) const {
 | |
|   Cord sub_cord;
 | |
|   size_t length = size();
 | |
|   if (pos > length) pos = length;
 | |
|   if (new_size > length - pos) new_size = length - pos;
 | |
|   CordRep* tree = contents_.tree();
 | |
|   if (tree == nullptr) {
 | |
|     // sub_cord is newly constructed, no need to re-zero-out the tail of
 | |
|     // contents_ memory.
 | |
|     sub_cord.contents_.set_data(contents_.data() + pos, new_size, false);
 | |
|   } else if (new_size == 0) {
 | |
|     // We want to return empty subcord, so nothing to do.
 | |
|   } else if (new_size <= InlineRep::kMaxInline) {
 | |
|     Cord::ChunkIterator it = chunk_begin();
 | |
|     it.AdvanceBytes(pos);
 | |
|     char* dest = sub_cord.contents_.data_;
 | |
|     size_t remaining_size = new_size;
 | |
|     while (remaining_size > it->size()) {
 | |
|       cord_internal::SmallMemmove(dest, it->data(), it->size());
 | |
|       remaining_size -= it->size();
 | |
|       dest += it->size();
 | |
|       ++it;
 | |
|     }
 | |
|     cord_internal::SmallMemmove(dest, it->data(), remaining_size);
 | |
|     sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size;
 | |
|   } else {
 | |
|     sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size));
 | |
|   }
 | |
|   return sub_cord;
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Balancing
 | |
| 
 | |
| class CordForest {
 | |
|  public:
 | |
|   explicit CordForest(size_t length)
 | |
|       : root_length_(length), trees_(kMinLengthSize, nullptr) {}
 | |
| 
 | |
|   void Build(CordRep* cord_root) {
 | |
|     std::vector<CordRep*> pending = {cord_root};
 | |
| 
 | |
|     while (!pending.empty()) {
 | |
|       CordRep* node = pending.back();
 | |
|       pending.pop_back();
 | |
|       CheckNode(node);
 | |
|       if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) {
 | |
|         AddNode(node);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       CordRepConcat* concat_node = node->concat();
 | |
|       if (concat_node->depth() >= kMinLengthSize ||
 | |
|           concat_node->length < min_length[concat_node->depth()]) {
 | |
|         pending.push_back(concat_node->right);
 | |
|         pending.push_back(concat_node->left);
 | |
| 
 | |
|         if (concat_node->refcount.IsOne()) {
 | |
|           concat_node->left = concat_freelist_;
 | |
|           concat_freelist_ = concat_node;
 | |
|         } else {
 | |
|           Ref(concat_node->right);
 | |
|           Ref(concat_node->left);
 | |
|           Unref(concat_node);
 | |
|         }
 | |
|       } else {
 | |
|         AddNode(node);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CordRep* ConcatNodes() {
 | |
|     CordRep* sum = nullptr;
 | |
|     for (auto* node : trees_) {
 | |
|       if (node == nullptr) continue;
 | |
| 
 | |
|       sum = PrependNode(node, sum);
 | |
|       root_length_ -= node->length;
 | |
|       if (root_length_ == 0) break;
 | |
|     }
 | |
|     ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node");
 | |
|     return VerifyTree(sum);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   CordRep* AppendNode(CordRep* node, CordRep* sum) {
 | |
|     return (sum == nullptr) ? node : MakeConcat(sum, node);
 | |
|   }
 | |
| 
 | |
|   CordRep* PrependNode(CordRep* node, CordRep* sum) {
 | |
|     return (sum == nullptr) ? node : MakeConcat(node, sum);
 | |
|   }
 | |
| 
 | |
|   void AddNode(CordRep* node) {
 | |
|     CordRep* sum = nullptr;
 | |
| 
 | |
|     // Collect together everything with which we will merge with node
 | |
|     int i = 0;
 | |
|     for (; node->length > min_length[i + 1]; ++i) {
 | |
|       auto& tree_at_i = trees_[i];
 | |
| 
 | |
|       if (tree_at_i == nullptr) continue;
 | |
|       sum = PrependNode(tree_at_i, sum);
 | |
|       tree_at_i = nullptr;
 | |
|     }
 | |
| 
 | |
|     sum = AppendNode(node, sum);
 | |
| 
 | |
|     // Insert sum into appropriate place in the forest
 | |
|     for (; sum->length >= min_length[i]; ++i) {
 | |
|       auto& tree_at_i = trees_[i];
 | |
|       if (tree_at_i == nullptr) continue;
 | |
| 
 | |
|       sum = MakeConcat(tree_at_i, sum);
 | |
|       tree_at_i = nullptr;
 | |
|     }
 | |
| 
 | |
|     // min_length[0] == 1, which means sum->length >= min_length[0]
 | |
|     assert(i > 0);
 | |
|     trees_[i - 1] = sum;
 | |
|   }
 | |
| 
 | |
|   // Make concat node trying to resue existing CordRepConcat nodes we
 | |
|   // already collected in the concat_freelist_.
 | |
|   CordRep* MakeConcat(CordRep* left, CordRep* right) {
 | |
|     if (concat_freelist_ == nullptr) return RawConcat(left, right);
 | |
| 
 | |
|     CordRepConcat* rep = concat_freelist_;
 | |
|     if (concat_freelist_->left == nullptr) {
 | |
|       concat_freelist_ = nullptr;
 | |
|     } else {
 | |
|       concat_freelist_ = concat_freelist_->left->concat();
 | |
|     }
 | |
|     SetConcatChildren(rep, left, right);
 | |
| 
 | |
|     return rep;
 | |
|   }
 | |
| 
 | |
|   static void CheckNode(CordRep* node) {
 | |
|     ABSL_INTERNAL_CHECK(node->length != 0u, "");
 | |
|     if (node->tag == CONCAT) {
 | |
|       ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
 | |
|       ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
 | |
|       ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
 | |
|                                            node->concat()->right->length),
 | |
|                           "");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   size_t root_length_;
 | |
| 
 | |
|   // use an inlined vector instead of a flat array to get bounds checking
 | |
|   absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;
 | |
| 
 | |
|   // List of concat nodes we can re-use for Cord balancing.
 | |
|   CordRepConcat* concat_freelist_ = nullptr;
 | |
| };
 | |
| 
 | |
| static CordRep* Rebalance(CordRep* node) {
 | |
|   VerifyTree(node);
 | |
|   assert(node->tag == CONCAT);
 | |
| 
 | |
|   if (node->length == 0) {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   CordForest forest(node->length);
 | |
|   forest.Build(node);
 | |
|   return forest.ConcatNodes();
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Comparators
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| int ClampResult(int memcmp_res) {
 | |
|   return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
 | |
| }
 | |
| 
 | |
| int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
 | |
|                   size_t* size_to_compare) {
 | |
|   size_t compared_size = std::min(lhs->size(), rhs->size());
 | |
|   assert(*size_to_compare >= compared_size);
 | |
|   *size_to_compare -= compared_size;
 | |
| 
 | |
|   int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
 | |
|   if (memcmp_res != 0) return memcmp_res;
 | |
| 
 | |
|   lhs->remove_prefix(compared_size);
 | |
|   rhs->remove_prefix(compared_size);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // This overload set computes comparison results from memcmp result. This
 | |
| // interface is used inside GenericCompare below. Differet implementations
 | |
| // are specialized for int and bool. For int we clamp result to {-1, 0, 1}
 | |
| // set. For bool we just interested in "value == 0".
 | |
| template <typename ResultType>
 | |
| ResultType ComputeCompareResult(int memcmp_res) {
 | |
|   return ClampResult(memcmp_res);
 | |
| }
 | |
| template <>
 | |
| bool ComputeCompareResult<bool>(int memcmp_res) {
 | |
|   return memcmp_res == 0;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // Helper routine. Locates the first flat chunk of the Cord without
 | |
| // initializing the iterator.
 | |
| inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
 | |
|   size_t n = data_[kMaxInline];
 | |
|   if (n <= kMaxInline) {
 | |
|     return absl::string_view(data_, n);
 | |
|   }
 | |
| 
 | |
|   CordRep* node = tree();
 | |
|   if (node->tag >= FLAT) {
 | |
|     return absl::string_view(node->data, node->length);
 | |
|   }
 | |
| 
 | |
|   if (node->tag == EXTERNAL) {
 | |
|     return absl::string_view(node->external()->base, node->length);
 | |
|   }
 | |
| 
 | |
|   // Walk down the left branches until we hit a non-CONCAT node.
 | |
|   while (node->tag == CONCAT) {
 | |
|     node = node->concat()->left;
 | |
|   }
 | |
| 
 | |
|   // Get the child node if we encounter a SUBSTRING.
 | |
|   size_t offset = 0;
 | |
|   size_t length = node->length;
 | |
|   assert(length != 0);
 | |
| 
 | |
|   if (node->tag == SUBSTRING) {
 | |
|     offset = node->substring()->start;
 | |
|     node = node->substring()->child;
 | |
|   }
 | |
| 
 | |
|   if (node->tag >= FLAT) {
 | |
|     return absl::string_view(node->data + offset, length);
 | |
|   }
 | |
| 
 | |
|   assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here");
 | |
| 
 | |
|   return absl::string_view(node->external()->base + offset, length);
 | |
| }
 | |
| 
 | |
| inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
 | |
|                                  size_t size_to_compare) const {
 | |
|   auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
 | |
|     if (!chunk->empty()) return true;
 | |
|     ++*it;
 | |
|     if (it->bytes_remaining_ == 0) return false;
 | |
|     *chunk = **it;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   Cord::ChunkIterator lhs_it = chunk_begin();
 | |
| 
 | |
|   // compared_size is inside first chunk.
 | |
|   absl::string_view lhs_chunk =
 | |
|       (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
 | |
|   assert(compared_size <= lhs_chunk.size());
 | |
|   assert(compared_size <= rhs.size());
 | |
|   lhs_chunk.remove_prefix(compared_size);
 | |
|   rhs.remove_prefix(compared_size);
 | |
|   size_to_compare -= compared_size;  // skip already compared size.
 | |
| 
 | |
|   while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
 | |
|     int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
 | |
|     if (comparison_result != 0) return comparison_result;
 | |
|     if (size_to_compare == 0) return 0;
 | |
|   }
 | |
| 
 | |
|   return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
 | |
| }
 | |
| 
 | |
| inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
 | |
|                                  size_t size_to_compare) const {
 | |
|   auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
 | |
|     if (!chunk->empty()) return true;
 | |
|     ++*it;
 | |
|     if (it->bytes_remaining_ == 0) return false;
 | |
|     *chunk = **it;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   Cord::ChunkIterator lhs_it = chunk_begin();
 | |
|   Cord::ChunkIterator rhs_it = rhs.chunk_begin();
 | |
| 
 | |
|   // compared_size is inside both first chunks.
 | |
|   absl::string_view lhs_chunk =
 | |
|       (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
 | |
|   absl::string_view rhs_chunk =
 | |
|       (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
 | |
|   assert(compared_size <= lhs_chunk.size());
 | |
|   assert(compared_size <= rhs_chunk.size());
 | |
|   lhs_chunk.remove_prefix(compared_size);
 | |
|   rhs_chunk.remove_prefix(compared_size);
 | |
|   size_to_compare -= compared_size;  // skip already compared size.
 | |
| 
 | |
|   while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
 | |
|     int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
 | |
|     if (memcmp_res != 0) return memcmp_res;
 | |
|     if (size_to_compare == 0) return 0;
 | |
|   }
 | |
| 
 | |
|   return static_cast<int>(rhs_chunk.empty()) -
 | |
|          static_cast<int>(lhs_chunk.empty());
 | |
| }
 | |
| 
 | |
| inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
 | |
|   return c.contents_.FindFlatStartPiece();
 | |
| }
 | |
| inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
 | |
|   return sv;
 | |
| }
 | |
| 
 | |
| // Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
 | |
| // that 'size_to_compare' is greater that size of smallest of first chunks.
 | |
| template <typename ResultType, typename RHS>
 | |
| ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
 | |
|                           size_t size_to_compare) {
 | |
|   absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
 | |
|   absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
 | |
| 
 | |
|   size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
 | |
|   assert(size_to_compare >= compared_size);
 | |
|   int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
 | |
|   if (compared_size == size_to_compare || memcmp_res != 0) {
 | |
|     return ComputeCompareResult<ResultType>(memcmp_res);
 | |
|   }
 | |
| 
 | |
|   return ComputeCompareResult<ResultType>(
 | |
|       lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
 | |
| }
 | |
| 
 | |
| bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
 | |
|   return GenericCompare<bool>(*this, rhs, size_to_compare);
 | |
| }
 | |
| 
 | |
| bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
 | |
|   return GenericCompare<bool>(*this, rhs, size_to_compare);
 | |
| }
 | |
| 
 | |
| template <typename RHS>
 | |
| inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
 | |
|   size_t lhs_size = lhs.size();
 | |
|   size_t rhs_size = rhs.size();
 | |
|   if (lhs_size == rhs_size) {
 | |
|     return GenericCompare<int>(lhs, rhs, lhs_size);
 | |
|   }
 | |
|   if (lhs_size < rhs_size) {
 | |
|     auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
 | |
|     return data_comp_res == 0 ? -1 : data_comp_res;
 | |
|   }
 | |
| 
 | |
|   auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
 | |
|   return data_comp_res == 0 ? +1 : data_comp_res;
 | |
| }
 | |
| 
 | |
| int Cord::Compare(absl::string_view rhs) const {
 | |
|   return SharedCompareImpl(*this, rhs);
 | |
| }
 | |
| 
 | |
| int Cord::CompareImpl(const Cord& rhs) const {
 | |
|   return SharedCompareImpl(*this, rhs);
 | |
| }
 | |
| 
 | |
| bool Cord::EndsWith(absl::string_view rhs) const {
 | |
|   size_t my_size = size();
 | |
|   size_t rhs_size = rhs.size();
 | |
| 
 | |
|   if (my_size < rhs_size) return false;
 | |
| 
 | |
|   Cord tmp(*this);
 | |
|   tmp.RemovePrefix(my_size - rhs_size);
 | |
|   return tmp.EqualsImpl(rhs, rhs_size);
 | |
| }
 | |
| 
 | |
| bool Cord::EndsWith(const Cord& rhs) const {
 | |
|   size_t my_size = size();
 | |
|   size_t rhs_size = rhs.size();
 | |
| 
 | |
|   if (my_size < rhs_size) return false;
 | |
| 
 | |
|   Cord tmp(*this);
 | |
|   tmp.RemovePrefix(my_size - rhs_size);
 | |
|   return tmp.EqualsImpl(rhs, rhs_size);
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------------------------
 | |
| // Misc.
 | |
| 
 | |
| Cord::operator std::string() const {
 | |
|   std::string s;
 | |
|   absl::CopyCordToString(*this, &s);
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| void CopyCordToString(const Cord& src, std::string* dst) {
 | |
|   if (!src.contents_.is_tree()) {
 | |
|     src.contents_.CopyTo(dst);
 | |
|   } else {
 | |
|     absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
 | |
|     src.CopyToArraySlowPath(&(*dst)[0]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Cord::CopyToArraySlowPath(char* dst) const {
 | |
|   assert(contents_.is_tree());
 | |
|   absl::string_view fragment;
 | |
|   if (GetFlatAux(contents_.tree(), &fragment)) {
 | |
|     memcpy(dst, fragment.data(), fragment.size());
 | |
|     return;
 | |
|   }
 | |
|   for (absl::string_view chunk : Chunks()) {
 | |
|     memcpy(dst, chunk.data(), chunk.size());
 | |
|     dst += chunk.size();
 | |
|   }
 | |
| }
 | |
| 
 | |
| Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
 | |
|   assert(bytes_remaining_ > 0 && "Attempted to iterate past `end()`");
 | |
|   assert(bytes_remaining_ >= current_chunk_.size());
 | |
|   bytes_remaining_ -= current_chunk_.size();
 | |
| 
 | |
|   if (stack_of_right_children_.empty()) {
 | |
|     assert(!current_chunk_.empty());  // Called on invalid iterator.
 | |
|     // We have reached the end of the Cord.
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Process the next node on the stack.
 | |
|   CordRep* node = stack_of_right_children_.back();
 | |
|   stack_of_right_children_.pop_back();
 | |
| 
 | |
|   // Walk down the left branches until we hit a non-CONCAT node. Save the
 | |
|   // right children to the stack for subsequent traversal.
 | |
|   while (node->tag == CONCAT) {
 | |
|     stack_of_right_children_.push_back(node->concat()->right);
 | |
|     node = node->concat()->left;
 | |
|   }
 | |
| 
 | |
|   // Get the child node if we encounter a SUBSTRING.
 | |
|   size_t offset = 0;
 | |
|   size_t length = node->length;
 | |
|   if (node->tag == SUBSTRING) {
 | |
|     offset = node->substring()->start;
 | |
|     node = node->substring()->child;
 | |
|   }
 | |
| 
 | |
|   assert(node->tag == EXTERNAL || node->tag >= FLAT);
 | |
|   assert(length != 0);
 | |
|   const char* data =
 | |
|       node->tag == EXTERNAL ? node->external()->base : node->data;
 | |
|   current_chunk_ = absl::string_view(data + offset, length);
 | |
|   current_leaf_ = node;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
 | |
|   assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
 | |
|   Cord subcord;
 | |
| 
 | |
|   if (n <= InlineRep::kMaxInline) {
 | |
|     // Range to read fits in inline data. Flatten it.
 | |
|     char* data = subcord.contents_.set_data(n);
 | |
|     while (n > current_chunk_.size()) {
 | |
|       memcpy(data, current_chunk_.data(), current_chunk_.size());
 | |
|       data += current_chunk_.size();
 | |
|       n -= current_chunk_.size();
 | |
|       ++*this;
 | |
|     }
 | |
|     memcpy(data, current_chunk_.data(), n);
 | |
|     if (n < current_chunk_.size()) {
 | |
|       RemoveChunkPrefix(n);
 | |
|     } else if (n > 0) {
 | |
|       ++*this;
 | |
|     }
 | |
|     return subcord;
 | |
|   }
 | |
|   if (n < current_chunk_.size()) {
 | |
|     // Range to read is a proper subrange of the current chunk.
 | |
|     assert(current_leaf_ != nullptr);
 | |
|     CordRep* subnode = Ref(current_leaf_);
 | |
|     const char* data =
 | |
|         subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
 | |
|     subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
 | |
|     subcord.contents_.set_tree(VerifyTree(subnode));
 | |
|     RemoveChunkPrefix(n);
 | |
|     return subcord;
 | |
|   }
 | |
| 
 | |
|   // Range to read begins with a proper subrange of the current chunk.
 | |
|   assert(!current_chunk_.empty());
 | |
|   assert(current_leaf_ != nullptr);
 | |
|   CordRep* subnode = Ref(current_leaf_);
 | |
|   if (current_chunk_.size() < subnode->length) {
 | |
|     const char* data =
 | |
|         subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
 | |
|     subnode = NewSubstring(subnode, current_chunk_.data() - data,
 | |
|                            current_chunk_.size());
 | |
|   }
 | |
|   n -= current_chunk_.size();
 | |
|   bytes_remaining_ -= current_chunk_.size();
 | |
| 
 | |
|   // Process the next node(s) on the stack, reading whole subtrees depending on
 | |
|   // their length and how many bytes we are advancing.
 | |
|   CordRep* node = nullptr;
 | |
|   while (!stack_of_right_children_.empty()) {
 | |
|     node = stack_of_right_children_.back();
 | |
|     stack_of_right_children_.pop_back();
 | |
|     if (node->length > n) break;
 | |
|     // TODO(qrczak): This might unnecessarily recreate existing concat nodes.
 | |
|     // Avoiding that would need pretty complicated logic (instead of
 | |
|     // current_leaf_, keep current_subtree_ which points to the highest node
 | |
|     // such that the current leaf can be found on the path of left children
 | |
|     // starting from current_subtree_; delay creating subnode while node is
 | |
|     // below current_subtree_; find the proper node along the path of left
 | |
|     // children starting from current_subtree_ if this loop exits while staying
 | |
|     // below current_subtree_; etc.; alternatively, push parents instead of
 | |
|     // right children on the stack).
 | |
|     subnode = Concat(subnode, Ref(node));
 | |
|     n -= node->length;
 | |
|     bytes_remaining_ -= node->length;
 | |
|     node = nullptr;
 | |
|   }
 | |
| 
 | |
|   if (node == nullptr) {
 | |
|     // We have reached the end of the Cord.
 | |
|     assert(bytes_remaining_ == 0);
 | |
|     subcord.contents_.set_tree(VerifyTree(subnode));
 | |
|     return subcord;
 | |
|   }
 | |
| 
 | |
|   // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
 | |
|   // right children to the stack for subsequent traversal.
 | |
|   while (node->tag == CONCAT) {
 | |
|     if (node->concat()->left->length > n) {
 | |
|       // Push right, descend left.
 | |
|       stack_of_right_children_.push_back(node->concat()->right);
 | |
|       node = node->concat()->left;
 | |
|     } else {
 | |
|       // Read left, descend right.
 | |
|       subnode = Concat(subnode, Ref(node->concat()->left));
 | |
|       n -= node->concat()->left->length;
 | |
|       bytes_remaining_ -= node->concat()->left->length;
 | |
|       node = node->concat()->right;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the child node if we encounter a SUBSTRING.
 | |
|   size_t offset = 0;
 | |
|   size_t length = node->length;
 | |
|   if (node->tag == SUBSTRING) {
 | |
|     offset = node->substring()->start;
 | |
|     node = node->substring()->child;
 | |
|   }
 | |
| 
 | |
|   // Range to read ends with a proper (possibly empty) subrange of the current
 | |
|   // chunk.
 | |
|   assert(node->tag == EXTERNAL || node->tag >= FLAT);
 | |
|   assert(length > n);
 | |
|   if (n > 0) subnode = Concat(subnode, NewSubstring(Ref(node), offset, n));
 | |
|   const char* data =
 | |
|       node->tag == EXTERNAL ? node->external()->base : node->data;
 | |
|   current_chunk_ = absl::string_view(data + offset + n, length - n);
 | |
|   current_leaf_ = node;
 | |
|   bytes_remaining_ -= n;
 | |
|   subcord.contents_.set_tree(VerifyTree(subnode));
 | |
|   return subcord;
 | |
| }
 | |
| 
 | |
| void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
 | |
|   assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
 | |
|   assert(n >= current_chunk_.size());  // This should only be called when
 | |
|                                        // iterating to a new node.
 | |
| 
 | |
|   n -= current_chunk_.size();
 | |
|   bytes_remaining_ -= current_chunk_.size();
 | |
| 
 | |
|   // Process the next node(s) on the stack, skipping whole subtrees depending on
 | |
|   // their length and how many bytes we are advancing.
 | |
|   CordRep* node = nullptr;
 | |
|   while (!stack_of_right_children_.empty()) {
 | |
|     node = stack_of_right_children_.back();
 | |
|     stack_of_right_children_.pop_back();
 | |
|     if (node->length > n) break;
 | |
|     n -= node->length;
 | |
|     bytes_remaining_ -= node->length;
 | |
|     node = nullptr;
 | |
|   }
 | |
| 
 | |
|   if (node == nullptr) {
 | |
|     // We have reached the end of the Cord.
 | |
|     assert(bytes_remaining_ == 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
 | |
|   // right children to the stack for subsequent traversal.
 | |
|   while (node->tag == CONCAT) {
 | |
|     if (node->concat()->left->length > n) {
 | |
|       // Push right, descend left.
 | |
|       stack_of_right_children_.push_back(node->concat()->right);
 | |
|       node = node->concat()->left;
 | |
|     } else {
 | |
|       // Skip left, descend right.
 | |
|       n -= node->concat()->left->length;
 | |
|       bytes_remaining_ -= node->concat()->left->length;
 | |
|       node = node->concat()->right;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the child node if we encounter a SUBSTRING.
 | |
|   size_t offset = 0;
 | |
|   size_t length = node->length;
 | |
|   if (node->tag == SUBSTRING) {
 | |
|     offset = node->substring()->start;
 | |
|     node = node->substring()->child;
 | |
|   }
 | |
| 
 | |
|   assert(node->tag == EXTERNAL || node->tag >= FLAT);
 | |
|   assert(length > n);
 | |
|   const char* data =
 | |
|       node->tag == EXTERNAL ? node->external()->base : node->data;
 | |
|   current_chunk_ = absl::string_view(data + offset + n, length - n);
 | |
|   current_leaf_ = node;
 | |
|   bytes_remaining_ -= n;
 | |
| }
 | |
| 
 | |
| char Cord::operator[](size_t i) const {
 | |
|   assert(i < size());
 | |
|   size_t offset = i;
 | |
|   const CordRep* rep = contents_.tree();
 | |
|   if (rep == nullptr) {
 | |
|     return contents_.data()[i];
 | |
|   }
 | |
|   while (true) {
 | |
|     assert(rep != nullptr);
 | |
|     assert(offset < rep->length);
 | |
|     if (rep->tag >= FLAT) {
 | |
|       // Get the "i"th character directly from the flat array.
 | |
|       return rep->data[offset];
 | |
|     } else if (rep->tag == EXTERNAL) {
 | |
|       // Get the "i"th character from the external array.
 | |
|       return rep->external()->base[offset];
 | |
|     } else if (rep->tag == CONCAT) {
 | |
|       // Recursively branch to the side of the concatenation that the "i"th
 | |
|       // character is on.
 | |
|       size_t left_length = rep->concat()->left->length;
 | |
|       if (offset < left_length) {
 | |
|         rep = rep->concat()->left;
 | |
|       } else {
 | |
|         offset -= left_length;
 | |
|         rep = rep->concat()->right;
 | |
|       }
 | |
|     } else {
 | |
|       // This must be a substring a node, so bypass it to get to the child.
 | |
|       assert(rep->tag == SUBSTRING);
 | |
|       offset += rep->substring()->start;
 | |
|       rep = rep->substring()->child;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| absl::string_view Cord::FlattenSlowPath() {
 | |
|   size_t total_size = size();
 | |
|   CordRep* new_rep;
 | |
|   char* new_buffer;
 | |
| 
 | |
|   // Try to put the contents into a new flat rep. If they won't fit in the
 | |
|   // biggest possible flat node, use an external rep instead.
 | |
|   if (total_size <= kMaxFlatLength) {
 | |
|     new_rep = NewFlat(total_size);
 | |
|     new_rep->length = total_size;
 | |
|     new_buffer = new_rep->data;
 | |
|     CopyToArraySlowPath(new_buffer);
 | |
|   } else {
 | |
|     new_buffer = std::allocator<char>().allocate(total_size);
 | |
|     CopyToArraySlowPath(new_buffer);
 | |
|     new_rep = absl::cord_internal::NewExternalRep(
 | |
|         absl::string_view(new_buffer, total_size), [](absl::string_view s) {
 | |
|           std::allocator<char>().deallocate(const_cast<char*>(s.data()),
 | |
|                                             s.size());
 | |
|         });
 | |
|   }
 | |
|   Unref(contents_.tree());
 | |
|   contents_.set_tree(new_rep);
 | |
|   return absl::string_view(new_buffer, total_size);
 | |
| }
 | |
| 
 | |
| /* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
 | |
|   assert(rep != nullptr);
 | |
|   if (rep->tag >= FLAT) {
 | |
|     *fragment = absl::string_view(rep->data, rep->length);
 | |
|     return true;
 | |
|   } else if (rep->tag == EXTERNAL) {
 | |
|     *fragment = absl::string_view(rep->external()->base, rep->length);
 | |
|     return true;
 | |
|   } else if (rep->tag == SUBSTRING) {
 | |
|     CordRep* child = rep->substring()->child;
 | |
|     if (child->tag >= FLAT) {
 | |
|       *fragment =
 | |
|           absl::string_view(child->data + rep->substring()->start, rep->length);
 | |
|       return true;
 | |
|     } else if (child->tag == EXTERNAL) {
 | |
|       *fragment = absl::string_view(
 | |
|           child->external()->base + rep->substring()->start, rep->length);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /* static */ void Cord::ForEachChunkAux(
 | |
|     absl::cord_internal::CordRep* rep,
 | |
|     absl::FunctionRef<void(absl::string_view)> callback) {
 | |
|   assert(rep != nullptr);
 | |
|   int stack_pos = 0;
 | |
|   constexpr int stack_max = 128;
 | |
|   // Stack of right branches for tree traversal
 | |
|   absl::cord_internal::CordRep* stack[stack_max];
 | |
|   absl::cord_internal::CordRep* current_node = rep;
 | |
|   while (true) {
 | |
|     if (current_node->tag == CONCAT) {
 | |
|       if (stack_pos == stack_max) {
 | |
|         // There's no more room on our stack array to add another right branch,
 | |
|         // and the idea is to avoid allocations, so call this function
 | |
|         // recursively to navigate this subtree further.  (This is not something
 | |
|         // we expect to happen in practice).
 | |
|         ForEachChunkAux(current_node, callback);
 | |
| 
 | |
|         // Pop the next right branch and iterate.
 | |
|         current_node = stack[--stack_pos];
 | |
|         continue;
 | |
|       } else {
 | |
|         // Save the right branch for later traversal and continue down the left
 | |
|         // branch.
 | |
|         stack[stack_pos++] = current_node->concat()->right;
 | |
|         current_node = current_node->concat()->left;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     // This is a leaf node, so invoke our callback.
 | |
|     absl::string_view chunk;
 | |
|     bool success = GetFlatAux(current_node, &chunk);
 | |
|     assert(success);
 | |
|     if (success) {
 | |
|       callback(chunk);
 | |
|     }
 | |
|     if (stack_pos == 0) {
 | |
|       // end of traversal
 | |
|       return;
 | |
|     }
 | |
|     current_node = stack[--stack_pos];
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
 | |
|   const int kIndentStep = 1;
 | |
|   int indent = 0;
 | |
|   absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
 | |
|   absl::InlinedVector<int, kInlinedVectorSize> indents;
 | |
|   for (;;) {
 | |
|     *os << std::setw(3) << rep->refcount.Get();
 | |
|     *os << " " << std::setw(7) << rep->length;
 | |
|     *os << " [";
 | |
|     if (include_data) *os << static_cast<void*>(rep);
 | |
|     *os << "]";
 | |
|     *os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
 | |
|     *os << " " << std::setw(indent) << "";
 | |
|     if (rep->tag == CONCAT) {
 | |
|       *os << "CONCAT depth=" << Depth(rep) << "\n";
 | |
|       indent += kIndentStep;
 | |
|       indents.push_back(indent);
 | |
|       stack.push_back(rep->concat()->right);
 | |
|       rep = rep->concat()->left;
 | |
|     } else if (rep->tag == SUBSTRING) {
 | |
|       *os << "SUBSTRING @ " << rep->substring()->start << "\n";
 | |
|       indent += kIndentStep;
 | |
|       rep = rep->substring()->child;
 | |
|     } else {  // Leaf
 | |
|       if (rep->tag == EXTERNAL) {
 | |
|         *os << "EXTERNAL [";
 | |
|         if (include_data)
 | |
|           *os << absl::CEscape(std::string(rep->external()->base, rep->length));
 | |
|         *os << "]\n";
 | |
|       } else {
 | |
|         *os << "FLAT cap=" << TagToLength(rep->tag) << " [";
 | |
|         if (include_data)
 | |
|           *os << absl::CEscape(std::string(rep->data, rep->length));
 | |
|         *os << "]\n";
 | |
|       }
 | |
|       if (stack.empty()) break;
 | |
|       rep = stack.back();
 | |
|       stack.pop_back();
 | |
|       indent = indents.back();
 | |
|       indents.pop_back();
 | |
|     }
 | |
|   }
 | |
|   ABSL_INTERNAL_CHECK(indents.empty(), "");
 | |
| }
 | |
| 
 | |
| static std::string ReportError(CordRep* root, CordRep* node) {
 | |
|   std::ostringstream buf;
 | |
|   buf << "Error at node " << node << " in:";
 | |
|   DumpNode(root, true, &buf);
 | |
|   return buf.str();
 | |
| }
 | |
| 
 | |
| static bool VerifyNode(CordRep* root, CordRep* start_node,
 | |
|                        bool full_validation) {
 | |
|   absl::InlinedVector<CordRep*, 2> worklist;
 | |
|   worklist.push_back(start_node);
 | |
|   do {
 | |
|     CordRep* node = worklist.back();
 | |
|     worklist.pop_back();
 | |
| 
 | |
|     ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
 | |
|     if (node != root) {
 | |
|       ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
 | |
|     }
 | |
| 
 | |
|     if (node->tag == CONCAT) {
 | |
|       ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
 | |
|                           ReportError(root, node));
 | |
|       ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
 | |
|                           ReportError(root, node));
 | |
|       ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length +
 | |
|                                                node->concat()->right->length),
 | |
|                           ReportError(root, node));
 | |
|       if (full_validation) {
 | |
|         worklist.push_back(node->concat()->right);
 | |
|         worklist.push_back(node->concat()->left);
 | |
|       }
 | |
|     } else if (node->tag >= FLAT) {
 | |
|       ABSL_INTERNAL_CHECK(node->length <= TagToLength(node->tag),
 | |
|                           ReportError(root, node));
 | |
|     } else if (node->tag == EXTERNAL) {
 | |
|       ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
 | |
|                           ReportError(root, node));
 | |
|     } else if (node->tag == SUBSTRING) {
 | |
|       ABSL_INTERNAL_CHECK(
 | |
|           node->substring()->start < node->substring()->child->length,
 | |
|           ReportError(root, node));
 | |
|       ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
 | |
|                               node->substring()->child->length,
 | |
|                           ReportError(root, node));
 | |
|     }
 | |
|   } while (!worklist.empty());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Traverses the tree and computes the total memory allocated.
 | |
| /* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
 | |
|   size_t total_mem_usage = 0;
 | |
| 
 | |
|   // Allow a quick exit for the common case that the root is a leaf.
 | |
|   if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
 | |
|     return total_mem_usage;
 | |
|   }
 | |
| 
 | |
|   // Iterate over the tree. cur_node is never a leaf node and leaf nodes will
 | |
|   // never be appended to tree_stack. This reduces overhead from manipulating
 | |
|   // tree_stack.
 | |
|   absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
 | |
|   const CordRep* cur_node = rep;
 | |
|   while (true) {
 | |
|     const CordRep* next_node = nullptr;
 | |
| 
 | |
|     if (cur_node->tag == CONCAT) {
 | |
|       total_mem_usage += sizeof(CordRepConcat);
 | |
|       const CordRep* left = cur_node->concat()->left;
 | |
|       if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
 | |
|         next_node = left;
 | |
|       }
 | |
| 
 | |
|       const CordRep* right = cur_node->concat()->right;
 | |
|       if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
 | |
|         if (next_node) {
 | |
|           tree_stack.push_back(next_node);
 | |
|         }
 | |
|         next_node = right;
 | |
|       }
 | |
|     } else {
 | |
|       // Since cur_node is not a leaf or a concat node it must be a substring.
 | |
|       assert(cur_node->tag == SUBSTRING);
 | |
|       total_mem_usage += sizeof(CordRepSubstring);
 | |
|       next_node = cur_node->substring()->child;
 | |
|       if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
 | |
|         next_node = nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!next_node) {
 | |
|       if (tree_stack.empty()) {
 | |
|         return total_mem_usage;
 | |
|       }
 | |
|       next_node = tree_stack.back();
 | |
|       tree_stack.pop_back();
 | |
|     }
 | |
|     cur_node = next_node;
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::ostream& operator<<(std::ostream& out, const Cord& cord) {
 | |
|   for (absl::string_view chunk : cord.Chunks()) {
 | |
|     out.write(chunk.data(), chunk.size());
 | |
|   }
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| namespace strings_internal {
 | |
| size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; }
 | |
| size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; }
 | |
| size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
 | |
|   return TagToLength(tag);
 | |
| }
 | |
| uint8_t CordTestAccess::LengthToTag(size_t s) {
 | |
|   ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
 | |
|   return AllocatedSizeToTag(s + kFlatOverhead);
 | |
| }
 | |
| size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); }
 | |
| size_t CordTestAccess::SizeofCordRepExternal() {
 | |
|   return sizeof(CordRepExternal);
 | |
| }
 | |
| size_t CordTestAccess::SizeofCordRepSubstring() {
 | |
|   return sizeof(CordRepSubstring);
 | |
| }
 | |
| }  // namespace strings_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |