-- 38bc0644e17bf9fe4d78d3db92cd06f585b99ba7 by Andy Soffer <asoffer@google.com>: Change benchmark to be cc_binary instead of cc_test, and fix a bug in the zipf_distribution benchmark in which arguments were passed in the wrong order. PiperOrigin-RevId: 262227159 -- 3b5411d8f285a758a1713f7ef0dbfa3518f2b38b by CJ Johnson <johnsoncj@google.com>: Updates Simple<*>() overload to match the name schema of the others PiperOrigin-RevId: 262211217 -- 0cb6812cb8b6e3bf0386b9354189ffcf46c4c094 by Andy Soffer <asoffer@google.com>: Removing period in trailing namespace comments. PiperOrigin-RevId: 262210952 -- c903feae3a881be81adf37e9fccd558ee3ed1e64 by CJ Johnson <johnsoncj@google.com>: This is a cleanup on the public header of InlinedVector to be more presentable PiperOrigin-RevId: 262207691 -- 9a94384dc79cdcf38f6153894f337ebb744e2d76 by Tom Manshreck <shreck@google.com>: Fix incorrect doc on operator()[] for flat_hash_set PiperOrigin-RevId: 262206962 -- 17e88ee10b727af82c04f8150b6d246eaac836cb by Derek Mauro <dmauro@google.com>: Fix gcc-5 build error PiperOrigin-RevId: 262198236 GitOrigin-RevId: 38bc0644e17bf9fe4d78d3db92cd06f585b99ba7 Change-Id: I77cababa47ba3ee8b6cebb2c2cfc9f60a331f6b7
		
			
				
	
	
		
			269 lines
		
	
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
 | |
| #define ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <istream>
 | |
| #include <limits>
 | |
| #include <ostream>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/random/internal/iostream_state_saver.h"
 | |
| #include "absl/random/uniform_real_distribution.h"
 | |
| 
 | |
| namespace absl {
 | |
| 
 | |
| // absl::zipf_distribution produces random integer-values in the range [0, k],
 | |
| // distributed according to the discrete probability function:
 | |
| //
 | |
| //  P(x) = (v + x) ^ -q
 | |
| //
 | |
| // The parameter `v` must be greater than 0 and the parameter `q` must be
 | |
| // greater than 1. If either of these parameters take invalid values then the
 | |
| // behavior is undefined.
 | |
| //
 | |
| // IntType is the result_type generated by the generator. It must be of integral
 | |
| // type; a static_assert ensures this is the case.
 | |
| //
 | |
| // The implementation is based on W.Hormann, G.Derflinger:
 | |
| //
 | |
| // "Rejection-Inversion to Generate Variates from Monotone Discrete
 | |
| // Distributions"
 | |
| //
 | |
| // http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz
 | |
| //
 | |
| template <typename IntType = int>
 | |
| class zipf_distribution {
 | |
|  public:
 | |
|   using result_type = IntType;
 | |
| 
 | |
|   class param_type {
 | |
|    public:
 | |
|     using distribution_type = zipf_distribution;
 | |
| 
 | |
|     // Preconditions: k > 0, v > 0, q > 1
 | |
|     // The precondidtions are validated when NDEBUG is not defined via
 | |
|     // a pair of assert() directives.
 | |
|     // If NDEBUG is defined and either or both of these parameters take invalid
 | |
|     // values, the behavior of the class is undefined.
 | |
|     explicit param_type(result_type k = (std::numeric_limits<IntType>::max)(),
 | |
|                         double q = 2.0, double v = 1.0);
 | |
| 
 | |
|     result_type k() const { return k_; }
 | |
|     double q() const { return q_; }
 | |
|     double v() const { return v_; }
 | |
| 
 | |
|     friend bool operator==(const param_type& a, const param_type& b) {
 | |
|       return a.k_ == b.k_ && a.q_ == b.q_ && a.v_ == b.v_;
 | |
|     }
 | |
|     friend bool operator!=(const param_type& a, const param_type& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     friend class zipf_distribution;
 | |
|     inline double h(double x) const;
 | |
|     inline double hinv(double x) const;
 | |
|     inline double compute_s() const;
 | |
|     inline double pow_negative_q(double x) const;
 | |
| 
 | |
|     // Parameters here are exactly the same as the parameters of Algorithm ZRI
 | |
|     // in the paper.
 | |
|     IntType k_;
 | |
|     double q_;
 | |
|     double v_;
 | |
| 
 | |
|     double one_minus_q_;  // 1-q
 | |
|     double s_;
 | |
|     double one_minus_q_inv_;  // 1 / 1-q
 | |
|     double hxm_;              // h(k + 0.5)
 | |
|     double hx0_minus_hxm_;    // h(x0) - h(k + 0.5)
 | |
| 
 | |
|     static_assert(std::is_integral<IntType>::value,
 | |
|                   "Class-template absl::zipf_distribution<> must be "
 | |
|                   "parameterized using an integral type.");
 | |
|   };
 | |
| 
 | |
|   zipf_distribution()
 | |
|       : zipf_distribution((std::numeric_limits<IntType>::max)()) {}
 | |
| 
 | |
|   explicit zipf_distribution(result_type k, double q = 2.0, double v = 1.0)
 | |
|       : param_(k, q, v) {}
 | |
| 
 | |
|   explicit zipf_distribution(const param_type& p) : param_(p) {}
 | |
| 
 | |
|   void reset() {}
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | |
|     return (*this)(g, param_);
 | |
|   }
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | |
|                          const param_type& p);
 | |
| 
 | |
|   result_type k() const { return param_.k(); }
 | |
|   double q() const { return param_.q(); }
 | |
|   double v() const { return param_.v(); }
 | |
| 
 | |
|   param_type param() const { return param_; }
 | |
|   void param(const param_type& p) { param_ = p; }
 | |
| 
 | |
|   result_type(min)() const { return 0; }
 | |
|   result_type(max)() const { return k(); }
 | |
| 
 | |
|   friend bool operator==(const zipf_distribution& a,
 | |
|                          const zipf_distribution& b) {
 | |
|     return a.param_ == b.param_;
 | |
|   }
 | |
|   friend bool operator!=(const zipf_distribution& a,
 | |
|                          const zipf_distribution& b) {
 | |
|     return a.param_ != b.param_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   param_type param_;
 | |
| };
 | |
| 
 | |
| // --------------------------------------------------------------------------
 | |
| // Implementation details follow
 | |
| // --------------------------------------------------------------------------
 | |
| 
 | |
| template <typename IntType>
 | |
| zipf_distribution<IntType>::param_type::param_type(
 | |
|     typename zipf_distribution<IntType>::result_type k, double q, double v)
 | |
|     : k_(k), q_(q), v_(v), one_minus_q_(1 - q) {
 | |
|   assert(q > 1);
 | |
|   assert(v > 0);
 | |
|   assert(k > 0);
 | |
|   one_minus_q_inv_ = 1 / one_minus_q_;
 | |
| 
 | |
|   // Setup for the ZRI algorithm (pg 17 of the paper).
 | |
|   // Compute: h(i max) => h(k + 0.5)
 | |
|   constexpr double kMax = 18446744073709549568.0;
 | |
|   double kd = static_cast<double>(k);
 | |
|   // TODO(absl-team): Determine if this check is needed, and if so, add a test
 | |
|   // that fails for k > kMax
 | |
|   if (kd > kMax) {
 | |
|     // Ensure that our maximum value is capped to a value which will
 | |
|     // round-trip back through double.
 | |
|     kd = kMax;
 | |
|   }
 | |
|   hxm_ = h(kd + 0.5);
 | |
| 
 | |
|   // Compute: h(0)
 | |
|   const bool use_precomputed = (v == 1.0 && q == 2.0);
 | |
|   const double h0x5 = use_precomputed ? (-1.0 / 1.5)  // exp(-log(1.5))
 | |
|                                       : h(0.5);
 | |
|   const double elogv_q = (v_ == 1.0) ? 1 : pow_negative_q(v_);
 | |
| 
 | |
|   // h(0) = h(0.5) - exp(log(v) * -q)
 | |
|   hx0_minus_hxm_ = (h0x5 - elogv_q) - hxm_;
 | |
| 
 | |
|   // And s
 | |
|   s_ = use_precomputed ? 0.46153846153846123 : compute_s();
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| double zipf_distribution<IntType>::param_type::h(double x) const {
 | |
|   // std::exp(one_minus_q_ * std::log(v_ + x)) * one_minus_q_inv_;
 | |
|   x += v_;
 | |
|   return (one_minus_q_ == -1.0)
 | |
|              ? (-1.0 / x)  // -exp(-log(x))
 | |
|              : (std::exp(std::log(x) * one_minus_q_) * one_minus_q_inv_);
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| double zipf_distribution<IntType>::param_type::hinv(double x) const {
 | |
|   // std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)) - v_;
 | |
|   return -v_ + ((one_minus_q_ == -1.0)
 | |
|                     ? (-1.0 / x)  // exp(-log(-x))
 | |
|                     : std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)));
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| double zipf_distribution<IntType>::param_type::compute_s() const {
 | |
|   // 1 - hinv(h(1.5) - std::exp(std::log(v_ + 1) * -q_));
 | |
|   return 1.0 - hinv(h(1.5) - pow_negative_q(v_ + 1.0));
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| double zipf_distribution<IntType>::param_type::pow_negative_q(double x) const {
 | |
|   // std::exp(std::log(x) * -q_);
 | |
|   return q_ == 2.0 ? (1.0 / (x * x)) : std::exp(std::log(x) * -q_);
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| template <typename URBG>
 | |
| typename zipf_distribution<IntType>::result_type
 | |
| zipf_distribution<IntType>::operator()(
 | |
|     URBG& g, const param_type& p) {  // NOLINT(runtime/references)
 | |
|   absl::uniform_real_distribution<double> uniform_double;
 | |
|   double k;
 | |
|   for (;;) {
 | |
|     const double v = uniform_double(g);
 | |
|     const double u = p.hxm_ + v * p.hx0_minus_hxm_;
 | |
|     const double x = p.hinv(u);
 | |
|     k = rint(x);              // std::floor(x + 0.5);
 | |
|     if (k > p.k()) continue;  // reject k > max_k
 | |
|     if (k - x <= p.s_) break;
 | |
|     const double h = p.h(k + 0.5);
 | |
|     const double r = p.pow_negative_q(p.v_ + k);
 | |
|     if (u >= h - r) break;
 | |
|   }
 | |
|   IntType ki = static_cast<IntType>(k);
 | |
|   assert(ki <= p.k_);
 | |
|   return ki;
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename IntType>
 | |
| std::basic_ostream<CharT, Traits>& operator<<(
 | |
|     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | |
|     const zipf_distribution<IntType>& x) {
 | |
|   using stream_type =
 | |
|       typename random_internal::stream_format_type<IntType>::type;
 | |
|   auto saver = random_internal::make_ostream_state_saver(os);
 | |
|   os.precision(random_internal::stream_precision_helper<double>::kPrecision);
 | |
|   os << static_cast<stream_type>(x.k()) << os.fill() << x.q() << os.fill()
 | |
|      << x.v();
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename IntType>
 | |
| std::basic_istream<CharT, Traits>& operator>>(
 | |
|     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | |
|     zipf_distribution<IntType>& x) {        // NOLINT(runtime/references)
 | |
|   using result_type = typename zipf_distribution<IntType>::result_type;
 | |
|   using param_type = typename zipf_distribution<IntType>::param_type;
 | |
|   using stream_type =
 | |
|       typename random_internal::stream_format_type<IntType>::type;
 | |
|   stream_type k;
 | |
|   double q;
 | |
|   double v;
 | |
| 
 | |
|   auto saver = random_internal::make_istream_state_saver(is);
 | |
|   is >> k >> q >> v;
 | |
|   if (!is.fail()) {
 | |
|     x.param(param_type(static_cast<result_type>(k), q, v));
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
 |