-- adcea274552c5671bdafae7f85797c49c9639b67 by Abseil Team <absl-team@google.com>: change some const declarations to constexpr PiperOrigin-RevId: 307516528 -- f828d23bdd437f38ae52ba232fd44c477643ddaf by Derek Mauro <dmauro@google.com>: Use "-lrt" instead of the resolved find_library result when linking librt. find_library defaults to shared objects. Imports #665. PiperOrigin-RevId: 307465639 GitOrigin-RevId: adcea274552c5671bdafae7f85797c49c9639b67 Change-Id: I8f562ef8f57f5ed55192936c764fa6532e3b8adb
		
			
				
	
	
		
			1331 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1331 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2020 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: cord.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // This file defines the `absl::Cord` data structure and operations on that data
 | |
| // structure. A Cord is a string-like sequence of characters optimized for
 | |
| // specific use cases. Unlike a `std::string`, which stores an array of
 | |
| // contiguous characters, Cord data is stored in a structure consisting of
 | |
| // separate, reference-counted "chunks." (Currently, this implementation is a
 | |
| // tree structure, though that implementation may change.)
 | |
| //
 | |
| // Because a Cord consists of these chunks, data can be added to or removed from
 | |
| // a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a
 | |
| // `std::string`, a Cord can therefore accomodate data that changes over its
 | |
| // lifetime, though it's not quite "mutable"; it can change only in the
 | |
| // attachment, detachment, or rearrangement of chunks of its constituent data.
 | |
| //
 | |
| // A Cord provides some benefit over `std::string` under the following (albeit
 | |
| // narrow) circumstances:
 | |
| //
 | |
| //   * Cord data is designed to grow and shrink over a Cord's lifetime. Cord
 | |
| //     provides efficient insertions and deletions at the start and end of the
 | |
| //     character sequences, avoiding copies in those cases. Static data should
 | |
| //     generally be stored as strings.
 | |
| //   * External memory consisting of string-like data can be directly added to
 | |
| //     a Cord without requiring copies or allocations.
 | |
| //   * Cord data may be shared and copied cheaply. Cord provides a copy-on-write
 | |
| //     implementation and cheap sub-Cord operations. Copying a Cord is an O(1)
 | |
| //     operation.
 | |
| //
 | |
| // As a consequence to the above, Cord data is generally large. Small data
 | |
| // should generally use strings, as construction of a Cord requires some
 | |
| // overhead. Small Cords (<= 15 bytes) are represented inline, but most small
 | |
| // Cords are expected to grow over their lifetimes.
 | |
| //
 | |
| // Note that because a Cord is made up of separate chunked data, random access
 | |
| // to character data within a Cord is slower than within a `std::string`.
 | |
| //
 | |
| // Thread Safety
 | |
| //
 | |
| // Cord has the same thread-safety properties as many other types like
 | |
| // std::string, std::vector<>, int, etc -- it is thread-compatible. In
 | |
| // particular, if threads do not call non-const methods, then it is safe to call
 | |
| // const methods without synchronization. Copying a Cord produces a new instance
 | |
| // that can be used concurrently with the original in arbitrary ways.
 | |
| 
 | |
| #ifndef ABSL_STRINGS_CORD_H_
 | |
| #define ABSL_STRINGS_CORD_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <iostream>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/base/internal/endian.h"
 | |
| #include "absl/base/internal/invoke.h"
 | |
| #include "absl/base/internal/per_thread_tls.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/container/inlined_vector.h"
 | |
| #include "absl/functional/function_ref.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/strings/internal/cord_internal.h"
 | |
| #include "absl/strings/internal/resize_uninitialized.h"
 | |
| #include "absl/strings/string_view.h"
 | |
| #include "absl/types/optional.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| class Cord;
 | |
| class CordTestPeer;
 | |
| template <typename Releaser>
 | |
| Cord MakeCordFromExternal(absl::string_view, Releaser&&);
 | |
| void CopyCordToString(const Cord& src, std::string* dst);
 | |
| 
 | |
| // Cord
 | |
| //
 | |
| // A Cord is a sequence of characters, designed to be more efficient than a
 | |
| // `std::string` in certain circumstances: namely, large string data that needs
 | |
| // to change over its lifetime or shared, especially when such data is shared
 | |
| // across API boundaries.
 | |
| //
 | |
| // A Cord stores its character data in a structure that allows efficient prepend
 | |
| // and append operations. This makes a Cord useful for large string data sent
 | |
| // over in a wire format that may need to be prepended or appended at some point
 | |
| // during the data exchange (e.g. HTTP, protocol buffers). For example, a
 | |
| // Cord is useful for storing an HTTP request, and prepending an HTTP header to
 | |
| // such a request.
 | |
| //
 | |
| // Cords should not be used for storing general string data, however. They
 | |
| // require overhead to construct and are slower than strings for random access.
 | |
| //
 | |
| // The Cord API provides the following common API operations:
 | |
| //
 | |
| // * Create or assign Cords out of existing string data, memory, or other Cords
 | |
| // * Append and prepend data to an existing Cord
 | |
| // * Create new Sub-Cords from existing Cord data
 | |
| // * Swap Cord data and compare Cord equality
 | |
| // * Write out Cord data by constructing a `std::string`
 | |
| //
 | |
| // Additionally, the API provides iterator utilities to iterate through Cord
 | |
| // data via chunks or character bytes.
 | |
| //
 | |
| class Cord {
 | |
|  private:
 | |
|   template <typename T>
 | |
|   using EnableIfString =
 | |
|       absl::enable_if_t<std::is_same<T, std::string>::value, int>;
 | |
| 
 | |
|  public:
 | |
|   // Cord::Cord() Constructors
 | |
| 
 | |
|   // Creates an empty Cord
 | |
|   constexpr Cord() noexcept;
 | |
| 
 | |
|   // Creates a Cord from an existing Cord. Cord is copyable and efficiently
 | |
|   // movable. The moved-from state is valid but unspecified.
 | |
|   Cord(const Cord& src);
 | |
|   Cord(Cord&& src) noexcept;
 | |
|   Cord& operator=(const Cord& x);
 | |
|   Cord& operator=(Cord&& x) noexcept;
 | |
| 
 | |
|   // Creates a Cord from a `src` string. This constructor is marked explicit to
 | |
|   // prevent implicit Cord constructions from arguments convertible to an
 | |
|   // `absl::string_view`.
 | |
|   explicit Cord(absl::string_view src);
 | |
|   Cord& operator=(absl::string_view src);
 | |
| 
 | |
|   // Creates a Cord from a `std::string&&` rvalue. These constructors are
 | |
|   // templated to avoid ambiguities for types that are convertible to both
 | |
|   // `absl::string_view` and `std::string`, such as `const char*`.
 | |
|   //
 | |
|   // Note that these functions reserve the right to use the `string&&`'s
 | |
|   // memory and that they will do so in the future.
 | |
|   template <typename T, EnableIfString<T> = 0>
 | |
|   explicit Cord(T&& src) : Cord(absl::string_view(src)) {}
 | |
|   template <typename T, EnableIfString<T> = 0>
 | |
|   Cord& operator=(T&& src);
 | |
| 
 | |
|   // Cord::~Cord()
 | |
|   //
 | |
|   // Destructs the Cord
 | |
|   ~Cord() {
 | |
|     if (contents_.is_tree()) DestroyCordSlow();
 | |
|   }
 | |
| 
 | |
|   // Cord::MakeCordFromExternal(data, callable)
 | |
|   //
 | |
|   // Creates a Cord that takes ownership of external string memory. The
 | |
|   // contents of `data` are not copied to the Cord; instead, the external
 | |
|   // memory is added to the Cord and reference-counted. This data may not be
 | |
|   // changed for the life of the Cord, though it may be prepended or appended
 | |
|   // to.
 | |
|   //
 | |
|   // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when
 | |
|   // the reference count for `data` reaches zero. As noted above, this data must
 | |
|   // remain live until the releaser is invoked. The callable releaser also must:
 | |
|   //
 | |
|   //   * be move constructible
 | |
|   //   * support `void operator()(absl::string_view) const` or `void operator()`
 | |
|   //   * not have alignment requirement greater than what is guaranteed by
 | |
|   //     `::operator new`. This alignment is dictated by
 | |
|   //     `alignof(std::max_align_t)` (pre-C++17 code) or
 | |
|   //     `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code).
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   // Cord MakeCord(BlockPool* pool) {
 | |
|   //   Block* block = pool->NewBlock();
 | |
|   //   FillBlock(block);
 | |
|   //   return absl::MakeCordFromExternal(
 | |
|   //       block->ToStringView(),
 | |
|   //       [pool, block](absl::string_view v) {
 | |
|   //         pool->FreeBlock(block, v);
 | |
|   //       });
 | |
|   // }
 | |
|   //
 | |
|   // WARNING: Because a Cord can be reference-counted, it's likely a bug if your
 | |
|   // releaser doesn't do anything. For example, consider the following:
 | |
|   //
 | |
|   // void Foo(const char* buffer, int len) {
 | |
|   //   auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
 | |
|   //                                       [](absl::string_view) {});
 | |
|   //
 | |
|   //   // BUG: If Bar() copies its cord for any reason, including keeping a
 | |
|   //   // substring of it, the lifetime of buffer might be extended beyond
 | |
|   //   // when Foo() returns.
 | |
|   //   Bar(c);
 | |
|   // }
 | |
|   template <typename Releaser>
 | |
|   friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
 | |
| 
 | |
|   // Cord::Clear()
 | |
|   //
 | |
|   // Releases the Cord data. Any nodes that share data with other Cords, if
 | |
|   // applicable, will have their reference counts reduced by 1.
 | |
|   void Clear();
 | |
| 
 | |
|   // Cord::Append()
 | |
|   //
 | |
|   // Appends data to the Cord, which may come from another Cord or other string
 | |
|   // data.
 | |
|   void Append(const Cord& src);
 | |
|   void Append(Cord&& src);
 | |
|   void Append(absl::string_view src);
 | |
|   template <typename T, EnableIfString<T> = 0>
 | |
|   void Append(T&& src);
 | |
| 
 | |
|   // Cord::Prepend()
 | |
|   //
 | |
|   // Prepends data to the Cord, which may come from another Cord or other string
 | |
|   // data.
 | |
|   void Prepend(const Cord& src);
 | |
|   void Prepend(absl::string_view src);
 | |
|   template <typename T, EnableIfString<T> = 0>
 | |
|   void Prepend(T&& src);
 | |
| 
 | |
|   // Cord::RemovePrefix()
 | |
|   //
 | |
|   // Removes the first `n` bytes of a Cord.
 | |
|   void RemovePrefix(size_t n);
 | |
|   void RemoveSuffix(size_t n);
 | |
| 
 | |
|   // Cord::Subcord()
 | |
|   //
 | |
|   // Returns a new Cord representing the subrange [pos, pos + new_size) of
 | |
|   // *this. If pos >= size(), the result is empty(). If
 | |
|   // (pos + new_size) >= size(), the result is the subrange [pos, size()).
 | |
|   Cord Subcord(size_t pos, size_t new_size) const;
 | |
| 
 | |
|   // swap()
 | |
|   //
 | |
|   // Swaps the data of Cord `x` with Cord `y`.
 | |
|   friend void swap(Cord& x, Cord& y) noexcept;
 | |
| 
 | |
|   // Cord::size()
 | |
|   //
 | |
|   // Returns the size of the Cord.
 | |
|   size_t size() const;
 | |
| 
 | |
|   // Cord::empty()
 | |
|   //
 | |
|   // Determines whether the given Cord is empty, returning `true` is so.
 | |
|   bool empty() const;
 | |
| 
 | |
|   // Cord::EstimatedMemoryUsage()
 | |
|   //
 | |
|   // Returns the *approximate* number of bytes held in full or in part by this
 | |
|   // Cord (which may not remain the same between invocations).  Note that Cords
 | |
|   // that share memory could each be "charged" independently for the same shared
 | |
|   // memory.
 | |
|   size_t EstimatedMemoryUsage() const;
 | |
| 
 | |
|   // Cord::Compare()
 | |
|   //
 | |
|   // Compares 'this' Cord with rhs. This function and its relatives treat Cords
 | |
|   // as sequences of unsigned bytes. The comparison is a straightforward
 | |
|   // lexicographic comparison. `Cord::Compare()` returns values as follows:
 | |
|   //
 | |
|   //   -1  'this' Cord is smaller
 | |
|   //    0  two Cords are equal
 | |
|   //    1  'this' Cord is larger
 | |
|   int Compare(absl::string_view rhs) const;
 | |
|   int Compare(const Cord& rhs) const;
 | |
| 
 | |
|   // Cord::StartsWith()
 | |
|   //
 | |
|   // Determines whether the Cord starts with the passed string data `rhs`.
 | |
|   bool StartsWith(const Cord& rhs) const;
 | |
|   bool StartsWith(absl::string_view rhs) const;
 | |
| 
 | |
|   // Cord::EndsWidth()
 | |
|   //
 | |
|   // Determines whether the Cord ends with the passed string data `rhs`.
 | |
|   bool EndsWith(absl::string_view rhs) const;
 | |
|   bool EndsWith(const Cord& rhs) const;
 | |
| 
 | |
|   // Cord::operator std::string()
 | |
|   //
 | |
|   // Converts a Cord into a `std::string()`. This operator is marked explicit to
 | |
|   // prevent unintended Cord usage in functions that take a string.
 | |
|   explicit operator std::string() const;
 | |
| 
 | |
|   // CopyCordToString()
 | |
|   //
 | |
|   // Copies the contents of a `src` Cord into a `*dst` string.
 | |
|   //
 | |
|   // This function optimizes the case of reusing the destination string since it
 | |
|   // can reuse previously allocated capacity. However, this function does not
 | |
|   // guarantee that pointers previously returned by `dst->data()` remain valid
 | |
|   // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
 | |
|   // object, prefer to simply use the conversion operator to `std::string`.
 | |
|   friend void CopyCordToString(const Cord& src, std::string* dst);
 | |
| 
 | |
|   class CharIterator;
 | |
| 
 | |
|   //----------------------------------------------------------------------------
 | |
|   // Cord::ChunkIterator
 | |
|   //----------------------------------------------------------------------------
 | |
|   //
 | |
|   // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its
 | |
|   // Cord. Such iteration allows you to perform non-const operatons on the data
 | |
|   // of a Cord without modifying it.
 | |
|   //
 | |
|   // Generally, you do not instantiate a `Cord::ChunkIterator` directly;
 | |
|   // instead, you create one implicitly through use of the `Cord::Chunks()`
 | |
|   // member function.
 | |
|   //
 | |
|   // The `Cord::ChunkIterator` has the following properties:
 | |
|   //
 | |
|   //   * The iterator is invalidated after any non-const operation on the
 | |
|   //     Cord object over which it iterates.
 | |
|   //   * The `string_view` returned by dereferencing a valid, non-`end()`
 | |
|   //     iterator is guaranteed to be non-empty.
 | |
|   //   * Two `ChunkIterator` objects can be compared equal if and only if they
 | |
|   //     remain valid and iterate over the same Cord.
 | |
|   //   * The iterator in this case is a proxy iterator; the `string_view`
 | |
|   //     returned by the iterator does not live inside the Cord, and its
 | |
|   //     lifetime is limited to the lifetime of the iterator itself. To help
 | |
|   //     prevent lifetime issues, `ChunkIterator::reference` is not a true
 | |
|   //     reference type and is equivalent to `value_type`.
 | |
|   //   * The iterator keeps state that can grow for Cords that contain many
 | |
|   //     nodes and are imbalanced due to sharing. Prefer to pass this type by
 | |
|   //     const reference instead of by value.
 | |
|   class ChunkIterator {
 | |
|    public:
 | |
|     using iterator_category = std::input_iterator_tag;
 | |
|     using value_type = absl::string_view;
 | |
|     using difference_type = ptrdiff_t;
 | |
|     using pointer = const value_type*;
 | |
|     using reference = value_type;
 | |
| 
 | |
|     ChunkIterator() = default;
 | |
| 
 | |
|     ChunkIterator& operator++();
 | |
|     ChunkIterator operator++(int);
 | |
|     bool operator==(const ChunkIterator& other) const;
 | |
|     bool operator!=(const ChunkIterator& other) const;
 | |
|     reference operator*() const;
 | |
|     pointer operator->() const;
 | |
| 
 | |
|     friend class Cord;
 | |
|     friend class CharIterator;
 | |
| 
 | |
|    private:
 | |
|     // Constructs a `begin()` iterator from `cord`.
 | |
|     explicit ChunkIterator(const Cord* cord);
 | |
| 
 | |
|     // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than
 | |
|     // `current_chunk_.size()`.
 | |
|     void RemoveChunkPrefix(size_t n);
 | |
|     Cord AdvanceAndReadBytes(size_t n);
 | |
|     void AdvanceBytes(size_t n);
 | |
|     // Iterates `n` bytes, where `n` is expected to be greater than or equal to
 | |
|     // `current_chunk_.size()`.
 | |
|     void AdvanceBytesSlowPath(size_t n);
 | |
| 
 | |
|     // A view into bytes of the current `CordRep`. It may only be a view to a
 | |
|     // suffix of bytes if this is being used by `CharIterator`.
 | |
|     absl::string_view current_chunk_;
 | |
|     // The current leaf, or `nullptr` if the iterator points to short data.
 | |
|     // If the current chunk is a substring node, current_leaf_ points to the
 | |
|     // underlying flat or external node.
 | |
|     absl::cord_internal::CordRep* current_leaf_ = nullptr;
 | |
|     // The number of bytes left in the `Cord` over which we are iterating.
 | |
|     size_t bytes_remaining_ = 0;
 | |
|     absl::InlinedVector<absl::cord_internal::CordRep*, 4>
 | |
|         stack_of_right_children_;
 | |
|   };
 | |
| 
 | |
|   // Cord::ChunkIterator::chunk_begin()
 | |
|   //
 | |
|   // Returns an iterator to the first chunk of the `Cord`.
 | |
|   //
 | |
|   // Generally, prefer using `Cord::Chunks()` within a range-based for loop for
 | |
|   // iterating over the chunks of a Cord. This method may be useful for getting
 | |
|   // a `ChunkIterator` where range-based for-loops are not useful.
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   //   absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,
 | |
|   //                                         absl::string_view s) {
 | |
|   //     return std::find(c.chunk_begin(), c.chunk_end(), s);
 | |
|   //   }
 | |
|   ChunkIterator chunk_begin() const;
 | |
| 
 | |
|   // Cord::ChunkItertator::chunk_end()
 | |
|   //
 | |
|   // Returns an iterator one increment past the last chunk of the `Cord`.
 | |
|   //
 | |
|   // Generally, prefer using `Cord::Chunks()` within a range-based for loop for
 | |
|   // iterating over the chunks of a Cord. This method may be useful for getting
 | |
|   // a `ChunkIterator` where range-based for-loops may not be available.
 | |
|   ChunkIterator chunk_end() const;
 | |
| 
 | |
|   //----------------------------------------------------------------------------
 | |
|   // Cord::ChunkIterator::ChunkRange
 | |
|   //----------------------------------------------------------------------------
 | |
|   //
 | |
|   // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,
 | |
|   // producing an iterator which can be used within a range-based for loop.
 | |
|   // Construction of a `ChunkRange` will return an iterator pointing to the
 | |
|   // first chunk of the Cord. Generally, do not construct a `ChunkRange`
 | |
|   // directly; instead, prefer to use the `Cord::Chunks()` method.
 | |
|   //
 | |
|   // Implementation note: `ChunkRange` is simply a convenience wrapper over
 | |
|   // `Cord::chunk_begin()` and `Cord::chunk_end()`.
 | |
|   class ChunkRange {
 | |
|    public:
 | |
|     explicit ChunkRange(const Cord* cord) : cord_(cord) {}
 | |
| 
 | |
|     ChunkIterator begin() const;
 | |
|     ChunkIterator end() const;
 | |
| 
 | |
|    private:
 | |
|     const Cord* cord_;
 | |
|   };
 | |
| 
 | |
|   // Cord::Chunks()
 | |
|   //
 | |
|   // Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks
 | |
|   // of a `Cord` with a range-based for-loop. For most iteration tasks on a
 | |
|   // Cord, use `Cord::Chunks()` to retrieve this iterator.
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   //   void ProcessChunks(const Cord& cord) {
 | |
|   //     for (absl::string_view chunk : cord.Chunks()) { ... }
 | |
|   //   }
 | |
|   //
 | |
|   // Note that the ordinary caveats of temporary lifetime extension apply:
 | |
|   //
 | |
|   //   void Process() {
 | |
|   //     for (absl::string_view chunk : CordFactory().Chunks()) {
 | |
|   //       // The temporary Cord returned by CordFactory has been destroyed!
 | |
|   //     }
 | |
|   //   }
 | |
|   ChunkRange Chunks() const;
 | |
| 
 | |
|   //----------------------------------------------------------------------------
 | |
|   // Cord::CharIterator
 | |
|   //----------------------------------------------------------------------------
 | |
|   //
 | |
|   // A `Cord::CharIterator` allows iteration over the constituent characters of
 | |
|   // a `Cord`.
 | |
|   //
 | |
|   // Generally, you do not instantiate a `Cord::CharIterator` directly; instead,
 | |
|   // you create one implicitly through use of the `Cord::Chars()` member
 | |
|   // function.
 | |
|   //
 | |
|   // A `Cord::CharIterator` has the following properties:
 | |
|   //
 | |
|   //   * The iterator is invalidated after any non-const operation on the
 | |
|   //     Cord object over which it iterates.
 | |
|   //   * Two `CharIterator` objects can be compared equal if and only if they
 | |
|   //     remain valid and iterate over the same Cord.
 | |
|   //   * The iterator keeps state that can grow for Cords that contain many
 | |
|   //     nodes and are imbalanced due to sharing. Prefer to pass this type by
 | |
|   //     const reference instead of by value.
 | |
|   //   * This type cannot act as a forward iterator because a `Cord` can reuse
 | |
|   //     sections of memory. This fact violates the requirement for forward
 | |
|   //     iterators to compare equal if dereferencing them returns the same
 | |
|   //     object.
 | |
|   class CharIterator {
 | |
|    public:
 | |
|     using iterator_category = std::input_iterator_tag;
 | |
|     using value_type = char;
 | |
|     using difference_type = ptrdiff_t;
 | |
|     using pointer = const char*;
 | |
|     using reference = const char&;
 | |
| 
 | |
|     CharIterator() = default;
 | |
| 
 | |
|     CharIterator& operator++();
 | |
|     CharIterator operator++(int);
 | |
|     bool operator==(const CharIterator& other) const;
 | |
|     bool operator!=(const CharIterator& other) const;
 | |
|     reference operator*() const;
 | |
|     pointer operator->() const;
 | |
| 
 | |
|     friend Cord;
 | |
| 
 | |
|    private:
 | |
|     explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}
 | |
| 
 | |
|     ChunkIterator chunk_iterator_;
 | |
|   };
 | |
| 
 | |
|   // Cord::CharIterator::AdvanceAndRead()
 | |
|   //
 | |
|   // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes
 | |
|   // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the
 | |
|   // number of bytes within the Cord; otherwise, behavior is undefined. It is
 | |
|   // valid to pass `char_end()` and `0`.
 | |
|   static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);
 | |
| 
 | |
|   // Cord::CharIterator::Advance()
 | |
|   //
 | |
|   // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than
 | |
|   // or equal to the number of bytes remaining within the Cord; otherwise,
 | |
|   // behavior is undefined. It is valid to pass `char_end()` and `0`.
 | |
|   static void Advance(CharIterator* it, size_t n_bytes);
 | |
| 
 | |
|   // Cord::CharIterator::ChunkRemaining()
 | |
|   //
 | |
|   // Returns the longest contiguous view starting at the iterator's position.
 | |
|   //
 | |
|   // `it` must be dereferenceable.
 | |
|   static absl::string_view ChunkRemaining(const CharIterator& it);
 | |
| 
 | |
|   // Cord::CharIterator::char_begin()
 | |
|   //
 | |
|   // Returns an iterator to the first character of the `Cord`.
 | |
|   //
 | |
|   // Generally, prefer using `Cord::Chars()` within a range-based for loop for
 | |
|   // iterating over the chunks of a Cord. This method may be useful for getting
 | |
|   // a `CharIterator` where range-based for-loops may not be available.
 | |
|   CharIterator char_begin() const;
 | |
| 
 | |
|   // Cord::CharIterator::char_end()
 | |
|   //
 | |
|   // Returns an iterator to one past the last character of the `Cord`.
 | |
|   //
 | |
|   // Generally, prefer using `Cord::Chars()` within a range-based for loop for
 | |
|   // iterating over the chunks of a Cord. This method may be useful for getting
 | |
|   // a `CharIterator` where range-based for-loops are not useful.
 | |
|   CharIterator char_end() const;
 | |
| 
 | |
|   // Cord::CharIterator::CharRange
 | |
|   //
 | |
|   // `CharRange` is a helper class for iterating over the characters of a
 | |
|   // producing an iterator which can be used within a range-based for loop.
 | |
|   // Construction of a `CharRange` will return an iterator pointing to the first
 | |
|   // character of the Cord. Generally, do not construct a `CharRange` directly;
 | |
|   // instead, prefer to use the `Cord::Chars()` method show below.
 | |
|   //
 | |
|   // Implementation note: `CharRange` is simply a convenience wrapper over
 | |
|   // `Cord::char_begin()` and `Cord::char_end()`.
 | |
|   class CharRange {
 | |
|    public:
 | |
|     explicit CharRange(const Cord* cord) : cord_(cord) {}
 | |
| 
 | |
|     CharIterator begin() const;
 | |
|     CharIterator end() const;
 | |
| 
 | |
|    private:
 | |
|     const Cord* cord_;
 | |
|   };
 | |
| 
 | |
|   // Cord::CharIterator::Chars()
 | |
|   //
 | |
|   // Returns a `Cord::CharIterator` for iterating over the characters of a
 | |
|   // `Cord` with a range-based for-loop. For most character-based iteration
 | |
|   // tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   //   void ProcessCord(const Cord& cord) {
 | |
|   //     for (char c : cord.Chars()) { ... }
 | |
|   //   }
 | |
|   //
 | |
|   // Note that the ordinary caveats of temporary lifetime extension apply:
 | |
|   //
 | |
|   //   void Process() {
 | |
|   //     for (char c : CordFactory().Chars()) {
 | |
|   //       // The temporary Cord returned by CordFactory has been destroyed!
 | |
|   //     }
 | |
|   //   }
 | |
|   CharRange Chars() const;
 | |
| 
 | |
|   // Cord::operator[]
 | |
|   //
 | |
|   // Get the "i"th character of the Cord and returns it, provided that
 | |
|   // 0 <= i < Cord.size().
 | |
|   //
 | |
|   // NOTE: This routine is reasonably efficient. It is roughly
 | |
|   // logarithmic based on the number of chunks that make up the cord. Still,
 | |
|   // if you need to iterate over the contents of a cord, you should
 | |
|   // use a CharIterator/ChunkIterator rather than call operator[] or Get()
 | |
|   // repeatedly in a loop.
 | |
|   char operator[](size_t i) const;
 | |
| 
 | |
|   // Cord::TryFlat()
 | |
|   //
 | |
|   // If this cord's representation is a single flat array, return a
 | |
|   // string_view referencing that array.  Otherwise return nullopt.
 | |
|   absl::optional<absl::string_view> TryFlat() const;
 | |
| 
 | |
|   // Cord::Flatten()
 | |
|   //
 | |
|   // Flattens the cord into a single array and returns a view of the data.
 | |
|   //
 | |
|   // If the cord was already flat, the contents are not modified.
 | |
|   absl::string_view Flatten();
 | |
| 
 | |
|   // Support absl::Cord as a sink object for absl::Format().
 | |
|   friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) {
 | |
|     cord->Append(part);
 | |
|   }
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H hash_state, const absl::Cord& c) {
 | |
|     absl::optional<absl::string_view> maybe_flat = c.TryFlat();
 | |
|     if (maybe_flat.has_value()) {
 | |
|       return H::combine(std::move(hash_state), *maybe_flat);
 | |
|     }
 | |
|     return c.HashFragmented(std::move(hash_state));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   friend class CordTestPeer;
 | |
|   friend bool operator==(const Cord& lhs, const Cord& rhs);
 | |
|   friend bool operator==(const Cord& lhs, absl::string_view rhs);
 | |
| 
 | |
|   // Call the provided function once for each cord chunk, in order.  Unlike
 | |
|   // Chunks(), this API will not allocate memory.
 | |
|   void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;
 | |
| 
 | |
|   // Allocates new contiguous storage for the contents of the cord. This is
 | |
|   // called by Flatten() when the cord was not already flat.
 | |
|   absl::string_view FlattenSlowPath();
 | |
| 
 | |
|   // Actual cord contents are hidden inside the following simple
 | |
|   // class so that we can isolate the bulk of cord.cc from changes
 | |
|   // to the representation.
 | |
|   //
 | |
|   // InlineRep holds either a tree pointer, or an array of kMaxInline bytes.
 | |
|   class InlineRep {
 | |
|    public:
 | |
|     static constexpr unsigned char kMaxInline = 15;
 | |
|     static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");
 | |
|     // Tag byte & kMaxInline means we are storing a pointer.
 | |
|     static constexpr unsigned char kTreeFlag = 1 << 4;
 | |
|     // Tag byte & kProfiledFlag means we are profiling the Cord.
 | |
|     static constexpr unsigned char kProfiledFlag = 1 << 5;
 | |
| 
 | |
|     constexpr InlineRep() : data_{} {}
 | |
|     InlineRep(const InlineRep& src);
 | |
|     InlineRep(InlineRep&& src);
 | |
|     InlineRep& operator=(const InlineRep& src);
 | |
|     InlineRep& operator=(InlineRep&& src) noexcept;
 | |
| 
 | |
|     void Swap(InlineRep* rhs);
 | |
|     bool empty() const;
 | |
|     size_t size() const;
 | |
|     const char* data() const;  // Returns nullptr if holding pointer
 | |
|     void set_data(const char* data, size_t n,
 | |
|                   bool nullify_tail);  // Discards pointer, if any
 | |
|     char* set_data(size_t n);  // Write data to the result
 | |
|     // Returns nullptr if holding bytes
 | |
|     absl::cord_internal::CordRep* tree() const;
 | |
|     // Discards old pointer, if any
 | |
|     void set_tree(absl::cord_internal::CordRep* rep);
 | |
|     // Replaces a tree with a new root. This is faster than set_tree, but it
 | |
|     // should only be used when it's clear that the old rep was a tree.
 | |
|     void replace_tree(absl::cord_internal::CordRep* rep);
 | |
|     // Returns non-null iff was holding a pointer
 | |
|     absl::cord_internal::CordRep* clear();
 | |
|     // Convert to pointer if necessary
 | |
|     absl::cord_internal::CordRep* force_tree(size_t extra_hint);
 | |
|     void reduce_size(size_t n);  // REQUIRES: holding data
 | |
|     void remove_prefix(size_t n);  // REQUIRES: holding data
 | |
|     void AppendArray(const char* src_data, size_t src_size);
 | |
|     absl::string_view FindFlatStartPiece() const;
 | |
|     void AppendTree(absl::cord_internal::CordRep* tree);
 | |
|     void PrependTree(absl::cord_internal::CordRep* tree);
 | |
|     void GetAppendRegion(char** region, size_t* size, size_t max_length);
 | |
|     void GetAppendRegion(char** region, size_t* size);
 | |
|     bool IsSame(const InlineRep& other) const {
 | |
|       return memcmp(data_, other.data_, sizeof(data_)) == 0;
 | |
|     }
 | |
|     int BitwiseCompare(const InlineRep& other) const {
 | |
|       uint64_t x, y;
 | |
|       // Use memcpy to avoid anti-aliasing issues.
 | |
|       memcpy(&x, data_, sizeof(x));
 | |
|       memcpy(&y, other.data_, sizeof(y));
 | |
|       if (x == y) {
 | |
|         memcpy(&x, data_ + 8, sizeof(x));
 | |
|         memcpy(&y, other.data_ + 8, sizeof(y));
 | |
|         if (x == y) return 0;
 | |
|       }
 | |
|       return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)
 | |
|                  ? -1
 | |
|                  : 1;
 | |
|     }
 | |
|     void CopyTo(std::string* dst) const {
 | |
|       // memcpy is much faster when operating on a known size. On most supported
 | |
|       // platforms, the small string optimization is large enough that resizing
 | |
|       // to 15 bytes does not cause a memory allocation.
 | |
|       absl::strings_internal::STLStringResizeUninitialized(dst,
 | |
|                                                            sizeof(data_) - 1);
 | |
|       memcpy(&(*dst)[0], data_, sizeof(data_) - 1);
 | |
|       // erase is faster than resize because the logic for memory allocation is
 | |
|       // not needed.
 | |
|       dst->erase(data_[kMaxInline]);
 | |
|     }
 | |
| 
 | |
|     // Copies the inline contents into `dst`. Assumes the cord is not empty.
 | |
|     void CopyToArray(char* dst) const;
 | |
| 
 | |
|     bool is_tree() const { return data_[kMaxInline] > kMaxInline; }
 | |
| 
 | |
|    private:
 | |
|     friend class Cord;
 | |
| 
 | |
|     void AssignSlow(const InlineRep& src);
 | |
|     // Unrefs the tree, stops profiling, and zeroes the contents
 | |
|     void ClearSlow();
 | |
| 
 | |
|     // If the data has length <= kMaxInline, we store it in data_[0..len-1],
 | |
|     // and store the length in data_[kMaxInline].  Else we store it in a tree
 | |
|     // and store a pointer to that tree in data_[0..sizeof(CordRep*)-1].
 | |
|     alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1];
 | |
|   };
 | |
|   InlineRep contents_;
 | |
| 
 | |
|   // Helper for MemoryUsage()
 | |
|   static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
 | |
| 
 | |
|   // Helper for GetFlat() and TryFlat()
 | |
|   static bool GetFlatAux(absl::cord_internal::CordRep* rep,
 | |
|                          absl::string_view* fragment);
 | |
| 
 | |
|   // Helper for ForEachChunk()
 | |
|   static void ForEachChunkAux(
 | |
|       absl::cord_internal::CordRep* rep,
 | |
|       absl::FunctionRef<void(absl::string_view)> callback);
 | |
| 
 | |
|   // The destructor for non-empty Cords.
 | |
|   void DestroyCordSlow();
 | |
| 
 | |
|   // Out-of-line implementation of slower parts of logic.
 | |
|   void CopyToArraySlowPath(char* dst) const;
 | |
|   int CompareSlowPath(absl::string_view rhs, size_t compared_size,
 | |
|                       size_t size_to_compare) const;
 | |
|   int CompareSlowPath(const Cord& rhs, size_t compared_size,
 | |
|                       size_t size_to_compare) const;
 | |
|   bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;
 | |
|   bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;
 | |
|   int CompareImpl(const Cord& rhs) const;
 | |
| 
 | |
|   template <typename ResultType, typename RHS>
 | |
|   friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
 | |
|                                    size_t size_to_compare);
 | |
|   static absl::string_view GetFirstChunk(const Cord& c);
 | |
|   static absl::string_view GetFirstChunk(absl::string_view sv);
 | |
| 
 | |
|   // Returns a new reference to contents_.tree(), or steals an existing
 | |
|   // reference if called on an rvalue.
 | |
|   absl::cord_internal::CordRep* TakeRep() const&;
 | |
|   absl::cord_internal::CordRep* TakeRep() &&;
 | |
| 
 | |
|   // Helper for Append()
 | |
|   template <typename C>
 | |
|   void AppendImpl(C&& src);
 | |
| 
 | |
|   // Helper for AbslHashValue()
 | |
|   template <typename H>
 | |
|   H HashFragmented(H hash_state) const {
 | |
|     typename H::AbslInternalPiecewiseCombiner combiner;
 | |
|     ForEachChunk([&combiner, &hash_state](absl::string_view chunk) {
 | |
|       hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(),
 | |
|                                        chunk.size());
 | |
|     });
 | |
|     return H::combine(combiner.finalize(std::move(hash_state)), size());
 | |
|   }
 | |
| };
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| // allow a Cord to be logged
 | |
| extern std::ostream& operator<<(std::ostream& out, const Cord& cord);
 | |
| 
 | |
| // ------------------------------------------------------------------
 | |
| // Internal details follow.  Clients should ignore.
 | |
| 
 | |
| namespace cord_internal {
 | |
| 
 | |
| // Fast implementation of memmove for up to 15 bytes. This implementation is
 | |
| // safe for overlapping regions. If nullify_tail is true, the destination is
 | |
| // padded with '\0' up to 16 bytes.
 | |
| inline void SmallMemmove(char* dst, const char* src, size_t n,
 | |
|                          bool nullify_tail = false) {
 | |
|   if (n >= 8) {
 | |
|     assert(n <= 16);
 | |
|     uint64_t buf1;
 | |
|     uint64_t buf2;
 | |
|     memcpy(&buf1, src, 8);
 | |
|     memcpy(&buf2, src + n - 8, 8);
 | |
|     if (nullify_tail) {
 | |
|       memset(dst + 8, 0, 8);
 | |
|     }
 | |
|     memcpy(dst, &buf1, 8);
 | |
|     memcpy(dst + n - 8, &buf2, 8);
 | |
|   } else if (n >= 4) {
 | |
|     uint32_t buf1;
 | |
|     uint32_t buf2;
 | |
|     memcpy(&buf1, src, 4);
 | |
|     memcpy(&buf2, src + n - 4, 4);
 | |
|     if (nullify_tail) {
 | |
|       memset(dst + 4, 0, 4);
 | |
|       memset(dst + 8, 0, 8);
 | |
|     }
 | |
|     memcpy(dst, &buf1, 4);
 | |
|     memcpy(dst + n - 4, &buf2, 4);
 | |
|   } else {
 | |
|     if (n != 0) {
 | |
|       dst[0] = src[0];
 | |
|       dst[n / 2] = src[n / 2];
 | |
|       dst[n - 1] = src[n - 1];
 | |
|     }
 | |
|     if (nullify_tail) {
 | |
|       memset(dst + 8, 0, 8);
 | |
|       memset(dst + n, 0, 8);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| struct ExternalRepReleaserPair {
 | |
|   CordRep* rep;
 | |
|   void* releaser_address;
 | |
| };
 | |
| 
 | |
| // Allocates a new external `CordRep` and returns a pointer to it and a pointer
 | |
| // to `releaser_size` bytes where the desired releaser can be constructed.
 | |
| // Expects `data` to be non-empty.
 | |
| ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
 | |
|     absl::string_view data, ExternalReleaserInvoker invoker,
 | |
|     size_t releaser_size);
 | |
| 
 | |
| struct Rank1 {};
 | |
| struct Rank0 : Rank1 {};
 | |
| 
 | |
| template <typename Releaser, typename = ::absl::base_internal::InvokeT<
 | |
|                                  Releaser, absl::string_view>>
 | |
| void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
 | |
|   ::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);
 | |
| }
 | |
| 
 | |
| template <typename Releaser,
 | |
|           typename = ::absl::base_internal::InvokeT<Releaser>>
 | |
| void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
 | |
|   ::absl::base_internal::Invoke(std::forward<Releaser>(releaser));
 | |
| }
 | |
| 
 | |
| // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
 | |
| // to it, or `nullptr` if `data` was empty.
 | |
| template <typename Releaser>
 | |
| // NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
 | |
| CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
 | |
|   static_assert(
 | |
| #if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
 | |
|       alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__,
 | |
| #else
 | |
|       alignof(Releaser) <= alignof(max_align_t),
 | |
| #endif
 | |
|       "Releasers with alignment requirement greater than what is returned by "
 | |
|       "default `::operator new()` are not supported.");
 | |
| 
 | |
|   using ReleaserType = absl::decay_t<Releaser>;
 | |
|   if (data.empty()) {
 | |
|     // Never create empty external nodes.
 | |
|     InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),
 | |
|                    data);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {
 | |
|     auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);
 | |
|     InvokeReleaser(Rank0{}, std::move(*my_releaser), d);
 | |
|     my_releaser->~ReleaserType();
 | |
|     return sizeof(Releaser);
 | |
|   };
 | |
| 
 | |
|   ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser(
 | |
|       data, releaser_invoker, sizeof(releaser));
 | |
|   ::new (external.releaser_address)
 | |
|       ReleaserType(std::forward<Releaser>(releaser));
 | |
|   return external.rep;
 | |
| }
 | |
| 
 | |
| // Overload for function reference types that dispatches using a function
 | |
| // pointer because there are no `alignof()` or `sizeof()` a function reference.
 | |
| // NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
 | |
| inline CordRep* NewExternalRep(absl::string_view data,
 | |
|                                void (&releaser)(absl::string_view)) {
 | |
|   return NewExternalRep(data, &releaser);
 | |
| }
 | |
| 
 | |
| }  // namespace cord_internal
 | |
| 
 | |
| template <typename Releaser>
 | |
| Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {
 | |
|   Cord cord;
 | |
|   cord.contents_.set_tree(::absl::cord_internal::NewExternalRep(
 | |
|       data, std::forward<Releaser>(releaser)));
 | |
|   return cord;
 | |
| }
 | |
| 
 | |
| inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {
 | |
|   cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
 | |
| }
 | |
| 
 | |
| inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {
 | |
|   memcpy(data_, src.data_, sizeof(data_));
 | |
|   memset(src.data_, 0, sizeof(data_));
 | |
| }
 | |
| 
 | |
| inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
 | |
|   if (this == &src) {
 | |
|     return *this;
 | |
|   }
 | |
|   if (!is_tree() && !src.is_tree()) {
 | |
|     cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
 | |
|     return *this;
 | |
|   }
 | |
|   AssignSlow(src);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| inline Cord::InlineRep& Cord::InlineRep::operator=(
 | |
|     Cord::InlineRep&& src) noexcept {
 | |
|   if (is_tree()) {
 | |
|     ClearSlow();
 | |
|   }
 | |
|   memcpy(data_, src.data_, sizeof(data_));
 | |
|   memset(src.data_, 0, sizeof(data_));
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {
 | |
|   if (rhs == this) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Cord::InlineRep tmp;
 | |
|   cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_));
 | |
|   cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_));
 | |
|   cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_));
 | |
| }
 | |
| 
 | |
| inline const char* Cord::InlineRep::data() const {
 | |
|   return is_tree() ? nullptr : data_;
 | |
| }
 | |
| 
 | |
| inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {
 | |
|   if (is_tree()) {
 | |
|     absl::cord_internal::CordRep* rep;
 | |
|     memcpy(&rep, data_, sizeof(rep));
 | |
|     return rep;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; }
 | |
| 
 | |
| inline size_t Cord::InlineRep::size() const {
 | |
|   const char tag = data_[kMaxInline];
 | |
|   if (tag <= kMaxInline) return tag;
 | |
|   return static_cast<size_t>(tree()->length);
 | |
| }
 | |
| 
 | |
| inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {
 | |
|   if (rep == nullptr) {
 | |
|     memset(data_, 0, sizeof(data_));
 | |
|   } else {
 | |
|     bool was_tree = is_tree();
 | |
|     memcpy(data_, &rep, sizeof(rep));
 | |
|     memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
 | |
|     if (!was_tree) {
 | |
|       data_[kMaxInline] = kTreeFlag;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {
 | |
|   ABSL_ASSERT(is_tree());
 | |
|   if (ABSL_PREDICT_FALSE(rep == nullptr)) {
 | |
|     set_tree(rep);
 | |
|     return;
 | |
|   }
 | |
|   memcpy(data_, &rep, sizeof(rep));
 | |
|   memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
 | |
| }
 | |
| 
 | |
| inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {
 | |
|   const char tag = data_[kMaxInline];
 | |
|   absl::cord_internal::CordRep* result = nullptr;
 | |
|   if (tag > kMaxInline) {
 | |
|     memcpy(&result, data_, sizeof(result));
 | |
|   }
 | |
|   memset(data_, 0, sizeof(data_));  // Clear the cord
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline void Cord::InlineRep::CopyToArray(char* dst) const {
 | |
|   assert(!is_tree());
 | |
|   size_t n = data_[kMaxInline];
 | |
|   assert(n != 0);
 | |
|   cord_internal::SmallMemmove(dst, data_, n);
 | |
| }
 | |
| 
 | |
| constexpr inline Cord::Cord() noexcept {}
 | |
| 
 | |
| inline Cord& Cord::operator=(const Cord& x) {
 | |
|   contents_ = x.contents_;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}
 | |
| 
 | |
| inline Cord& Cord::operator=(Cord&& x) noexcept {
 | |
|   contents_ = std::move(x.contents_);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| template <typename T, Cord::EnableIfString<T>>
 | |
| inline Cord& Cord::operator=(T&& src) {
 | |
|   *this = absl::string_view(src);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| inline size_t Cord::size() const {
 | |
|   // Length is 1st field in str.rep_
 | |
|   return contents_.size();
 | |
| }
 | |
| 
 | |
| inline bool Cord::empty() const { return contents_.empty(); }
 | |
| 
 | |
| inline size_t Cord::EstimatedMemoryUsage() const {
 | |
|   size_t result = sizeof(Cord);
 | |
|   if (const absl::cord_internal::CordRep* rep = contents_.tree()) {
 | |
|     result += MemoryUsageAux(rep);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline absl::optional<absl::string_view> Cord::TryFlat() const {
 | |
|   absl::cord_internal::CordRep* rep = contents_.tree();
 | |
|   if (rep == nullptr) {
 | |
|     return absl::string_view(contents_.data(), contents_.size());
 | |
|   }
 | |
|   absl::string_view fragment;
 | |
|   if (GetFlatAux(rep, &fragment)) {
 | |
|     return fragment;
 | |
|   }
 | |
|   return absl::nullopt;
 | |
| }
 | |
| 
 | |
| inline absl::string_view Cord::Flatten() {
 | |
|   absl::cord_internal::CordRep* rep = contents_.tree();
 | |
|   if (rep == nullptr) {
 | |
|     return absl::string_view(contents_.data(), contents_.size());
 | |
|   } else {
 | |
|     absl::string_view already_flat_contents;
 | |
|     if (GetFlatAux(rep, &already_flat_contents)) {
 | |
|       return already_flat_contents;
 | |
|     }
 | |
|   }
 | |
|   return FlattenSlowPath();
 | |
| }
 | |
| 
 | |
| inline void Cord::Append(absl::string_view src) {
 | |
|   contents_.AppendArray(src.data(), src.size());
 | |
| }
 | |
| 
 | |
| template <typename T, Cord::EnableIfString<T>>
 | |
| inline void Cord::Append(T&& src) {
 | |
|   // Note that this function reserves the right to reuse the `string&&`'s
 | |
|   // memory and that it will do so in the future.
 | |
|   Append(absl::string_view(src));
 | |
| }
 | |
| 
 | |
| template <typename T, Cord::EnableIfString<T>>
 | |
| inline void Cord::Prepend(T&& src) {
 | |
|   // Note that this function reserves the right to reuse the `string&&`'s
 | |
|   // memory and that it will do so in the future.
 | |
|   Prepend(absl::string_view(src));
 | |
| }
 | |
| 
 | |
| inline int Cord::Compare(const Cord& rhs) const {
 | |
|   if (!contents_.is_tree() && !rhs.contents_.is_tree()) {
 | |
|     return contents_.BitwiseCompare(rhs.contents_);
 | |
|   }
 | |
| 
 | |
|   return CompareImpl(rhs);
 | |
| }
 | |
| 
 | |
| // Does 'this' cord start/end with rhs
 | |
| inline bool Cord::StartsWith(const Cord& rhs) const {
 | |
|   if (contents_.IsSame(rhs.contents_)) return true;
 | |
|   size_t rhs_size = rhs.size();
 | |
|   if (size() < rhs_size) return false;
 | |
|   return EqualsImpl(rhs, rhs_size);
 | |
| }
 | |
| 
 | |
| inline bool Cord::StartsWith(absl::string_view rhs) const {
 | |
|   size_t rhs_size = rhs.size();
 | |
|   if (size() < rhs_size) return false;
 | |
|   return EqualsImpl(rhs, rhs_size);
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
 | |
|     : bytes_remaining_(cord->size()) {
 | |
|   if (cord->empty()) return;
 | |
|   if (cord->contents_.is_tree()) {
 | |
|     stack_of_right_children_.push_back(cord->contents_.tree());
 | |
|     operator++();
 | |
|   } else {
 | |
|     current_chunk_ = absl::string_view(cord->contents_.data(), cord->size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {
 | |
|   ChunkIterator tmp(*this);
 | |
|   operator++();
 | |
|   return tmp;
 | |
| }
 | |
| 
 | |
| inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {
 | |
|   return bytes_remaining_ == other.bytes_remaining_;
 | |
| }
 | |
| 
 | |
| inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {
 | |
|   return !(*this == other);
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {
 | |
|   ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
 | |
|   return current_chunk_;
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {
 | |
|   ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
 | |
|   return ¤t_chunk_;
 | |
| }
 | |
| 
 | |
| inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {
 | |
|   assert(n < current_chunk_.size());
 | |
|   current_chunk_.remove_prefix(n);
 | |
|   bytes_remaining_ -= n;
 | |
| }
 | |
| 
 | |
| inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {
 | |
|   if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {
 | |
|     RemoveChunkPrefix(n);
 | |
|   } else if (n != 0) {
 | |
|     AdvanceBytesSlowPath(n);
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator Cord::chunk_begin() const {
 | |
|   return ChunkIterator(this);
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }
 | |
| 
 | |
| inline Cord::ChunkIterator Cord::ChunkRange::begin() const {
 | |
|   return cord_->chunk_begin();
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkIterator Cord::ChunkRange::end() const {
 | |
|   return cord_->chunk_end();
 | |
| }
 | |
| 
 | |
| inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }
 | |
| 
 | |
| inline Cord::CharIterator& Cord::CharIterator::operator++() {
 | |
|   if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {
 | |
|     chunk_iterator_.RemoveChunkPrefix(1);
 | |
|   } else {
 | |
|     ++chunk_iterator_;
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| inline Cord::CharIterator Cord::CharIterator::operator++(int) {
 | |
|   CharIterator tmp(*this);
 | |
|   operator++();
 | |
|   return tmp;
 | |
| }
 | |
| 
 | |
| inline bool Cord::CharIterator::operator==(const CharIterator& other) const {
 | |
|   return chunk_iterator_ == other.chunk_iterator_;
 | |
| }
 | |
| 
 | |
| inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {
 | |
|   return !(*this == other);
 | |
| }
 | |
| 
 | |
| inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {
 | |
|   return *chunk_iterator_->data();
 | |
| }
 | |
| 
 | |
| inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {
 | |
|   return chunk_iterator_->data();
 | |
| }
 | |
| 
 | |
| inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {
 | |
|   assert(it != nullptr);
 | |
|   return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);
 | |
| }
 | |
| 
 | |
| inline void Cord::Advance(CharIterator* it, size_t n_bytes) {
 | |
|   assert(it != nullptr);
 | |
|   it->chunk_iterator_.AdvanceBytes(n_bytes);
 | |
| }
 | |
| 
 | |
| inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {
 | |
|   return *it.chunk_iterator_;
 | |
| }
 | |
| 
 | |
| inline Cord::CharIterator Cord::char_begin() const {
 | |
|   return CharIterator(this);
 | |
| }
 | |
| 
 | |
| inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }
 | |
| 
 | |
| inline Cord::CharIterator Cord::CharRange::begin() const {
 | |
|   return cord_->char_begin();
 | |
| }
 | |
| 
 | |
| inline Cord::CharIterator Cord::CharRange::end() const {
 | |
|   return cord_->char_end();
 | |
| }
 | |
| 
 | |
| inline Cord::CharRange Cord::Chars() const { return CharRange(this); }
 | |
| 
 | |
| inline void Cord::ForEachChunk(
 | |
|     absl::FunctionRef<void(absl::string_view)> callback) const {
 | |
|   absl::cord_internal::CordRep* rep = contents_.tree();
 | |
|   if (rep == nullptr) {
 | |
|     callback(absl::string_view(contents_.data(), contents_.size()));
 | |
|   } else {
 | |
|     return ForEachChunkAux(rep, callback);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Nonmember Cord-to-Cord relational operarators.
 | |
| inline bool operator==(const Cord& lhs, const Cord& rhs) {
 | |
|   if (lhs.contents_.IsSame(rhs.contents_)) return true;
 | |
|   size_t rhs_size = rhs.size();
 | |
|   if (lhs.size() != rhs_size) return false;
 | |
|   return lhs.EqualsImpl(rhs, rhs_size);
 | |
| }
 | |
| 
 | |
| inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }
 | |
| inline bool operator<(const Cord& x, const Cord& y) {
 | |
|   return x.Compare(y) < 0;
 | |
| }
 | |
| inline bool operator>(const Cord& x, const Cord& y) {
 | |
|   return x.Compare(y) > 0;
 | |
| }
 | |
| inline bool operator<=(const Cord& x, const Cord& y) {
 | |
|   return x.Compare(y) <= 0;
 | |
| }
 | |
| inline bool operator>=(const Cord& x, const Cord& y) {
 | |
|   return x.Compare(y) >= 0;
 | |
| }
 | |
| 
 | |
| // Nonmember Cord-to-absl::string_view relational operators.
 | |
| //
 | |
| // Due to implicit conversions, these also enable comparisons of Cord with
 | |
| // with std::string, ::string, and const char*.
 | |
| inline bool operator==(const Cord& lhs, absl::string_view rhs) {
 | |
|   size_t lhs_size = lhs.size();
 | |
|   size_t rhs_size = rhs.size();
 | |
|   if (lhs_size != rhs_size) return false;
 | |
|   return lhs.EqualsImpl(rhs, rhs_size);
 | |
| }
 | |
| 
 | |
| inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }
 | |
| inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }
 | |
| inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }
 | |
| inline bool operator<(const Cord& x, absl::string_view y) {
 | |
|   return x.Compare(y) < 0;
 | |
| }
 | |
| inline bool operator<(absl::string_view x, const Cord& y) {
 | |
|   return y.Compare(x) > 0;
 | |
| }
 | |
| inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }
 | |
| inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }
 | |
| inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }
 | |
| inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }
 | |
| inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }
 | |
| inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }
 | |
| 
 | |
| // Overload of swap for Cord. The use of non-const references is
 | |
| // required. :(
 | |
| inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); }
 | |
| 
 | |
| // Some internals exposed to test code.
 | |
| namespace strings_internal {
 | |
| class CordTestAccess {
 | |
|  public:
 | |
|   static size_t FlatOverhead();
 | |
|   static size_t MaxFlatLength();
 | |
|   static size_t SizeofCordRepConcat();
 | |
|   static size_t SizeofCordRepExternal();
 | |
|   static size_t SizeofCordRepSubstring();
 | |
|   static size_t FlatTagToLength(uint8_t tag);
 | |
|   static uint8_t LengthToTag(size_t s);
 | |
| };
 | |
| }  // namespace strings_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_STRINGS_CORD_H_
 |