Make raster circle rendering use the Rasterific package instead of attempting desperately to hand-roll it, and add a method for generating filled circles.
217 lines
6.7 KiB
Haskell
217 lines
6.7 KiB
Haskell
{-# LANGUAGE ViewPatterns #-}
|
|
{-# LANGUAGE QuantifiedConstraints #-}
|
|
{-# LANGUAGE AllowAmbiguousTypes #-}
|
|
--------------------------------------------------------------------------------
|
|
module Xanthous.Generators.Util
|
|
( MCells
|
|
, Cells
|
|
, CellM
|
|
, randInitialize
|
|
, numAliveNeighborsM
|
|
, numAliveNeighbors
|
|
, fillOuterEdgesM
|
|
, cloneMArray
|
|
, floodFill
|
|
, regions
|
|
, fillAll
|
|
, fillAllM
|
|
, fromPoints
|
|
, fromPointsM
|
|
) where
|
|
--------------------------------------------------------------------------------
|
|
import Xanthous.Prelude hiding (Foldable, toList, for_)
|
|
import Data.Array.ST
|
|
import Data.Array.Unboxed
|
|
import Control.Monad.ST
|
|
import Control.Monad.Random
|
|
import Data.Monoid
|
|
import Data.Foldable (Foldable, toList, for_)
|
|
import qualified Data.Set as Set
|
|
import Data.Semigroup.Foldable
|
|
--------------------------------------------------------------------------------
|
|
import Xanthous.Util (foldlMapM', maximum1, minimum1)
|
|
import Xanthous.Data (Dimensions, width, height)
|
|
--------------------------------------------------------------------------------
|
|
|
|
type MCells s = STUArray s (Word, Word) Bool
|
|
type Cells = UArray (Word, Word) Bool
|
|
type CellM g s a = RandT g (ST s) a
|
|
|
|
randInitialize :: RandomGen g => Dimensions -> Double -> CellM g s (MCells s)
|
|
randInitialize dims aliveChance = do
|
|
res <- lift $ newArray ((0, 0), (dims ^. width, dims ^. height)) False
|
|
for_ [0..dims ^. width] $ \i ->
|
|
for_ [0..dims ^. height] $ \j -> do
|
|
val <- (>= aliveChance) <$> getRandomR (0, 1)
|
|
lift $ writeArray res (i, j) val
|
|
pure res
|
|
|
|
numAliveNeighborsM
|
|
:: forall a i j m
|
|
. (MArray a Bool m, Ix (i, j), Integral i, Integral j)
|
|
=> a (i, j) Bool
|
|
-> (i, j)
|
|
-> m Word
|
|
numAliveNeighborsM cells (x, y) = do
|
|
cellBounds <- getBounds cells
|
|
getSum <$> foldlMapM'
|
|
(fmap (Sum . fromIntegral . fromEnum) . boundedGet cellBounds)
|
|
neighborPositions
|
|
|
|
where
|
|
boundedGet :: ((i, j), (i, j)) -> (Int, Int) -> m Bool
|
|
boundedGet ((minX, minY), (maxX, maxY)) (i, j)
|
|
| x <= minX
|
|
|| y <= minY
|
|
|| x >= maxX
|
|
|| y >= maxY
|
|
= pure True
|
|
| otherwise =
|
|
let nx = fromIntegral $ fromIntegral x + i
|
|
ny = fromIntegral $ fromIntegral y + j
|
|
in readArray cells (nx, ny)
|
|
|
|
neighborPositions :: [(Int, Int)]
|
|
neighborPositions = [(i, j) | i <- [-1..1], j <- [-1..1], (i, j) /= (0, 0)]
|
|
|
|
numAliveNeighbors
|
|
:: forall a i j
|
|
. (IArray a Bool, Ix (i, j), Integral i, Integral j)
|
|
=> a (i, j) Bool
|
|
-> (i, j)
|
|
-> Word
|
|
numAliveNeighbors cells (x, y) =
|
|
let cellBounds = bounds cells
|
|
in getSum $ foldMap
|
|
(Sum . fromIntegral . fromEnum . boundedGet cellBounds)
|
|
neighborPositions
|
|
|
|
where
|
|
boundedGet :: ((i, j), (i, j)) -> (Int, Int) -> Bool
|
|
boundedGet ((minX, minY), (maxX, maxY)) (i, j)
|
|
| x <= minX
|
|
|| y <= minY
|
|
|| x >= maxX
|
|
|| y >= maxY
|
|
= True
|
|
| otherwise =
|
|
let nx = fromIntegral $ fromIntegral x + i
|
|
ny = fromIntegral $ fromIntegral y + j
|
|
in cells ! (nx, ny)
|
|
|
|
neighborPositions :: [(Int, Int)]
|
|
neighborPositions = [(i, j) | i <- [-1..1], j <- [-1..1], (i, j) /= (0, 0)]
|
|
|
|
fillOuterEdgesM :: (MArray a Bool m, Ix i, Ix j) => a (i, j) Bool -> m ()
|
|
fillOuterEdgesM arr = do
|
|
((minX, minY), (maxX, maxY)) <- getBounds arr
|
|
for_ (range (minX, maxX)) $ \x -> do
|
|
writeArray arr (x, minY) True
|
|
writeArray arr (x, maxY) True
|
|
for_ (range (minY, maxY)) $ \y -> do
|
|
writeArray arr (minX, y) True
|
|
writeArray arr (maxX, y) True
|
|
|
|
cloneMArray
|
|
:: forall a a' i e m.
|
|
( Ix i
|
|
, MArray a e m
|
|
, MArray a' e m
|
|
, IArray UArray e
|
|
)
|
|
=> a i e
|
|
-> m (a' i e)
|
|
cloneMArray = thaw @_ @UArray <=< freeze
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
-- | Flood fill a cell array starting at a point, returning a list of all the
|
|
-- (true) cell locations reachable from that point
|
|
floodFill :: forall a i j.
|
|
( IArray a Bool
|
|
, Ix (i, j)
|
|
, Enum i , Enum j
|
|
, Bounded i , Bounded j
|
|
, Eq i , Eq j
|
|
, Show i, Show j
|
|
)
|
|
=> a (i, j) Bool -- ^ array
|
|
-> (i, j) -- ^ position
|
|
-> Set (i, j)
|
|
floodFill = go mempty
|
|
where
|
|
go :: Set (i, j) -> a (i, j) Bool -> (i, j) -> Set (i, j)
|
|
-- TODO pass result in rather than passing seen in, return result
|
|
go res arr@(bounds -> arrBounds) idx@(x, y)
|
|
| not (inRange arrBounds idx) = res
|
|
| not (arr ! idx) = res
|
|
| otherwise =
|
|
let neighbors
|
|
= filter (inRange arrBounds)
|
|
. filter (/= idx)
|
|
. filter (`notMember` res)
|
|
$ (,)
|
|
<$> [(if x == minBound then x else pred x)
|
|
..
|
|
(if x == maxBound then x else succ x)]
|
|
<*> [(if y == minBound then y else pred y)
|
|
..
|
|
(if y == maxBound then y else succ y)]
|
|
in foldl' (\r idx' ->
|
|
if arr ! idx'
|
|
then r <> go (r & contains idx' .~ True) arr idx'
|
|
else r)
|
|
(res & contains idx .~ True) neighbors
|
|
|
|
-- | Gives a list of all the disconnected regions in a cell array, represented
|
|
-- each as lists of points
|
|
regions :: forall a i j.
|
|
( IArray a Bool
|
|
, Ix (i, j)
|
|
, Enum i , Enum j
|
|
, Bounded i , Bounded j
|
|
, Eq i , Eq j
|
|
, Show i, Show j
|
|
)
|
|
=> a (i, j) Bool
|
|
-> [Set (i, j)]
|
|
regions arr
|
|
| Just firstPoint <- findFirstPoint arr =
|
|
let region = floodFill arr firstPoint
|
|
arr' = fillAll region arr
|
|
in region : regions arr'
|
|
| otherwise = []
|
|
where
|
|
findFirstPoint :: a (i, j) Bool -> Maybe (i, j)
|
|
findFirstPoint = fmap fst . headMay . filter snd . assocs
|
|
|
|
fillAll :: (IArray a Bool, Ix i, Foldable f) => f i -> a i Bool -> a i Bool
|
|
fillAll ixes a = accum (const fst) a $ (, (False, ())) <$> toList ixes
|
|
|
|
fillAllM :: (MArray a Bool m, Ix i, Foldable f) => f i -> a i Bool -> m ()
|
|
fillAllM ixes a = for_ ixes $ \i -> writeArray a i False
|
|
|
|
fromPoints
|
|
:: forall a f i.
|
|
( IArray a Bool
|
|
, Ix i
|
|
, Functor f
|
|
, Foldable1 f
|
|
)
|
|
=> f (i, i)
|
|
-> a (i, i) Bool
|
|
fromPoints points =
|
|
let pts = Set.fromList $ toList points
|
|
dims = ( (minimum1 $ fst <$> points, minimum1 $ snd <$> points)
|
|
, (maximum1 $ fst <$> points, maximum1 $ snd <$> points)
|
|
)
|
|
in array dims $ range dims <&> \i -> (i, i `member` pts)
|
|
|
|
fromPointsM
|
|
:: (MArray a Bool m, Ix i, Element f ~ i, MonoFoldable f)
|
|
=> NonNull f
|
|
-> m (a i Bool)
|
|
fromPointsM points = do
|
|
arr <- newArray (minimum points, maximum points) False
|
|
fillAllM (otoList points) arr
|
|
pure arr
|