-- 4a492de32dd1e02c5c3600bfdb36da7af7855210 by Samuel Benzaquen <sbenza@google.com>: Fix potential intergral overflow in the parser. PiperOrigin-RevId: 229378698 -- c5d5385eff879a65582138febb44c79725baf582 by CJ Johnson <johnsoncj@google.com>: Adds an explanatory comment over AbslHashValue(...) for InlinedVector PiperOrigin-RevId: 229237373 GitOrigin-RevId: 4a492de32dd1e02c5c3600bfdb36da7af7855210 Change-Id: Iad9edfde23ab5af9001ce80e3d00a34be3d73815
		
			
				
	
	
		
			1376 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1376 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: inlined_vector.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // This header file contains the declaration and definition of an "inlined
 | |
| // vector" which behaves in an equivalent fashion to a `std::vector`, except
 | |
| // that storage for small sequences of the vector are provided inline without
 | |
| // requiring any heap allocation.
 | |
| //
 | |
| // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
 | |
| // its template parameters. Instances where `size() <= N` hold contained
 | |
| // elements in inline space. Typically `N` is very small so that sequences that
 | |
| // are expected to be short do not require allocations.
 | |
| //
 | |
| // An `absl::InlinedVector` does not usually require a specific allocator. If
 | |
| // the inlined vector grows beyond its initial constraints, it will need to
 | |
| // allocate (as any normal `std::vector` would). This is usually performed with
 | |
| // the default allocator (defined as `std::allocator<T>`). Optionally, a custom
 | |
| // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
 | |
| #define ABSL_CONTAINER_INLINED_VECTOR_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <initializer_list>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #include "absl/algorithm/algorithm.h"
 | |
| #include "absl/base/internal/throw_delegate.h"
 | |
| #include "absl/base/optimization.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/memory/memory.h"
 | |
| 
 | |
| namespace absl {
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // InlinedVector
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // An `absl::InlinedVector` is designed to be a drop-in replacement for
 | |
| // `std::vector` for use cases where the vector's size is sufficiently small
 | |
| // that it can be inlined. If the inlined vector does grow beyond its estimated
 | |
| // capacity, it will trigger an initial allocation on the heap, and will behave
 | |
| // as a `std:vector`. The API of the `absl::InlinedVector` within this file is
 | |
| // designed to cover the same API footprint as covered by `std::vector`.
 | |
| template <typename T, size_t N, typename A = std::allocator<T>>
 | |
| class InlinedVector {
 | |
|   static_assert(N > 0, "InlinedVector requires inline capacity greater than 0");
 | |
|   constexpr static typename A::size_type inlined_capacity() {
 | |
|     return static_cast<typename A::size_type>(N);
 | |
|   }
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using IsAtLeastInputIterator = std::is_convertible<
 | |
|       typename std::iterator_traits<Iterator>::iterator_category,
 | |
|       std::input_iterator_tag>;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using IsAtLeastForwardIterator = std::is_convertible<
 | |
|       typename std::iterator_traits<Iterator>::iterator_category,
 | |
|       std::forward_iterator_tag>;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using DisableIfIntegral =
 | |
|       absl::enable_if_t<!std::is_integral<Iterator>::value>;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using EnableIfAtLeastInputIterator =
 | |
|       absl::enable_if_t<IsAtLeastInputIterator<Iterator>::value>;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using EnableIfAtLeastForwardIterator =
 | |
|       absl::enable_if_t<IsAtLeastForwardIterator<Iterator>::value>;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using DisableIfAtLeastForwardIterator =
 | |
|       absl::enable_if_t<!IsAtLeastForwardIterator<Iterator>::value>;
 | |
| 
 | |
|   using rvalue_reference = typename A::value_type&&;
 | |
| 
 | |
|  public:
 | |
|   using allocator_type = A;
 | |
|   using value_type = typename allocator_type::value_type;
 | |
|   using pointer = typename allocator_type::pointer;
 | |
|   using const_pointer = typename allocator_type::const_pointer;
 | |
|   using reference = typename allocator_type::reference;
 | |
|   using const_reference = typename allocator_type::const_reference;
 | |
|   using size_type = typename allocator_type::size_type;
 | |
|   using difference_type = typename allocator_type::difference_type;
 | |
|   using iterator = pointer;
 | |
|   using const_iterator = const_pointer;
 | |
|   using reverse_iterator = std::reverse_iterator<iterator>;
 | |
|   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // InlinedVector Constructors and Destructor
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // Creates an empty inlined vector with a default initialized allocator.
 | |
|   InlinedVector() noexcept(noexcept(allocator_type()))
 | |
|       : allocator_and_tag_(allocator_type()) {}
 | |
| 
 | |
|   // Creates an empty inlined vector with a specified allocator.
 | |
|   explicit InlinedVector(const allocator_type& alloc) noexcept
 | |
|       : allocator_and_tag_(alloc) {}
 | |
| 
 | |
|   // Creates an inlined vector with `n` copies of `value_type()`.
 | |
|   explicit InlinedVector(size_type n,
 | |
|                          const allocator_type& alloc = allocator_type())
 | |
|       : allocator_and_tag_(alloc) {
 | |
|     InitAssign(n);
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector with `n` copies of `v`.
 | |
|   InlinedVector(size_type n, const_reference v,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : allocator_and_tag_(alloc) {
 | |
|     InitAssign(n, v);
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector of copies of the values in `init_list`.
 | |
|   InlinedVector(std::initializer_list<value_type> init_list,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : allocator_and_tag_(alloc) {
 | |
|     AppendRange(init_list.begin(), init_list.end());
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector with elements constructed from the provided
 | |
|   // Iterator range [`first`, `last`).
 | |
|   //
 | |
|   // NOTE: The `enable_if` prevents ambiguous interpretation between a call to
 | |
|   // this constructor with two integral arguments and a call to the above
 | |
|   // `InlinedVector(size_type, const_reference)` constructor.
 | |
|   template <typename InputIterator, DisableIfIntegral<InputIterator>* = nullptr>
 | |
|   InlinedVector(InputIterator first, InputIterator last,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : allocator_and_tag_(alloc) {
 | |
|     AppendRange(first, last);
 | |
|   }
 | |
| 
 | |
|   // Creates a copy of `other` using `other`'s allocator.
 | |
|   InlinedVector(const InlinedVector& other)
 | |
|       : InlinedVector(other, other.get_allocator()) {}
 | |
| 
 | |
|   // Creates a copy of `other` but with a specified allocator.
 | |
|   InlinedVector(const InlinedVector& other, const allocator_type& alloc)
 | |
|       : allocator_and_tag_(alloc) {
 | |
|     reserve(other.size());
 | |
|     if (allocated()) {
 | |
|       UninitializedCopy(other.begin(), other.end(), allocated_space());
 | |
|       tag().set_allocated_size(other.size());
 | |
|     } else {
 | |
|       UninitializedCopy(other.begin(), other.end(), inlined_space());
 | |
|       tag().set_inline_size(other.size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector by moving in the contents of `other`.
 | |
|   //
 | |
|   // NOTE: This move constructor does not allocate and only moves the underlying
 | |
|   // objects, so its `noexcept` specification depends on whether moving the
 | |
|   // underlying objects can throw or not. We assume:
 | |
|   //  a) move constructors should only throw due to allocation failure and
 | |
|   //  b) if `value_type`'s move constructor allocates, it uses the same
 | |
|   //     allocation function as the `InlinedVector`'s allocator, so the move
 | |
|   //     constructor is non-throwing if the allocator is non-throwing or
 | |
|   //     `value_type`'s move constructor is specified as `noexcept`.
 | |
|   InlinedVector(InlinedVector&& other) noexcept(
 | |
|       absl::allocator_is_nothrow<allocator_type>::value ||
 | |
|       std::is_nothrow_move_constructible<value_type>::value)
 | |
|       : allocator_and_tag_(other.allocator_and_tag_) {
 | |
|     if (other.allocated()) {
 | |
|       // We can just steal the underlying buffer from the source.
 | |
|       // That leaves the source empty, so we clear its size.
 | |
|       init_allocation(other.allocation());
 | |
|       other.tag() = Tag();
 | |
|     } else {
 | |
|       UninitializedCopy(
 | |
|           std::make_move_iterator(other.inlined_space()),
 | |
|           std::make_move_iterator(other.inlined_space() + other.size()),
 | |
|           inlined_space());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector by moving in the contents of `other`.
 | |
|   //
 | |
|   // NOTE: This move constructor allocates and subsequently moves the underlying
 | |
|   // objects, so its `noexcept` specification depends on whether the allocation
 | |
|   // can throw and whether moving the underlying objects can throw. Based on the
 | |
|   // same assumptions as above, the `noexcept` specification is dominated by
 | |
|   // whether the allocation can throw regardless of whether `value_type`'s move
 | |
|   // constructor is specified as `noexcept`.
 | |
|   InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
 | |
|       absl::allocator_is_nothrow<allocator_type>::value)
 | |
|       : allocator_and_tag_(alloc) {
 | |
|     if (other.allocated()) {
 | |
|       if (alloc == other.allocator()) {
 | |
|         // We can just steal the allocation from the source.
 | |
|         tag() = other.tag();
 | |
|         init_allocation(other.allocation());
 | |
|         other.tag() = Tag();
 | |
|       } else {
 | |
|         // We need to use our own allocator
 | |
|         reserve(other.size());
 | |
|         UninitializedCopy(std::make_move_iterator(other.begin()),
 | |
|                           std::make_move_iterator(other.end()),
 | |
|                           allocated_space());
 | |
|         tag().set_allocated_size(other.size());
 | |
|       }
 | |
|     } else {
 | |
|       UninitializedCopy(
 | |
|           std::make_move_iterator(other.inlined_space()),
 | |
|           std::make_move_iterator(other.inlined_space() + other.size()),
 | |
|           inlined_space());
 | |
|       tag().set_inline_size(other.size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ~InlinedVector() { clear(); }
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // InlinedVector Member Accessors
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // `InlinedVector::empty()`
 | |
|   //
 | |
|   // Checks if the inlined vector has no elements.
 | |
|   bool empty() const noexcept { return !size(); }
 | |
| 
 | |
|   // `InlinedVector::size()`
 | |
|   //
 | |
|   // Returns the number of elements in the inlined vector.
 | |
|   size_type size() const noexcept { return tag().size(); }
 | |
| 
 | |
|   // `InlinedVector::max_size()`
 | |
|   //
 | |
|   // Returns the maximum number of elements the vector can hold.
 | |
|   size_type max_size() const noexcept {
 | |
|     // One bit of the size storage is used to indicate whether the inlined
 | |
|     // vector is allocated. As a result, the maximum size of the container that
 | |
|     // we can express is half of the max for `size_type`.
 | |
|     return (std::numeric_limits<size_type>::max)() / 2;
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::capacity()`
 | |
|   //
 | |
|   // Returns the number of elements that can be stored in the inlined vector
 | |
|   // without requiring a reallocation of underlying memory.
 | |
|   //
 | |
|   // NOTE: For most inlined vectors, `capacity()` should equal
 | |
|   // `inlined_capacity()`. For inlined vectors which exceed this capacity, they
 | |
|   // will no longer be inlined and `capacity()` will equal its capacity on the
 | |
|   // allocated heap.
 | |
|   size_type capacity() const noexcept {
 | |
|     return allocated() ? allocation().capacity() : inlined_capacity();
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::data()`
 | |
|   //
 | |
|   // Returns a `pointer` to elements of the inlined vector. This pointer can be
 | |
|   // used to access and modify the contained elements.
 | |
|   // Only results within the range [`0`, `size()`) are defined.
 | |
|   pointer data() noexcept {
 | |
|     return allocated() ? allocated_space() : inlined_space();
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::data()` to return a `const_pointer` to elements
 | |
|   // of the inlined vector. This pointer can be used to access (but not modify)
 | |
|   // the contained elements.
 | |
|   const_pointer data() const noexcept {
 | |
|     return allocated() ? allocated_space() : inlined_space();
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::operator[]()`
 | |
|   //
 | |
|   // Returns a `reference` to the `i`th element of the inlined vector using the
 | |
|   // array operator.
 | |
|   reference operator[](size_type i) {
 | |
|     assert(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::operator[]()` to return a `const_reference` to
 | |
|   // the `i`th element of the inlined vector.
 | |
|   const_reference operator[](size_type i) const {
 | |
|     assert(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::at()`
 | |
|   //
 | |
|   // Returns a `reference` to the `i`th element of the inlined vector.
 | |
|   reference at(size_type i) {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange(
 | |
|           "`InlinedVector::at(size_type)` failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::at()` to return a `const_reference` to the
 | |
|   // `i`th element of the inlined vector.
 | |
|   const_reference at(size_type i) const {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange(
 | |
|           "`InlinedVector::at(size_type) const` failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::front()`
 | |
|   //
 | |
|   // Returns a `reference` to the first element of the inlined vector.
 | |
|   reference front() {
 | |
|     assert(!empty());
 | |
|     return at(0);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::front()` returns a `const_reference` to the
 | |
|   // first element of the inlined vector.
 | |
|   const_reference front() const {
 | |
|     assert(!empty());
 | |
|     return at(0);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::back()`
 | |
|   //
 | |
|   // Returns a `reference` to the last element of the inlined vector.
 | |
|   reference back() {
 | |
|     assert(!empty());
 | |
|     return at(size() - 1);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::back()` to return a `const_reference` to the
 | |
|   // last element of the inlined vector.
 | |
|   const_reference back() const {
 | |
|     assert(!empty());
 | |
|     return at(size() - 1);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::begin()`
 | |
|   //
 | |
|   // Returns an `iterator` to the beginning of the inlined vector.
 | |
|   iterator begin() noexcept { return data(); }
 | |
| 
 | |
|   // Overload of `InlinedVector::begin()` to return a `const_iterator` to
 | |
|   // the beginning of the inlined vector.
 | |
|   const_iterator begin() const noexcept { return data(); }
 | |
| 
 | |
|   // `InlinedVector::end()`
 | |
|   //
 | |
|   // Returns an `iterator` to the end of the inlined vector.
 | |
|   iterator end() noexcept { return data() + size(); }
 | |
| 
 | |
|   // Overload of `InlinedVector::end()` to return a `const_iterator` to the
 | |
|   // end of the inlined vector.
 | |
|   const_iterator end() const noexcept { return data() + size(); }
 | |
| 
 | |
|   // `InlinedVector::cbegin()`
 | |
|   //
 | |
|   // Returns a `const_iterator` to the beginning of the inlined vector.
 | |
|   const_iterator cbegin() const noexcept { return begin(); }
 | |
| 
 | |
|   // `InlinedVector::cend()`
 | |
|   //
 | |
|   // Returns a `const_iterator` to the end of the inlined vector.
 | |
|   const_iterator cend() const noexcept { return end(); }
 | |
| 
 | |
|   // `InlinedVector::rbegin()`
 | |
|   //
 | |
|   // Returns a `reverse_iterator` from the end of the inlined vector.
 | |
|   reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
 | |
| 
 | |
|   // Overload of `InlinedVector::rbegin()` to return a
 | |
|   // `const_reverse_iterator` from the end of the inlined vector.
 | |
|   const_reverse_iterator rbegin() const noexcept {
 | |
|     return const_reverse_iterator(end());
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::rend()`
 | |
|   //
 | |
|   // Returns a `reverse_iterator` from the beginning of the inlined vector.
 | |
|   reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
 | |
| 
 | |
|   // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
 | |
|   // from the beginning of the inlined vector.
 | |
|   const_reverse_iterator rend() const noexcept {
 | |
|     return const_reverse_iterator(begin());
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::crbegin()`
 | |
|   //
 | |
|   // Returns a `const_reverse_iterator` from the end of the inlined vector.
 | |
|   const_reverse_iterator crbegin() const noexcept { return rbegin(); }
 | |
| 
 | |
|   // `InlinedVector::crend()`
 | |
|   //
 | |
|   // Returns a `const_reverse_iterator` from the beginning of the inlined
 | |
|   // vector.
 | |
|   const_reverse_iterator crend() const noexcept { return rend(); }
 | |
| 
 | |
|   // `InlinedVector::get_allocator()`
 | |
|   //
 | |
|   // Returns a copy of the allocator of the inlined vector.
 | |
|   allocator_type get_allocator() const { return allocator(); }
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // InlinedVector Member Mutators
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // `InlinedVector::operator=()`
 | |
|   //
 | |
|   // Replaces the contents of the inlined vector with copies of the elements in
 | |
|   // the provided `std::initializer_list`.
 | |
|   InlinedVector& operator=(std::initializer_list<value_type> init_list) {
 | |
|     AssignRange(init_list.begin(), init_list.end());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::operator=()` to replace the contents of the
 | |
|   // inlined vector with the contents of `other`.
 | |
|   InlinedVector& operator=(const InlinedVector& other) {
 | |
|     if (ABSL_PREDICT_FALSE(this == &other)) return *this;
 | |
| 
 | |
|     // Optimized to avoid reallocation.
 | |
|     // Prefer reassignment to copy construction for elements.
 | |
|     if (size() < other.size()) {  // grow
 | |
|       reserve(other.size());
 | |
|       std::copy(other.begin(), other.begin() + size(), begin());
 | |
|       std::copy(other.begin() + size(), other.end(), std::back_inserter(*this));
 | |
|     } else {  // maybe shrink
 | |
|       erase(begin() + other.size(), end());
 | |
|       std::copy(other.begin(), other.end(), begin());
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::operator=()` to replace the contents of the
 | |
|   // inlined vector with the contents of `other`.
 | |
|   //
 | |
|   // NOTE: As a result of calling this overload, `other` may be empty or it's
 | |
|   // contents may be left in a moved-from state.
 | |
|   InlinedVector& operator=(InlinedVector&& other) {
 | |
|     if (ABSL_PREDICT_FALSE(this == &other)) return *this;
 | |
| 
 | |
|     if (other.allocated()) {
 | |
|       clear();
 | |
|       tag().set_allocated_size(other.size());
 | |
|       init_allocation(other.allocation());
 | |
|       other.tag() = Tag();
 | |
|     } else {
 | |
|       if (allocated()) clear();
 | |
|       // Both are inlined now.
 | |
|       if (size() < other.size()) {
 | |
|         auto mid = std::make_move_iterator(other.begin() + size());
 | |
|         std::copy(std::make_move_iterator(other.begin()), mid, begin());
 | |
|         UninitializedCopy(mid, std::make_move_iterator(other.end()), end());
 | |
|       } else {
 | |
|         auto new_end = std::copy(std::make_move_iterator(other.begin()),
 | |
|                                  std::make_move_iterator(other.end()), begin());
 | |
|         Destroy(new_end, end());
 | |
|       }
 | |
|       tag().set_inline_size(other.size());
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::assign()`
 | |
|   //
 | |
|   // Replaces the contents of the inlined vector with `n` copies of `v`.
 | |
|   void assign(size_type n, const_reference v) {
 | |
|     if (n <= size()) {  // Possibly shrink
 | |
|       std::fill_n(begin(), n, v);
 | |
|       erase(begin() + n, end());
 | |
|       return;
 | |
|     }
 | |
|     // Grow
 | |
|     reserve(n);
 | |
|     std::fill_n(begin(), size(), v);
 | |
|     if (allocated()) {
 | |
|       UninitializedFill(allocated_space() + size(), allocated_space() + n, v);
 | |
|       tag().set_allocated_size(n);
 | |
|     } else {
 | |
|       UninitializedFill(inlined_space() + size(), inlined_space() + n, v);
 | |
|       tag().set_inline_size(n);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::assign()` to replace the contents of the
 | |
|   // inlined vector with copies of the values in the provided
 | |
|   // `std::initializer_list`.
 | |
|   void assign(std::initializer_list<value_type> init_list) {
 | |
|     AssignRange(init_list.begin(), init_list.end());
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::assign()` to replace the contents of the
 | |
|   // inlined vector with values constructed from the range [`first`, `last`).
 | |
|   template <typename InputIterator, DisableIfIntegral<InputIterator>* = nullptr>
 | |
|   void assign(InputIterator first, InputIterator last) {
 | |
|     AssignRange(first, last);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::resize()`
 | |
|   //
 | |
|   // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
 | |
|   // the inlined vector's current size, extra elements are destroyed. If `n` is
 | |
|   // larger than the initial size, new elements are value-initialized.
 | |
|   void resize(size_type n) {
 | |
|     size_type s = size();
 | |
|     if (n < s) {
 | |
|       erase(begin() + n, end());
 | |
|       return;
 | |
|     }
 | |
|     reserve(n);
 | |
|     assert(capacity() >= n);
 | |
| 
 | |
|     // Fill new space with elements constructed in-place.
 | |
|     if (allocated()) {
 | |
|       UninitializedFill(allocated_space() + s, allocated_space() + n);
 | |
|       tag().set_allocated_size(n);
 | |
|     } else {
 | |
|       UninitializedFill(inlined_space() + s, inlined_space() + n);
 | |
|       tag().set_inline_size(n);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::resize()` to resize the inlined vector to
 | |
|   // contain `n` elements where, if `n` is larger than `size()`, the new values
 | |
|   // will be copy-constructed from `v`.
 | |
|   void resize(size_type n, const_reference v) {
 | |
|     size_type s = size();
 | |
|     if (n < s) {
 | |
|       erase(begin() + n, end());
 | |
|       return;
 | |
|     }
 | |
|     reserve(n);
 | |
|     assert(capacity() >= n);
 | |
| 
 | |
|     // Fill new space with copies of `v`.
 | |
|     if (allocated()) {
 | |
|       UninitializedFill(allocated_space() + s, allocated_space() + n, v);
 | |
|       tag().set_allocated_size(n);
 | |
|     } else {
 | |
|       UninitializedFill(inlined_space() + s, inlined_space() + n, v);
 | |
|       tag().set_inline_size(n);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::insert()`
 | |
|   //
 | |
|   // Copies `v` into `position`, returning an `iterator` pointing to the newly
 | |
|   // inserted element.
 | |
|   iterator insert(const_iterator position, const_reference v) {
 | |
|     return emplace(position, v);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert()` for moving `v` into `position`,
 | |
|   // returning an iterator pointing to the newly inserted element.
 | |
|   iterator insert(const_iterator position, rvalue_reference v) {
 | |
|     return emplace(position, std::move(v));
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
 | |
|   // of `v` starting at `position`. Returns an `iterator` pointing to the first
 | |
|   // of the newly inserted elements.
 | |
|   iterator insert(const_iterator position, size_type n, const_reference v) {
 | |
|     return InsertWithCount(position, n, v);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert()` for copying the contents of the
 | |
|   // `std::initializer_list` into the vector starting at `position`. Returns an
 | |
|   // `iterator` pointing to the first of the newly inserted elements.
 | |
|   iterator insert(const_iterator position,
 | |
|                   std::initializer_list<value_type> init_list) {
 | |
|     return insert(position, init_list.begin(), init_list.end());
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert()` for inserting elements constructed
 | |
|   // from the range [`first`, `last`). Returns an `iterator` pointing to the
 | |
|   // first of the newly inserted elements.
 | |
|   //
 | |
|   // NOTE: The `enable_if` is intended to disambiguate the two three-argument
 | |
|   // overloads of `insert()`.
 | |
|   template <typename InputIterator,
 | |
|             EnableIfAtLeastInputIterator<InputIterator>* = nullptr>
 | |
|   iterator insert(const_iterator position, InputIterator first,
 | |
|                   InputIterator last) {
 | |
|     return InsertWithRange(position, first, last);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::emplace()`
 | |
|   //
 | |
|   // Constructs and inserts an object in the inlined vector at the given
 | |
|   // `position`, returning an `iterator` pointing to the newly emplaced element.
 | |
|   template <typename... Args>
 | |
|   iterator emplace(const_iterator position, Args&&... args) {
 | |
|     assert(position >= begin());
 | |
|     assert(position <= end());
 | |
|     if (ABSL_PREDICT_FALSE(position == end())) {
 | |
|       emplace_back(std::forward<Args>(args)...);
 | |
|       return end() - 1;
 | |
|     }
 | |
| 
 | |
|     T new_t = T(std::forward<Args>(args)...);
 | |
| 
 | |
|     auto range = ShiftRight(position, 1);
 | |
|     if (range.first == range.second) {
 | |
|       // constructing into uninitialized memory
 | |
|       Construct(range.first, std::move(new_t));
 | |
|     } else {
 | |
|       // assigning into moved-from object
 | |
|       *range.first = T(std::move(new_t));
 | |
|     }
 | |
| 
 | |
|     return range.first;
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::emplace_back()`
 | |
|   //
 | |
|   // Constructs and appends a new element to the end of the inlined vector,
 | |
|   // returning a `reference` to the emplaced element.
 | |
|   template <typename... Args>
 | |
|   reference emplace_back(Args&&... args) {
 | |
|     size_type s = size();
 | |
|     assert(s <= capacity());
 | |
|     if (ABSL_PREDICT_FALSE(s == capacity())) {
 | |
|       return GrowAndEmplaceBack(std::forward<Args>(args)...);
 | |
|     }
 | |
|     assert(s < capacity());
 | |
| 
 | |
|     pointer space;
 | |
|     if (allocated()) {
 | |
|       tag().set_allocated_size(s + 1);
 | |
|       space = allocated_space();
 | |
|     } else {
 | |
|       tag().set_inline_size(s + 1);
 | |
|       space = inlined_space();
 | |
|     }
 | |
|     return Construct(space + s, std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::push_back()`
 | |
|   //
 | |
|   // Appends a copy of `v` to the end of the inlined vector.
 | |
|   void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
 | |
| 
 | |
|   // Overload of `InlinedVector::push_back()` for moving `v` into a newly
 | |
|   // appended element.
 | |
|   void push_back(rvalue_reference v) {
 | |
|     static_cast<void>(emplace_back(std::move(v)));
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::pop_back()`
 | |
|   //
 | |
|   // Destroys the element at the end of the inlined vector and shrinks the size
 | |
|   // by `1` (unless the inlined vector is empty, in which case this is a no-op).
 | |
|   void pop_back() noexcept {
 | |
|     assert(!empty());
 | |
|     size_type s = size();
 | |
|     if (allocated()) {
 | |
|       Destroy(allocated_space() + s - 1, allocated_space() + s);
 | |
|       tag().set_allocated_size(s - 1);
 | |
|     } else {
 | |
|       Destroy(inlined_space() + s - 1, inlined_space() + s);
 | |
|       tag().set_inline_size(s - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::erase()`
 | |
|   //
 | |
|   // Erases the element at `position` of the inlined vector, returning an
 | |
|   // `iterator` pointing to the first element following the erased element.
 | |
|   //
 | |
|   // NOTE: May return the end iterator, which is not dereferencable.
 | |
|   iterator erase(const_iterator position) {
 | |
|     assert(position >= begin());
 | |
|     assert(position < end());
 | |
| 
 | |
|     iterator pos = const_cast<iterator>(position);
 | |
|     std::move(pos + 1, end(), pos);
 | |
|     pop_back();
 | |
|     return pos;
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::erase()` for erasing all elements in the
 | |
|   // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
 | |
|   // to the first element following the range erased or the end iterator if `to`
 | |
|   // was the end iterator.
 | |
|   iterator erase(const_iterator from, const_iterator to) {
 | |
|     assert(begin() <= from);
 | |
|     assert(from <= to);
 | |
|     assert(to <= end());
 | |
| 
 | |
|     iterator range_start = const_cast<iterator>(from);
 | |
|     iterator range_end = const_cast<iterator>(to);
 | |
| 
 | |
|     size_type s = size();
 | |
|     ptrdiff_t erase_gap = std::distance(range_start, range_end);
 | |
|     if (erase_gap > 0) {
 | |
|       pointer space;
 | |
|       if (allocated()) {
 | |
|         space = allocated_space();
 | |
|         tag().set_allocated_size(s - erase_gap);
 | |
|       } else {
 | |
|         space = inlined_space();
 | |
|         tag().set_inline_size(s - erase_gap);
 | |
|       }
 | |
|       std::move(range_end, space + s, range_start);
 | |
|       Destroy(space + s - erase_gap, space + s);
 | |
|     }
 | |
|     return range_start;
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::clear()`
 | |
|   //
 | |
|   // Destroys all elements in the inlined vector, sets the size of `0` and
 | |
|   // deallocates the heap allocation if the inlined vector was allocated.
 | |
|   void clear() noexcept {
 | |
|     size_type s = size();
 | |
|     if (allocated()) {
 | |
|       Destroy(allocated_space(), allocated_space() + s);
 | |
|       allocation().Dealloc(allocator());
 | |
|     } else if (s != 0) {  // do nothing for empty vectors
 | |
|       Destroy(inlined_space(), inlined_space() + s);
 | |
|     }
 | |
|     tag() = Tag();
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::reserve()`
 | |
|   //
 | |
|   // Enlarges the underlying representation of the inlined vector so it can hold
 | |
|   // at least `n` elements. This method does not change `size()` or the actual
 | |
|   // contents of the vector.
 | |
|   //
 | |
|   // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
 | |
|   // effects. Otherwise, `reserve()` will reallocate, performing an n-time
 | |
|   // element-wise move of everything contained.
 | |
|   void reserve(size_type n) {
 | |
|     if (n > capacity()) {
 | |
|       // Make room for new elements
 | |
|       EnlargeBy(n - size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::shrink_to_fit()`
 | |
|   //
 | |
|   // Reduces memory usage by freeing unused memory. After this call, calls to
 | |
|   // `capacity()` will be equal to `(std::max)(inlined_capacity(), size())`.
 | |
|   //
 | |
|   // If `size() <= inlined_capacity()` and the elements are currently stored on
 | |
|   // the heap, they will be moved to the inlined storage and the heap memory
 | |
|   // will be deallocated.
 | |
|   //
 | |
|   // If `size() > inlined_capacity()` and `size() < capacity()` the elements
 | |
|   // will be moved to a smaller heap allocation.
 | |
|   void shrink_to_fit() {
 | |
|     const auto s = size();
 | |
|     if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return;
 | |
| 
 | |
|     if (s <= inlined_capacity()) {
 | |
|       // Move the elements to the inlined storage.
 | |
|       // We have to do this using a temporary, because `inlined_storage` and
 | |
|       // `allocation_storage` are in a union field.
 | |
|       auto temp = std::move(*this);
 | |
|       assign(std::make_move_iterator(temp.begin()),
 | |
|              std::make_move_iterator(temp.end()));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Reallocate storage and move elements.
 | |
|     // We can't simply use the same approach as above, because `assign()` would
 | |
|     // call into `reserve()` internally and reserve larger capacity than we need
 | |
|     Allocation new_allocation(allocator(), s);
 | |
|     UninitializedCopy(std::make_move_iterator(allocated_space()),
 | |
|                       std::make_move_iterator(allocated_space() + s),
 | |
|                       new_allocation.buffer());
 | |
|     ResetAllocation(new_allocation, s);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::swap()`
 | |
|   //
 | |
|   // Swaps the contents of this inlined vector with the contents of `other`.
 | |
|   void swap(InlinedVector& other) {
 | |
|     if (ABSL_PREDICT_FALSE(this == &other)) return;
 | |
| 
 | |
|     SwapImpl(other);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename Hash, typename TheT, size_t TheN, typename TheA>
 | |
|   friend Hash AbslHashValue(Hash, const InlinedVector<TheT, TheN, TheA>& vec);
 | |
| 
 | |
|   // Holds whether the vector is allocated or not in the lowest bit and the size
 | |
|   // in the high bits:
 | |
|   //   `size_ = (size << 1) | is_allocated;`
 | |
|   class Tag {
 | |
|    public:
 | |
|     Tag() : size_(0) {}
 | |
|     size_type size() const { return size_ / 2; }
 | |
|     void add_size(size_type n) { size_ += n * 2; }
 | |
|     void set_inline_size(size_type n) { size_ = n * 2; }
 | |
|     void set_allocated_size(size_type n) { size_ = (n * 2) + 1; }
 | |
|     bool allocated() const { return size_ % 2; }
 | |
| 
 | |
|    private:
 | |
|     size_type size_;
 | |
|   };
 | |
| 
 | |
|   // Derives from `allocator_type` to use the empty base class optimization.
 | |
|   // If the `allocator_type` is stateless, we can store our instance for free.
 | |
|   class AllocatorAndTag : private allocator_type {
 | |
|    public:
 | |
|     explicit AllocatorAndTag(const allocator_type& a) : allocator_type(a) {}
 | |
| 
 | |
|     Tag& tag() { return tag_; }
 | |
|     const Tag& tag() const { return tag_; }
 | |
| 
 | |
|     allocator_type& allocator() { return *this; }
 | |
|     const allocator_type& allocator() const { return *this; }
 | |
| 
 | |
|    private:
 | |
|     Tag tag_;
 | |
|   };
 | |
| 
 | |
|   class Allocation {
 | |
|    public:
 | |
|     Allocation(allocator_type& a, size_type capacity)
 | |
|         : capacity_(capacity), buffer_(Create(a, capacity)) {}
 | |
| 
 | |
|     void Dealloc(allocator_type& a) {
 | |
|       std::allocator_traits<allocator_type>::deallocate(a, buffer_, capacity_);
 | |
|     }
 | |
| 
 | |
|     size_type capacity() const { return capacity_; }
 | |
| 
 | |
|     const_pointer buffer() const { return buffer_; }
 | |
| 
 | |
|     pointer buffer() { return buffer_; }
 | |
| 
 | |
|    private:
 | |
|     static pointer Create(allocator_type& a, size_type n) {
 | |
|       return std::allocator_traits<allocator_type>::allocate(a, n);
 | |
|     }
 | |
| 
 | |
|     size_type capacity_;
 | |
|     pointer buffer_;
 | |
|   };
 | |
| 
 | |
|   const Tag& tag() const { return allocator_and_tag_.tag(); }
 | |
| 
 | |
|   Tag& tag() { return allocator_and_tag_.tag(); }
 | |
| 
 | |
|   Allocation& allocation() {
 | |
|     return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation);
 | |
|   }
 | |
| 
 | |
|   const Allocation& allocation() const {
 | |
|     return reinterpret_cast<const Allocation&>(
 | |
|         rep_.allocation_storage.allocation);
 | |
|   }
 | |
| 
 | |
|   void init_allocation(const Allocation& allocation) {
 | |
|     new (&rep_.allocation_storage.allocation) Allocation(allocation);
 | |
|   }
 | |
| 
 | |
|   // TODO(absl-team): investigate whether the reinterpret_cast is appropriate.
 | |
|   pointer inlined_space() {
 | |
|     return reinterpret_cast<pointer>(
 | |
|         std::addressof(rep_.inlined_storage.inlined[0]));
 | |
|   }
 | |
| 
 | |
|   const_pointer inlined_space() const {
 | |
|     return reinterpret_cast<const_pointer>(
 | |
|         std::addressof(rep_.inlined_storage.inlined[0]));
 | |
|   }
 | |
| 
 | |
|   pointer allocated_space() { return allocation().buffer(); }
 | |
| 
 | |
|   const_pointer allocated_space() const { return allocation().buffer(); }
 | |
| 
 | |
|   const allocator_type& allocator() const {
 | |
|     return allocator_and_tag_.allocator();
 | |
|   }
 | |
| 
 | |
|   allocator_type& allocator() { return allocator_and_tag_.allocator(); }
 | |
| 
 | |
|   bool allocated() const { return tag().allocated(); }
 | |
| 
 | |
|   void ResetAllocation(Allocation new_allocation, size_type new_size) {
 | |
|     if (allocated()) {
 | |
|       Destroy(allocated_space(), allocated_space() + size());
 | |
|       assert(begin() == allocated_space());
 | |
|       allocation().Dealloc(allocator());
 | |
|       allocation() = new_allocation;
 | |
|     } else {
 | |
|       Destroy(inlined_space(), inlined_space() + size());
 | |
|       init_allocation(new_allocation);  // bug: only init once
 | |
|     }
 | |
|     tag().set_allocated_size(new_size);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   reference Construct(pointer p, Args&&... args) {
 | |
|     std::allocator_traits<allocator_type>::construct(
 | |
|         allocator(), p, std::forward<Args>(args)...);
 | |
|     return *p;
 | |
|   }
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {
 | |
|     for (; src != src_last; ++dst, ++src) Construct(dst, *src);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {
 | |
|     for (; dst != dst_last; ++dst) Construct(dst, args...);
 | |
|   }
 | |
| 
 | |
|   // Destroy [`from`, `to`) in place.
 | |
|   void Destroy(pointer from, pointer to) {
 | |
|     for (pointer cur = from; cur != to; ++cur) {
 | |
|       std::allocator_traits<allocator_type>::destroy(allocator(), cur);
 | |
|     }
 | |
| #if !defined(NDEBUG)
 | |
|     // Overwrite unused memory with `0xab` so we can catch uninitialized usage.
 | |
|     // Cast to `void*` to tell the compiler that we don't care that we might be
 | |
|     // scribbling on a vtable pointer.
 | |
|     if (from != to) {
 | |
|       auto len = sizeof(value_type) * std::distance(from, to);
 | |
|       std::memset(reinterpret_cast<void*>(from), 0xab, len);
 | |
|     }
 | |
| #endif  // !defined(NDEBUG)
 | |
|   }
 | |
| 
 | |
|   // Enlarge the underlying representation so we can store `size_ + delta` elems
 | |
|   // in allocated space. The size is not changed, and any newly added memory is
 | |
|   // not initialized.
 | |
|   void EnlargeBy(size_type delta) {
 | |
|     const size_type s = size();
 | |
|     assert(s <= capacity());
 | |
| 
 | |
|     size_type target = (std::max)(inlined_capacity(), s + delta);
 | |
| 
 | |
|     // Compute new capacity by repeatedly doubling current capacity
 | |
|     // TODO(psrc): Check and avoid overflow?
 | |
|     size_type new_capacity = capacity();
 | |
|     while (new_capacity < target) {
 | |
|       new_capacity <<= 1;
 | |
|     }
 | |
| 
 | |
|     Allocation new_allocation(allocator(), new_capacity);
 | |
| 
 | |
|     UninitializedCopy(std::make_move_iterator(data()),
 | |
|                       std::make_move_iterator(data() + s),
 | |
|                       new_allocation.buffer());
 | |
| 
 | |
|     ResetAllocation(new_allocation, s);
 | |
|   }
 | |
| 
 | |
|   // Shift all elements from `position` to `end()` by `n` places to the right.
 | |
|   // If the vector needs to be enlarged, memory will be allocated.
 | |
|   // Returns `iterator`s pointing to the start of the previously-initialized
 | |
|   // portion and the start of the uninitialized portion of the created gap.
 | |
|   // The number of initialized spots is `pair.second - pair.first`. The number
 | |
|   // of raw spots is `n - (pair.second - pair.first)`.
 | |
|   //
 | |
|   // Updates the size of the InlinedVector internally.
 | |
|   std::pair<iterator, iterator> ShiftRight(const_iterator position,
 | |
|                                            size_type n) {
 | |
|     iterator start_used = const_cast<iterator>(position);
 | |
|     iterator start_raw = const_cast<iterator>(position);
 | |
|     size_type s = size();
 | |
|     size_type required_size = s + n;
 | |
| 
 | |
|     if (required_size > capacity()) {
 | |
|       // Compute new capacity by repeatedly doubling current capacity
 | |
|       size_type new_capacity = capacity();
 | |
|       while (new_capacity < required_size) {
 | |
|         new_capacity <<= 1;
 | |
|       }
 | |
|       // Move everyone into the new allocation, leaving a gap of `n` for the
 | |
|       // requested shift.
 | |
|       Allocation new_allocation(allocator(), new_capacity);
 | |
|       size_type index = position - begin();
 | |
|       UninitializedCopy(std::make_move_iterator(data()),
 | |
|                         std::make_move_iterator(data() + index),
 | |
|                         new_allocation.buffer());
 | |
|       UninitializedCopy(std::make_move_iterator(data() + index),
 | |
|                         std::make_move_iterator(data() + s),
 | |
|                         new_allocation.buffer() + index + n);
 | |
|       ResetAllocation(new_allocation, s);
 | |
| 
 | |
|       // New allocation means our iterator is invalid, so we'll recalculate.
 | |
|       // Since the entire gap is in new space, there's no used space to reuse.
 | |
|       start_raw = begin() + index;
 | |
|       start_used = start_raw;
 | |
|     } else {
 | |
|       // If we had enough space, it's a two-part move. Elements going into
 | |
|       // previously-unoccupied space need an `UninitializedCopy()`. Elements
 | |
|       // going into a previously-occupied space are just a `std::move()`.
 | |
|       iterator pos = const_cast<iterator>(position);
 | |
|       iterator raw_space = end();
 | |
|       size_type slots_in_used_space = raw_space - pos;
 | |
|       size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space);
 | |
|       size_type new_elements_in_raw_space = n - new_elements_in_used_space;
 | |
|       size_type old_elements_in_used_space =
 | |
|           slots_in_used_space - new_elements_in_used_space;
 | |
| 
 | |
|       UninitializedCopy(
 | |
|           std::make_move_iterator(pos + old_elements_in_used_space),
 | |
|           std::make_move_iterator(raw_space),
 | |
|           raw_space + new_elements_in_raw_space);
 | |
|       std::move_backward(pos, pos + old_elements_in_used_space, raw_space);
 | |
| 
 | |
|       // If the gap is entirely in raw space, the used space starts where the
 | |
|       // raw space starts, leaving no elements in used space. If the gap is
 | |
|       // entirely in used space, the raw space starts at the end of the gap,
 | |
|       // leaving all elements accounted for within the used space.
 | |
|       start_used = pos;
 | |
|       start_raw = pos + new_elements_in_used_space;
 | |
|     }
 | |
|     tag().add_size(n);
 | |
|     return std::make_pair(start_used, start_raw);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   reference GrowAndEmplaceBack(Args&&... args) {
 | |
|     assert(size() == capacity());
 | |
|     const size_type s = size();
 | |
| 
 | |
|     Allocation new_allocation(allocator(), 2 * capacity());
 | |
| 
 | |
|     reference new_element =
 | |
|         Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);
 | |
|     UninitializedCopy(std::make_move_iterator(data()),
 | |
|                       std::make_move_iterator(data() + s),
 | |
|                       new_allocation.buffer());
 | |
| 
 | |
|     ResetAllocation(new_allocation, s + 1);
 | |
| 
 | |
|     return new_element;
 | |
|   }
 | |
| 
 | |
|   void InitAssign(size_type n) {
 | |
|     if (n > inlined_capacity()) {
 | |
|       Allocation new_allocation(allocator(), n);
 | |
|       init_allocation(new_allocation);
 | |
|       UninitializedFill(allocated_space(), allocated_space() + n);
 | |
|       tag().set_allocated_size(n);
 | |
|     } else {
 | |
|       UninitializedFill(inlined_space(), inlined_space() + n);
 | |
|       tag().set_inline_size(n);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void InitAssign(size_type n, const_reference v) {
 | |
|     if (n > inlined_capacity()) {
 | |
|       Allocation new_allocation(allocator(), n);
 | |
|       init_allocation(new_allocation);
 | |
|       UninitializedFill(allocated_space(), allocated_space() + n, v);
 | |
|       tag().set_allocated_size(n);
 | |
|     } else {
 | |
|       UninitializedFill(inlined_space(), inlined_space() + n, v);
 | |
|       tag().set_inline_size(n);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename ForwardIterator,
 | |
|             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
 | |
|   void AssignRange(ForwardIterator first, ForwardIterator last) {
 | |
|     auto length = std::distance(first, last);
 | |
|     // Prefer reassignment to copy construction for elements.
 | |
|     if (static_cast<size_type>(length) <= size()) {
 | |
|       erase(std::copy(first, last, begin()), end());
 | |
|       return;
 | |
|     }
 | |
|     reserve(length);
 | |
|     iterator out = begin();
 | |
|     for (; out != end(); ++first, ++out) *out = *first;
 | |
|     if (allocated()) {
 | |
|       UninitializedCopy(first, last, out);
 | |
|       tag().set_allocated_size(length);
 | |
|     } else {
 | |
|       UninitializedCopy(first, last, out);
 | |
|       tag().set_inline_size(length);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename InputIterator,
 | |
|             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
 | |
|   void AssignRange(InputIterator first, InputIterator last) {
 | |
|     // Optimized to avoid reallocation.
 | |
|     // Prefer reassignment to copy construction for elements.
 | |
|     iterator out = begin();
 | |
|     for (; first != last && out != end(); ++first, ++out) {
 | |
|       *out = *first;
 | |
|     }
 | |
|     erase(out, end());
 | |
|     std::copy(first, last, std::back_inserter(*this));
 | |
|   }
 | |
| 
 | |
|   template <typename ForwardIterator,
 | |
|             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
 | |
|   void AppendRange(ForwardIterator first, ForwardIterator last) {
 | |
|     auto length = std::distance(first, last);
 | |
|     reserve(size() + length);
 | |
|     if (allocated()) {
 | |
|       UninitializedCopy(first, last, allocated_space() + size());
 | |
|       tag().set_allocated_size(size() + length);
 | |
|     } else {
 | |
|       UninitializedCopy(first, last, inlined_space() + size());
 | |
|       tag().set_inline_size(size() + length);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename InputIterator,
 | |
|             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
 | |
|   void AppendRange(InputIterator first, InputIterator last) {
 | |
|     std::copy(first, last, std::back_inserter(*this));
 | |
|   }
 | |
| 
 | |
|   iterator InsertWithCount(const_iterator position, size_type n,
 | |
|                            const_reference v) {
 | |
|     assert(position >= begin() && position <= end());
 | |
|     if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position);
 | |
| 
 | |
|     value_type copy = v;
 | |
|     std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
 | |
|     std::fill(it_pair.first, it_pair.second, copy);
 | |
|     UninitializedFill(it_pair.second, it_pair.first + n, copy);
 | |
| 
 | |
|     return it_pair.first;
 | |
|   }
 | |
| 
 | |
|   template <typename ForwardIterator,
 | |
|             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
 | |
|   iterator InsertWithRange(const_iterator position, ForwardIterator first,
 | |
|                            ForwardIterator last) {
 | |
|     assert(position >= begin() && position <= end());
 | |
|     if (ABSL_PREDICT_FALSE(first == last))
 | |
|       return const_cast<iterator>(position);
 | |
| 
 | |
|     auto n = std::distance(first, last);
 | |
|     std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
 | |
|     size_type used_spots = it_pair.second - it_pair.first;
 | |
|     auto open_spot = std::next(first, used_spots);
 | |
|     std::copy(first, open_spot, it_pair.first);
 | |
|     UninitializedCopy(open_spot, last, it_pair.second);
 | |
|     return it_pair.first;
 | |
|   }
 | |
| 
 | |
|   template <typename InputIterator,
 | |
|             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
 | |
|   iterator InsertWithRange(const_iterator position, InputIterator first,
 | |
|                            InputIterator last) {
 | |
|     assert(position >= begin() && position <= end());
 | |
|     size_type index = position - cbegin();
 | |
|     size_type i = index;
 | |
|     while (first != last) insert(begin() + i++, *first++);
 | |
|     return begin() + index;
 | |
|   }
 | |
| 
 | |
|   void SwapImpl(InlinedVector& other) {
 | |
|     using std::swap;  // Augment ADL with `std::swap`.
 | |
| 
 | |
|     if (allocated() && other.allocated()) {
 | |
|       // Both out of line, so just swap the tag, allocation, and allocator.
 | |
|       swap(tag(), other.tag());
 | |
|       swap(allocation(), other.allocation());
 | |
|       swap(allocator(), other.allocator());
 | |
|       return;
 | |
|     }
 | |
|     if (!allocated() && !other.allocated()) {
 | |
|       // Both inlined: swap up to smaller size, then move remaining elements.
 | |
|       InlinedVector* a = this;
 | |
|       InlinedVector* b = &other;
 | |
|       if (size() < other.size()) {
 | |
|         swap(a, b);
 | |
|       }
 | |
| 
 | |
|       const size_type a_size = a->size();
 | |
|       const size_type b_size = b->size();
 | |
|       assert(a_size >= b_size);
 | |
|       // `a` is larger. Swap the elements up to the smaller array size.
 | |
|       std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size,
 | |
|                        b->inlined_space());
 | |
| 
 | |
|       // Move the remaining elements:
 | |
|       //   [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
 | |
|       b->UninitializedCopy(a->inlined_space() + b_size,
 | |
|                            a->inlined_space() + a_size,
 | |
|                            b->inlined_space() + b_size);
 | |
|       a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size);
 | |
| 
 | |
|       swap(a->tag(), b->tag());
 | |
|       swap(a->allocator(), b->allocator());
 | |
|       assert(b->size() == a_size);
 | |
|       assert(a->size() == b_size);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // One is out of line, one is inline.
 | |
|     // We first move the elements from the inlined vector into the
 | |
|     // inlined space in the other vector.  We then put the other vector's
 | |
|     // pointer/capacity into the originally inlined vector and swap
 | |
|     // the tags.
 | |
|     InlinedVector* a = this;
 | |
|     InlinedVector* b = &other;
 | |
|     if (a->allocated()) {
 | |
|       swap(a, b);
 | |
|     }
 | |
|     assert(!a->allocated());
 | |
|     assert(b->allocated());
 | |
|     const size_type a_size = a->size();
 | |
|     const size_type b_size = b->size();
 | |
|     // In an optimized build, `b_size` would be unused.
 | |
|     static_cast<void>(b_size);
 | |
| 
 | |
|     // Made Local copies of `size()`, don't need `tag()` accurate anymore
 | |
|     swap(a->tag(), b->tag());
 | |
| 
 | |
|     // Copy `b_allocation` out before `b`'s union gets clobbered by
 | |
|     // `inline_space`
 | |
|     Allocation b_allocation = b->allocation();
 | |
| 
 | |
|     b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,
 | |
|                          b->inlined_space());
 | |
|     a->Destroy(a->inlined_space(), a->inlined_space() + a_size);
 | |
| 
 | |
|     a->allocation() = b_allocation;
 | |
| 
 | |
|     if (a->allocator() != b->allocator()) {
 | |
|       swap(a->allocator(), b->allocator());
 | |
|     }
 | |
| 
 | |
|     assert(b->size() == a_size);
 | |
|     assert(a->size() == b_size);
 | |
|   }
 | |
| 
 | |
|   // Stores either the inlined or allocated representation
 | |
|   union Rep {
 | |
|     using ValueTypeBuffer =
 | |
|         absl::aligned_storage_t<sizeof(value_type), alignof(value_type)>;
 | |
|     using AllocationBuffer =
 | |
|         absl::aligned_storage_t<sizeof(Allocation), alignof(Allocation)>;
 | |
| 
 | |
|     // Structs wrap the buffers to perform indirection that solves a bizarre
 | |
|     // compilation error on Visual Studio (all known versions).
 | |
|     struct InlinedRep {
 | |
|       ValueTypeBuffer inlined[N];
 | |
|     };
 | |
|     struct AllocatedRep {
 | |
|       AllocationBuffer allocation;
 | |
|     };
 | |
| 
 | |
|     InlinedRep inlined_storage;
 | |
|     AllocatedRep allocation_storage;
 | |
|   };
 | |
| 
 | |
|   AllocatorAndTag allocator_and_tag_;
 | |
|   Rep rep_;
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // InlinedVector Non-Member Functions
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // `swap()`
 | |
| //
 | |
| // Swaps the contents of two inlined vectors. This convenience function
 | |
| // simply calls `InlinedVector::swap()`.
 | |
| template <typename T, size_t N, typename A>
 | |
| void swap(InlinedVector<T, N, A>& a,
 | |
|           InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
 | |
|   a.swap(b);
 | |
| }
 | |
| 
 | |
| // `operator==()`
 | |
| //
 | |
| // Tests the equivalency of the contents of two inlined vectors.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator==(const InlinedVector<T, N, A>& a,
 | |
|                 const InlinedVector<T, N, A>& b) {
 | |
|   return absl::equal(a.begin(), a.end(), b.begin(), b.end());
 | |
| }
 | |
| 
 | |
| // `operator!=()`
 | |
| //
 | |
| // Tests the inequality of the contents of two inlined vectors.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator!=(const InlinedVector<T, N, A>& a,
 | |
|                 const InlinedVector<T, N, A>& b) {
 | |
|   return !(a == b);
 | |
| }
 | |
| 
 | |
| // `operator<()`
 | |
| //
 | |
| // Tests whether the contents of one inlined vector are less than the contents
 | |
| // of another through a lexicographical comparison operation.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator<(const InlinedVector<T, N, A>& a,
 | |
|                const InlinedVector<T, N, A>& b) {
 | |
|   return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
 | |
| }
 | |
| 
 | |
| // `operator>()`
 | |
| //
 | |
| // Tests whether the contents of one inlined vector are greater than the
 | |
| // contents of another through a lexicographical comparison operation.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator>(const InlinedVector<T, N, A>& a,
 | |
|                const InlinedVector<T, N, A>& b) {
 | |
|   return b < a;
 | |
| }
 | |
| 
 | |
| // `operator<=()`
 | |
| //
 | |
| // Tests whether the contents of one inlined vector are less than or equal to
 | |
| // the contents of another through a lexicographical comparison operation.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator<=(const InlinedVector<T, N, A>& a,
 | |
|                 const InlinedVector<T, N, A>& b) {
 | |
|   return !(b < a);
 | |
| }
 | |
| 
 | |
| // `operator>=()`
 | |
| //
 | |
| // Tests whether the contents of one inlined vector are greater than or equal to
 | |
| // the contents of another through a lexicographical comparison operation.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator>=(const InlinedVector<T, N, A>& a,
 | |
|                 const InlinedVector<T, N, A>& b) {
 | |
|   return !(a < b);
 | |
| }
 | |
| 
 | |
| // AbslHashValue()
 | |
| //
 | |
| // Provides `absl::Hash` support for inlined vectors. You do not normally call
 | |
| // this function directly.
 | |
| template <typename Hash, typename TheT, size_t TheN, typename TheA>
 | |
| Hash AbslHashValue(Hash hash, const InlinedVector<TheT, TheN, TheA>& vec) {
 | |
|   auto p = vec.data();
 | |
|   auto n = vec.size();
 | |
|   return Hash::combine(Hash::combine_contiguous(std::move(hash), p, n), n);
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Implementation of InlinedVector
 | |
| //
 | |
| // Do not depend on any below implementation details!
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_INLINED_VECTOR_H_
 |