git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			89 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#ifndef ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
 | 
						|
#define ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
 | 
						|
 | 
						|
// The chi-square statistic.
 | 
						|
//
 | 
						|
// Useful for evaluating if `D` independent random variables are behaving as
 | 
						|
// expected, or if two distributions are similar.  (`D` is the degrees of
 | 
						|
// freedom).
 | 
						|
//
 | 
						|
// Each bucket should have an expected count of 10 or more for the chi square to
 | 
						|
// be meaningful.
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
#include "absl/base/config.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace random_internal {
 | 
						|
 | 
						|
constexpr const char kChiSquared[] = "chi-squared";
 | 
						|
 | 
						|
// Returns the measured chi square value, using a single expected value.  This
 | 
						|
// assumes that the values in [begin, end) are uniformly distributed.
 | 
						|
template <typename Iterator>
 | 
						|
double ChiSquareWithExpected(Iterator begin, Iterator end, double expected) {
 | 
						|
  // Compute the sum and the number of buckets.
 | 
						|
  assert(expected >= 10);  // require at least 10 samples per bucket.
 | 
						|
  double chi_square = 0;
 | 
						|
  for (auto it = begin; it != end; it++) {
 | 
						|
    double d = static_cast<double>(*it) - expected;
 | 
						|
    chi_square += d * d;
 | 
						|
  }
 | 
						|
  chi_square = chi_square / expected;
 | 
						|
  return chi_square;
 | 
						|
}
 | 
						|
 | 
						|
// Returns the measured chi square value, taking the actual value of each bucket
 | 
						|
// from the first set of iterators, and the expected value of each bucket from
 | 
						|
// the second set of iterators.
 | 
						|
template <typename Iterator, typename Expected>
 | 
						|
double ChiSquare(Iterator it, Iterator end, Expected eit, Expected eend) {
 | 
						|
  double chi_square = 0;
 | 
						|
  for (; it != end && eit != eend; ++it, ++eit) {
 | 
						|
    if (*it > 0) {
 | 
						|
      assert(*eit > 0);
 | 
						|
    }
 | 
						|
    double e = static_cast<double>(*eit);
 | 
						|
    double d = static_cast<double>(*it - *eit);
 | 
						|
    if (d != 0) {
 | 
						|
      assert(e > 0);
 | 
						|
      chi_square += (d * d) / e;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(it == end && eit == eend);
 | 
						|
  return chi_square;
 | 
						|
}
 | 
						|
 | 
						|
// ======================================================================
 | 
						|
// The following methods can be used for an arbitrary significance level.
 | 
						|
//
 | 
						|
 | 
						|
// Calculates critical chi-square values to produce the given p-value using a
 | 
						|
// bisection search for a value within epsilon, relying on the monotonicity of
 | 
						|
// ChiSquarePValue().
 | 
						|
double ChiSquareValue(int dof, double p);
 | 
						|
 | 
						|
// Calculates the p-value (probability) of a given chi-square value.
 | 
						|
double ChiSquarePValue(double chi_square, int dof);
 | 
						|
 | 
						|
}  // namespace random_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
 |