git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			573 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/poisson_distribution.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <random>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/container/flat_hash_map.h"
 | |
| #include "absl/random/internal/chi_square.h"
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| #include "absl/random/internal/pcg_engine.h"
 | |
| #include "absl/random/internal/sequence_urbg.h"
 | |
| #include "absl/random/random.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| #include "absl/strings/str_format.h"
 | |
| #include "absl/strings/str_replace.h"
 | |
| #include "absl/strings/strip.h"
 | |
| 
 | |
| // Notes about generating poisson variates:
 | |
| //
 | |
| // It is unlikely that any implementation of std::poisson_distribution
 | |
| // will be stable over time and across library implementations. For instance
 | |
| // the three different poisson variate generators listed below all differ:
 | |
| //
 | |
| // https://github.com/ampl/gsl/tree/master/randist/poisson.c
 | |
| // * GSL uses a gamma + binomial + knuth method to compute poisson variates.
 | |
| //
 | |
| // https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.tcc
 | |
| // * GCC uses the Devroye rejection algorithm, based on
 | |
| // Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
 | |
| // New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!), ~p.511
 | |
| //   http://www.nrbook.com/devroye/
 | |
| //
 | |
| // https://github.com/llvm-mirror/libcxx/blob/master/include/random
 | |
| // * CLANG uses a different rejection method, which appears to include a
 | |
| // normal-distribution approximation and an exponential distribution to
 | |
| // compute the threshold, including a similar factorial approximation to this
 | |
| // one, but it is unclear where the algorithm comes from, exactly.
 | |
| //
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using absl::random_internal::kChiSquared;
 | |
| 
 | |
| // The PoissonDistributionInterfaceTest provides a basic test that
 | |
| // absl::poisson_distribution conforms to the interface and serialization
 | |
| // requirements imposed by [rand.req.dist] for the common integer types.
 | |
| 
 | |
| template <typename IntType>
 | |
| class PoissonDistributionInterfaceTest : public ::testing::Test {};
 | |
| 
 | |
| using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t,
 | |
|                                   uint8_t, uint16_t, uint32_t, uint64_t>;
 | |
| TYPED_TEST_CASE(PoissonDistributionInterfaceTest, IntTypes);
 | |
| 
 | |
| TYPED_TEST(PoissonDistributionInterfaceTest, SerializeTest) {
 | |
|   using param_type = typename absl::poisson_distribution<TypeParam>::param_type;
 | |
|   const double kMax =
 | |
|       std::min(1e10 /* assertion limit */,
 | |
|                static_cast<double>(std::numeric_limits<TypeParam>::max()));
 | |
| 
 | |
|   const double kParams[] = {
 | |
|       // Cases around 1.
 | |
|       1,                         //
 | |
|       std::nextafter(1.0, 0.0),  // 1 - epsilon
 | |
|       std::nextafter(1.0, 2.0),  // 1 + epsilon
 | |
|       // Arbitrary values.
 | |
|       1e-8, 1e-4,
 | |
|       0.0000005,  // ~7.2e-7
 | |
|       0.2,        // ~0.2x
 | |
|       0.5,        // 0.72
 | |
|       2,          // ~2.8
 | |
|       20,         // 3x ~9.6
 | |
|       100, 1e4, 1e8, 1.5e9, 1e20,
 | |
|       // Boundary cases.
 | |
|       std::numeric_limits<double>::max(),
 | |
|       std::numeric_limits<double>::epsilon(),
 | |
|       std::nextafter(std::numeric_limits<double>::min(),
 | |
|                      1.0),                        // min + epsilon
 | |
|       std::numeric_limits<double>::min(),         // smallest normal
 | |
|       std::numeric_limits<double>::denorm_min(),  // smallest denorm
 | |
|       std::numeric_limits<double>::min() / 2,     // denorm
 | |
|       std::nextafter(std::numeric_limits<double>::min(),
 | |
|                      0.0),  // denorm_max
 | |
|   };
 | |
| 
 | |
| 
 | |
|   constexpr int kCount = 1000;
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (const double m : kParams) {
 | |
|     const double mean = std::min(kMax, m);
 | |
|     const param_type param(mean);
 | |
| 
 | |
|     // Validate parameters.
 | |
|     absl::poisson_distribution<TypeParam> before(mean);
 | |
|     EXPECT_EQ(before.mean(), param.mean());
 | |
| 
 | |
|     {
 | |
|       absl::poisson_distribution<TypeParam> via_param(param);
 | |
|       EXPECT_EQ(via_param, before);
 | |
|       EXPECT_EQ(via_param.param(), before.param());
 | |
|     }
 | |
| 
 | |
|     // Smoke test.
 | |
|     auto sample_min = before.max();
 | |
|     auto sample_max = before.min();
 | |
|     for (int i = 0; i < kCount; i++) {
 | |
|       auto sample = before(gen);
 | |
|       EXPECT_GE(sample, before.min());
 | |
|       EXPECT_LE(sample, before.max());
 | |
|       if (sample > sample_max) sample_max = sample;
 | |
|       if (sample < sample_min) sample_min = sample;
 | |
|     }
 | |
| 
 | |
|     ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ",
 | |
|                                          +sample_min, ", ", +sample_max));
 | |
| 
 | |
|     // Validate stream serialization.
 | |
|     std::stringstream ss;
 | |
|     ss << before;
 | |
| 
 | |
|     absl::poisson_distribution<TypeParam> after(3.8);
 | |
| 
 | |
|     EXPECT_NE(before.mean(), after.mean());
 | |
|     EXPECT_NE(before.param(), after.param());
 | |
|     EXPECT_NE(before, after);
 | |
| 
 | |
|     ss >> after;
 | |
| 
 | |
|     EXPECT_EQ(before.mean(), after.mean())  //
 | |
|         << ss.str() << " "                  //
 | |
|         << (ss.good() ? "good " : "")       //
 | |
|         << (ss.bad() ? "bad " : "")         //
 | |
|         << (ss.eof() ? "eof " : "")         //
 | |
|         << (ss.fail() ? "fail " : "");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // See http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm
 | |
| 
 | |
| class PoissonModel {
 | |
|  public:
 | |
|   explicit PoissonModel(double mean) : mean_(mean) {}
 | |
| 
 | |
|   double mean() const { return mean_; }
 | |
|   double variance() const { return mean_; }
 | |
|   double stddev() const { return std::sqrt(variance()); }
 | |
|   double skew() const { return 1.0 / mean_; }
 | |
|   double kurtosis() const { return 3.0 + 1.0 / mean_; }
 | |
| 
 | |
|   // InitCDF() initializes the CDF for the distribution parameters.
 | |
|   void InitCDF();
 | |
| 
 | |
|   // The InverseCDF, or the Percent-point function returns x, P(x) < v.
 | |
|   struct CDF {
 | |
|     size_t index;
 | |
|     double pmf;
 | |
|     double cdf;
 | |
|   };
 | |
|   CDF InverseCDF(double p) {
 | |
|     CDF target{0, 0, p};
 | |
|     auto it = std::upper_bound(
 | |
|         std::begin(cdf_), std::end(cdf_), target,
 | |
|         [](const CDF& a, const CDF& b) { return a.cdf < b.cdf; });
 | |
|     return *it;
 | |
|   }
 | |
| 
 | |
|   void LogCDF() {
 | |
|     ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")"));
 | |
|     for (const auto c : cdf_) {
 | |
|       ABSL_INTERNAL_LOG(INFO,
 | |
|                         absl::StrCat(c.index, ": pmf=", c.pmf, " cdf=", c.cdf));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const double mean_;
 | |
| 
 | |
|   std::vector<CDF> cdf_;
 | |
| };
 | |
| 
 | |
| // The goal is to compute an InverseCDF function, or percent point function for
 | |
| // the poisson distribution, and use that to partition our output into equal
 | |
| // range buckets.  However there is no closed form solution for the inverse cdf
 | |
| // for poisson distributions (the closest is the incomplete gamma function).
 | |
| // Instead, `InitCDF` iteratively computes the PMF and the CDF. This enables
 | |
| // searching for the bucket points.
 | |
| void PoissonModel::InitCDF() {
 | |
|   if (!cdf_.empty()) {
 | |
|     // State already initialized.
 | |
|     return;
 | |
|   }
 | |
|   ABSL_ASSERT(mean_ < 201.0);
 | |
| 
 | |
|   const size_t max_i = 50 * stddev() + mean();
 | |
|   const double e_neg_mean = std::exp(-mean());
 | |
|   ABSL_ASSERT(e_neg_mean > 0);
 | |
| 
 | |
|   double d = 1;
 | |
|   double last_result = e_neg_mean;
 | |
|   double cumulative = e_neg_mean;
 | |
|   if (e_neg_mean > 1e-10) {
 | |
|     cdf_.push_back({0, e_neg_mean, cumulative});
 | |
|   }
 | |
|   for (size_t i = 1; i < max_i; i++) {
 | |
|     d *= (mean() / i);
 | |
|     double result = e_neg_mean * d;
 | |
|     cumulative += result;
 | |
|     if (result < 1e-10 && result < last_result && cumulative > 0.999999) {
 | |
|       break;
 | |
|     }
 | |
|     if (result > 1e-7) {
 | |
|       cdf_.push_back({i, result, cumulative});
 | |
|     }
 | |
|     last_result = result;
 | |
|   }
 | |
|   ABSL_ASSERT(!cdf_.empty());
 | |
| }
 | |
| 
 | |
| // PoissonDistributionZTest implements a z-test for the poisson distribution.
 | |
| 
 | |
| struct ZParam {
 | |
|   double mean;
 | |
|   double p_fail;   // Z-Test probability of failure.
 | |
|   int trials;      // Z-Test trials.
 | |
|   size_t samples;  // Z-Test samples.
 | |
| };
 | |
| 
 | |
| class PoissonDistributionZTest : public testing::TestWithParam<ZParam>,
 | |
|                                  public PoissonModel {
 | |
|  public:
 | |
|   PoissonDistributionZTest() : PoissonModel(GetParam().mean) {}
 | |
| 
 | |
|   // ZTestImpl provides a basic z-squared test of the mean vs. expected
 | |
|   // mean for data generated by the poisson distribution.
 | |
|   template <typename D>
 | |
|   bool SingleZTest(const double p, const size_t samples);
 | |
| 
 | |
|   // We use a fixed bit generator for distribution accuracy tests.  This allows
 | |
|   // these tests to be deterministic, while still testing the qualify of the
 | |
|   // implementation.
 | |
|   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
 | |
| };
 | |
| 
 | |
| template <typename D>
 | |
| bool PoissonDistributionZTest::SingleZTest(const double p,
 | |
|                                            const size_t samples) {
 | |
|   D dis(mean());
 | |
| 
 | |
|   absl::flat_hash_map<int32_t, int> buckets;
 | |
|   std::vector<double> data;
 | |
|   data.reserve(samples);
 | |
|   for (int j = 0; j < samples; j++) {
 | |
|     const auto x = dis(rng_);
 | |
|     buckets[x]++;
 | |
|     data.push_back(x);
 | |
|   }
 | |
| 
 | |
|   // The null-hypothesis is that the distribution is a poisson distribution with
 | |
|   // the provided mean (not estimated from the data).
 | |
|   const auto m = absl::random_internal::ComputeDistributionMoments(data);
 | |
|   const double max_err = absl::random_internal::MaxErrorTolerance(p);
 | |
|   const double z = absl::random_internal::ZScore(mean(), m);
 | |
|   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
 | |
| 
 | |
|   if (!pass) {
 | |
|     ABSL_INTERNAL_LOG(
 | |
|         INFO, absl::StrFormat("p=%f max_err=%f\n"
 | |
|                               " mean=%f vs. %f\n"
 | |
|                               " stddev=%f vs. %f\n"
 | |
|                               " skewness=%f vs. %f\n"
 | |
|                               " kurtosis=%f vs. %f\n"
 | |
|                               " z=%f",
 | |
|                               p, max_err, m.mean, mean(), std::sqrt(m.variance),
 | |
|                               stddev(), m.skewness, skew(), m.kurtosis,
 | |
|                               kurtosis(), z));
 | |
|   }
 | |
|   return pass;
 | |
| }
 | |
| 
 | |
| TEST_P(PoissonDistributionZTest, AbslPoissonDistribution) {
 | |
|   const auto& param = GetParam();
 | |
|   const int expected_failures =
 | |
|       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
 | |
|   const double p = absl::random_internal::RequiredSuccessProbability(
 | |
|       param.p_fail, param.trials);
 | |
| 
 | |
|   int failures = 0;
 | |
|   for (int i = 0; i < param.trials; i++) {
 | |
|     failures +=
 | |
|         SingleZTest<absl::poisson_distribution<int32_t>>(p, param.samples) ? 0
 | |
|                                                                            : 1;
 | |
|   }
 | |
|   EXPECT_LE(failures, expected_failures);
 | |
| }
 | |
| 
 | |
| std::vector<ZParam> GetZParams() {
 | |
|   // These values have been adjusted from the "exact" computed values to reduce
 | |
|   // failure rates.
 | |
|   //
 | |
|   // It turns out that the actual values are not as close to the expected values
 | |
|   // as would be ideal.
 | |
|   return std::vector<ZParam>({
 | |
|       // Knuth method.
 | |
|       ZParam{0.5, 0.01, 100, 1000},
 | |
|       ZParam{1.0, 0.01, 100, 1000},
 | |
|       ZParam{10.0, 0.01, 100, 5000},
 | |
|       // Split-knuth method.
 | |
|       ZParam{20.0, 0.01, 100, 10000},
 | |
|       ZParam{50.0, 0.01, 100, 10000},
 | |
|       // Ratio of gaussians method.
 | |
|       ZParam{51.0, 0.01, 100, 10000},
 | |
|       ZParam{200.0, 0.05, 10, 100000},
 | |
|       ZParam{100000.0, 0.05, 10, 1000000},
 | |
|   });
 | |
| }
 | |
| 
 | |
| std::string ZParamName(const ::testing::TestParamInfo<ZParam>& info) {
 | |
|   const auto& p = info.param;
 | |
|   std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean));
 | |
|   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionZTest,
 | |
|                          ::testing::ValuesIn(GetZParams()), ZParamName);
 | |
| 
 | |
| // The PoissonDistributionChiSquaredTest class provides a basic test framework
 | |
| // for variates generated by a conforming poisson_distribution.
 | |
| class PoissonDistributionChiSquaredTest : public testing::TestWithParam<double>,
 | |
|                                           public PoissonModel {
 | |
|  public:
 | |
|   PoissonDistributionChiSquaredTest() : PoissonModel(GetParam()) {}
 | |
| 
 | |
|   // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for data
 | |
|   // generated by the poisson distribution.
 | |
|   template <typename D>
 | |
|   double ChiSquaredTestImpl();
 | |
| 
 | |
|  private:
 | |
|   void InitChiSquaredTest(const double buckets);
 | |
| 
 | |
|   std::vector<size_t> cutoffs_;
 | |
|   std::vector<double> expected_;
 | |
| 
 | |
|   // We use a fixed bit generator for distribution accuracy tests.  This allows
 | |
|   // these tests to be deterministic, while still testing the qualify of the
 | |
|   // implementation.
 | |
|   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
 | |
| };
 | |
| 
 | |
| void PoissonDistributionChiSquaredTest::InitChiSquaredTest(
 | |
|     const double buckets) {
 | |
|   if (!cutoffs_.empty() && !expected_.empty()) {
 | |
|     return;
 | |
|   }
 | |
|   InitCDF();
 | |
| 
 | |
|   // The code below finds cuttoffs that yield approximately equally-sized
 | |
|   // buckets to the extent that it is possible. However for poisson
 | |
|   // distributions this is particularly challenging for small mean parameters.
 | |
|   // Track the expected proportion of items in each bucket.
 | |
|   double last_cdf = 0;
 | |
|   const double inc = 1.0 / buckets;
 | |
|   for (double p = inc; p <= 1.0; p += inc) {
 | |
|     auto result = InverseCDF(p);
 | |
|     if (!cutoffs_.empty() && cutoffs_.back() == result.index) {
 | |
|       continue;
 | |
|     }
 | |
|     double d = result.cdf - last_cdf;
 | |
|     cutoffs_.push_back(result.index);
 | |
|     expected_.push_back(d);
 | |
|     last_cdf = result.cdf;
 | |
|   }
 | |
|   cutoffs_.push_back(std::numeric_limits<size_t>::max());
 | |
|   expected_.push_back(std::max(0.0, 1.0 - last_cdf));
 | |
| }
 | |
| 
 | |
| template <typename D>
 | |
| double PoissonDistributionChiSquaredTest::ChiSquaredTestImpl() {
 | |
|   const int kSamples = 2000;
 | |
|   const int kBuckets = 50;
 | |
| 
 | |
|   // The poisson CDF fails for large mean values, since e^-mean exceeds the
 | |
|   // machine precision. For these cases, using a normal approximation would be
 | |
|   // appropriate.
 | |
|   ABSL_ASSERT(mean() <= 200);
 | |
|   InitChiSquaredTest(kBuckets);
 | |
| 
 | |
|   D dis(mean());
 | |
| 
 | |
|   std::vector<int32_t> counts(cutoffs_.size(), 0);
 | |
|   for (int j = 0; j < kSamples; j++) {
 | |
|     const size_t x = dis(rng_);
 | |
|     auto it = std::lower_bound(std::begin(cutoffs_), std::end(cutoffs_), x);
 | |
|     counts[std::distance(cutoffs_.begin(), it)]++;
 | |
|   }
 | |
| 
 | |
|   // Normalize the counts.
 | |
|   std::vector<int32_t> e(expected_.size(), 0);
 | |
|   for (int i = 0; i < e.size(); i++) {
 | |
|     e[i] = kSamples * expected_[i];
 | |
|   }
 | |
| 
 | |
|   // The null-hypothesis is that the distribution is a poisson distribution with
 | |
|   // the provided mean (not estimated from the data).
 | |
|   const int dof = static_cast<int>(counts.size()) - 1;
 | |
| 
 | |
|   // The threshold for logging is 1-in-50.
 | |
|   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
 | |
| 
 | |
|   const double chi_square = absl::random_internal::ChiSquare(
 | |
|       std::begin(counts), std::end(counts), std::begin(e), std::end(e));
 | |
| 
 | |
|   const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
 | |
| 
 | |
|   // Log if the chi_squared value is above the threshold.
 | |
|   if (chi_square > threshold) {
 | |
|     LogCDF();
 | |
| 
 | |
|     ABSL_INTERNAL_LOG(INFO, absl::StrCat("VALUES  buckets=", counts.size(),
 | |
|                                          "  samples=", kSamples));
 | |
|     for (size_t i = 0; i < counts.size(); i++) {
 | |
|       ABSL_INTERNAL_LOG(
 | |
|           INFO, absl::StrCat(cutoffs_[i], ": ", counts[i], " vs. E=", e[i]));
 | |
|     }
 | |
| 
 | |
|     ABSL_INTERNAL_LOG(
 | |
|         INFO,
 | |
|         absl::StrCat(kChiSquared, "(data, dof=", dof, ") = ", chi_square, " (",
 | |
|                      p, ")\n", " vs.\n", kChiSquared, " @ 0.98 = ", threshold));
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| TEST_P(PoissonDistributionChiSquaredTest, AbslPoissonDistribution) {
 | |
|   const int kTrials = 20;
 | |
| 
 | |
|   // Large values are not yet supported -- this requires estimating the cdf
 | |
|   // using the normal distribution instead of the poisson in this case.
 | |
|   ASSERT_LE(mean(), 200.0);
 | |
|   if (mean() > 200.0) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   int failures = 0;
 | |
|   for (int i = 0; i < kTrials; i++) {
 | |
|     double p_value = ChiSquaredTestImpl<absl::poisson_distribution<int32_t>>();
 | |
|     if (p_value < 0.005) {
 | |
|       failures++;
 | |
|     }
 | |
|   }
 | |
|   // There is a 0.10% chance of producing at least one failure, so raise the
 | |
|   // failure threshold high enough to allow for a flake rate < 10,000.
 | |
|   EXPECT_LE(failures, 4);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionChiSquaredTest,
 | |
|                          ::testing::Values(0.5, 1.0, 2.0, 10.0, 50.0, 51.0,
 | |
|                                            200.0));
 | |
| 
 | |
| // NOTE: absl::poisson_distribution is not guaranteed to be stable.
 | |
| TEST(PoissonDistributionTest, StabilityTest) {
 | |
|   using testing::ElementsAre;
 | |
|   // absl::poisson_distribution stability relies on stability of
 | |
|   // std::exp, std::log, std::sqrt, std::ceil, std::floor, and
 | |
|   // absl::FastUniformBits, absl::StirlingLogFactorial, absl::RandU64ToDouble.
 | |
|   absl::random_internal::sequence_urbg urbg({
 | |
|       0x035b0dc7e0a18acfull, 0x06cebe0d2653682eull, 0x0061e9b23861596bull,
 | |
|       0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
 | |
|       0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
 | |
|       0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
 | |
|       0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
 | |
|       0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
 | |
|       0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
 | |
|       0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
 | |
|       0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
 | |
|       0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
 | |
|       0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull, 0xffe6ea4d6edb0c73ull,
 | |
|       0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull, 0xEAAD8E716B93D5A0ull,
 | |
|       0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull, 0x8FF6E2FBF2122B64ull,
 | |
|       0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull, 0xD1CFF191B3A8C1ADull,
 | |
|       0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull, 0xE5A0CC0FB56F74E8ull,
 | |
|       0x18ACF3D6CE89E299ull, 0xB4A84FE0FD13E0B7ull, 0x7CC43B81D2ADA8D9ull,
 | |
|       0x165FA26680957705ull, 0x93CC7314211A1477ull, 0xE6AD206577B5FA86ull,
 | |
|       0xC75442F5FB9D35CFull, 0xEBCDAF0C7B3E89A0ull, 0xD6411BD3AE1E7E49ull,
 | |
|       0x00250E2D2071B35Eull, 0x226800BB57B8E0AFull, 0x2464369BF009B91Eull,
 | |
|       0x5563911D59DFA6AAull, 0x78C14389D95A537Full, 0x207D5BA202E5B9C5ull,
 | |
|       0x832603766295CFA9ull, 0x11C819684E734A41ull, 0xB3472DCA7B14A94Aull,
 | |
|   });
 | |
| 
 | |
|   std::vector<int> output(10);
 | |
| 
 | |
|   // Method 1.
 | |
|   {
 | |
|     absl::poisson_distribution<int> dist(5);
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return dist(urbg); });
 | |
|   }
 | |
|   EXPECT_THAT(output,  // mean = 4.2
 | |
|               ElementsAre(1, 0, 0, 4, 2, 10, 3, 3, 7, 12));
 | |
| 
 | |
|   // Method 2.
 | |
|   {
 | |
|     urbg.reset();
 | |
|     absl::poisson_distribution<int> dist(25);
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return dist(urbg); });
 | |
|   }
 | |
|   EXPECT_THAT(output,  // mean = 19.8
 | |
|               ElementsAre(9, 35, 18, 10, 35, 18, 10, 35, 18, 10));
 | |
| 
 | |
|   // Method 3.
 | |
|   {
 | |
|     urbg.reset();
 | |
|     absl::poisson_distribution<int> dist(121);
 | |
|     std::generate(std::begin(output), std::end(output),
 | |
|                   [&] { return dist(urbg); });
 | |
|   }
 | |
|   EXPECT_THAT(output,  // mean = 124.1
 | |
|               ElementsAre(161, 122, 129, 124, 112, 112, 117, 120, 130, 114));
 | |
| }
 | |
| 
 | |
| TEST(PoissonDistributionTest, AlgorithmExpectedValue_1) {
 | |
|   // This tests small values of the Knuth method.
 | |
|   // The underlying uniform distribution will generate exactly 0.5.
 | |
|   absl::random_internal::sequence_urbg urbg({0x8000000000000001ull});
 | |
|   absl::poisson_distribution<int> dist(5);
 | |
|   EXPECT_EQ(7, dist(urbg));
 | |
| }
 | |
| 
 | |
| TEST(PoissonDistributionTest, AlgorithmExpectedValue_2) {
 | |
|   // This tests larger values of the Knuth method.
 | |
|   // The underlying uniform distribution will generate exactly 0.5.
 | |
|   absl::random_internal::sequence_urbg urbg({0x8000000000000001ull});
 | |
|   absl::poisson_distribution<int> dist(25);
 | |
|   EXPECT_EQ(36, dist(urbg));
 | |
| }
 | |
| 
 | |
| TEST(PoissonDistributionTest, AlgorithmExpectedValue_3) {
 | |
|   // This variant uses the ratio of uniforms method.
 | |
|   absl::random_internal::sequence_urbg urbg(
 | |
|       {0x7fffffffffffffffull, 0x8000000000000000ull});
 | |
| 
 | |
|   absl::poisson_distribution<int> dist(121);
 | |
|   EXPECT_EQ(121, dist(urbg));
 | |
| }
 | |
| 
 | |
| }  // namespace
 |