git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			735 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			735 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2018 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
#include <map>
 | 
						|
#include <numeric>
 | 
						|
#include <random>
 | 
						|
#include <set>
 | 
						|
#include <string>
 | 
						|
#include <type_traits>
 | 
						|
#include <unordered_map>
 | 
						|
#include <unordered_set>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "absl/base/internal/raw_logging.h"
 | 
						|
#include "absl/container/btree_map.h"
 | 
						|
#include "absl/container/btree_set.h"
 | 
						|
#include "absl/container/btree_test.h"
 | 
						|
#include "absl/container/flat_hash_map.h"
 | 
						|
#include "absl/container/flat_hash_set.h"
 | 
						|
#include "absl/container/internal/hashtable_debug.h"
 | 
						|
#include "absl/flags/flag.h"
 | 
						|
#include "absl/hash/hash.h"
 | 
						|
#include "absl/memory/memory.h"
 | 
						|
#include "absl/strings/cord.h"
 | 
						|
#include "absl/strings/str_format.h"
 | 
						|
#include "absl/time/time.h"
 | 
						|
#include "benchmark/benchmark.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace container_internal {
 | 
						|
namespace {
 | 
						|
 | 
						|
constexpr size_t kBenchmarkValues = 1 << 20;
 | 
						|
 | 
						|
// How many times we add and remove sub-batches in one batch of *AddRem
 | 
						|
// benchmarks.
 | 
						|
constexpr size_t kAddRemBatchSize = 1 << 2;
 | 
						|
 | 
						|
// Generates n values in the range [0, 4 * n].
 | 
						|
template <typename V>
 | 
						|
std::vector<V> GenerateValues(int n) {
 | 
						|
  constexpr int kSeed = 23;
 | 
						|
  return GenerateValuesWithSeed<V>(n, 4 * n, kSeed);
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark insertion of values into a container.
 | 
						|
template <typename T>
 | 
						|
void BM_InsertImpl(benchmark::State& state, bool sorted) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
 | 
						|
  std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | 
						|
  if (sorted) {
 | 
						|
    std::sort(values.begin(), values.end());
 | 
						|
  }
 | 
						|
  T container(values.begin(), values.end());
 | 
						|
 | 
						|
  // Remove and re-insert 10% of the keys per batch.
 | 
						|
  const int batch_size = (kBenchmarkValues + 9) / 10;
 | 
						|
  while (state.KeepRunningBatch(batch_size)) {
 | 
						|
    state.PauseTiming();
 | 
						|
    const auto i = static_cast<int>(state.iterations());
 | 
						|
 | 
						|
    for (int j = i; j < i + batch_size; j++) {
 | 
						|
      int x = j % kBenchmarkValues;
 | 
						|
      container.erase(key_of_value(values[x]));
 | 
						|
    }
 | 
						|
 | 
						|
    state.ResumeTiming();
 | 
						|
 | 
						|
    for (int j = i; j < i + batch_size; j++) {
 | 
						|
      int x = j % kBenchmarkValues;
 | 
						|
      container.insert(values[x]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_Insert(benchmark::State& state) {
 | 
						|
  BM_InsertImpl<T>(state, false);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_InsertSorted(benchmark::State& state) {
 | 
						|
  BM_InsertImpl<T>(state, true);
 | 
						|
}
 | 
						|
 | 
						|
// container::insert sometimes returns a pair<iterator, bool> and sometimes
 | 
						|
// returns an iterator (for multi- containers).
 | 
						|
template <typename Iter>
 | 
						|
Iter GetIterFromInsert(const std::pair<Iter, bool>& pair) {
 | 
						|
  return pair.first;
 | 
						|
}
 | 
						|
template <typename Iter>
 | 
						|
Iter GetIterFromInsert(const Iter iter) {
 | 
						|
  return iter;
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark insertion of values into a container at the end.
 | 
						|
template <typename T>
 | 
						|
void BM_InsertEnd(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
 | 
						|
  T container;
 | 
						|
  const int kSize = 10000;
 | 
						|
  for (int i = 0; i < kSize; ++i) {
 | 
						|
    container.insert(Generator<V>(kSize)(i));
 | 
						|
  }
 | 
						|
  V v = Generator<V>(kSize)(kSize - 1);
 | 
						|
  typename T::key_type k = key_of_value(v);
 | 
						|
 | 
						|
  auto it = container.find(k);
 | 
						|
  while (state.KeepRunning()) {
 | 
						|
    // Repeatedly removing then adding v.
 | 
						|
    container.erase(it);
 | 
						|
    it = GetIterFromInsert(container.insert(v));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark inserting the first few elements in a container. In b-tree, this is
 | 
						|
// when the root node grows.
 | 
						|
template <typename T>
 | 
						|
void BM_InsertSmall(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
 | 
						|
  const int kSize = 8;
 | 
						|
  std::vector<V> values = GenerateValues<V>(kSize);
 | 
						|
  T container;
 | 
						|
 | 
						|
  while (state.KeepRunningBatch(kSize)) {
 | 
						|
    for (int i = 0; i < kSize; ++i) {
 | 
						|
      benchmark::DoNotOptimize(container.insert(values[i]));
 | 
						|
    }
 | 
						|
    state.PauseTiming();
 | 
						|
    // Do not measure the time it takes to clear the container.
 | 
						|
    container.clear();
 | 
						|
    state.ResumeTiming();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_LookupImpl(benchmark::State& state, bool sorted) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
 | 
						|
  std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | 
						|
  if (sorted) {
 | 
						|
    std::sort(values.begin(), values.end());
 | 
						|
  }
 | 
						|
  T container(values.begin(), values.end());
 | 
						|
 | 
						|
  while (state.KeepRunning()) {
 | 
						|
    int idx = state.iterations() % kBenchmarkValues;
 | 
						|
    benchmark::DoNotOptimize(container.find(key_of_value(values[idx])));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark lookup of values in a container.
 | 
						|
template <typename T>
 | 
						|
void BM_Lookup(benchmark::State& state) {
 | 
						|
  BM_LookupImpl<T>(state, false);
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark lookup of values in a full container, meaning that values
 | 
						|
// are inserted in-order to take advantage of biased insertion, which
 | 
						|
// yields a full tree.
 | 
						|
template <typename T>
 | 
						|
void BM_FullLookup(benchmark::State& state) {
 | 
						|
  BM_LookupImpl<T>(state, true);
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark deletion of values from a container.
 | 
						|
template <typename T>
 | 
						|
void BM_Delete(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
  std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | 
						|
  T container(values.begin(), values.end());
 | 
						|
 | 
						|
  // Remove and re-insert 10% of the keys per batch.
 | 
						|
  const int batch_size = (kBenchmarkValues + 9) / 10;
 | 
						|
  while (state.KeepRunningBatch(batch_size)) {
 | 
						|
    const int i = state.iterations();
 | 
						|
 | 
						|
    for (int j = i; j < i + batch_size; j++) {
 | 
						|
      int x = j % kBenchmarkValues;
 | 
						|
      container.erase(key_of_value(values[x]));
 | 
						|
    }
 | 
						|
 | 
						|
    state.PauseTiming();
 | 
						|
    for (int j = i; j < i + batch_size; j++) {
 | 
						|
      int x = j % kBenchmarkValues;
 | 
						|
      container.insert(values[x]);
 | 
						|
    }
 | 
						|
    state.ResumeTiming();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark deletion of multiple values from a container.
 | 
						|
template <typename T>
 | 
						|
void BM_DeleteRange(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
  std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | 
						|
  T container(values.begin(), values.end());
 | 
						|
 | 
						|
  // Remove and re-insert 10% of the keys per batch.
 | 
						|
  const int batch_size = (kBenchmarkValues + 9) / 10;
 | 
						|
  while (state.KeepRunningBatch(batch_size)) {
 | 
						|
    const int i = state.iterations();
 | 
						|
 | 
						|
    const int start_index = i % kBenchmarkValues;
 | 
						|
 | 
						|
    state.PauseTiming();
 | 
						|
    {
 | 
						|
      std::vector<V> removed;
 | 
						|
      removed.reserve(batch_size);
 | 
						|
      auto itr = container.find(key_of_value(values[start_index]));
 | 
						|
      auto start = itr;
 | 
						|
      for (int j = 0; j < batch_size; j++) {
 | 
						|
        if (itr == container.end()) {
 | 
						|
          state.ResumeTiming();
 | 
						|
          container.erase(start, itr);
 | 
						|
          state.PauseTiming();
 | 
						|
          itr = container.begin();
 | 
						|
          start = itr;
 | 
						|
        }
 | 
						|
        removed.push_back(*itr++);
 | 
						|
      }
 | 
						|
 | 
						|
      state.ResumeTiming();
 | 
						|
      container.erase(start, itr);
 | 
						|
      state.PauseTiming();
 | 
						|
 | 
						|
      container.insert(removed.begin(), removed.end());
 | 
						|
    }
 | 
						|
    state.ResumeTiming();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark steady-state insert (into first half of range) and remove (from
 | 
						|
// second half of range), treating the container approximately like a queue with
 | 
						|
// log-time access for all elements. This benchmark does not test the case where
 | 
						|
// insertion and removal happen in the same region of the tree.  This benchmark
 | 
						|
// counts two value constructors.
 | 
						|
template <typename T>
 | 
						|
void BM_QueueAddRem(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
 | 
						|
  ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
 | 
						|
 | 
						|
  T container;
 | 
						|
 | 
						|
  const size_t half = kBenchmarkValues / 2;
 | 
						|
  std::vector<int> remove_keys(half);
 | 
						|
  std::vector<int> add_keys(half);
 | 
						|
 | 
						|
  // We want to do the exact same work repeatedly, and the benchmark can end
 | 
						|
  // after a different number of iterations depending on the speed of the
 | 
						|
  // individual run so we use a large batch size here and ensure that we do
 | 
						|
  // deterministic work every batch.
 | 
						|
  while (state.KeepRunningBatch(half * kAddRemBatchSize)) {
 | 
						|
    state.PauseTiming();
 | 
						|
 | 
						|
    container.clear();
 | 
						|
 | 
						|
    for (size_t i = 0; i < half; ++i) {
 | 
						|
      remove_keys[i] = i;
 | 
						|
      add_keys[i] = i;
 | 
						|
    }
 | 
						|
    constexpr int kSeed = 5;
 | 
						|
    std::mt19937_64 rand(kSeed);
 | 
						|
    std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
 | 
						|
    std::shuffle(add_keys.begin(), add_keys.end(), rand);
 | 
						|
 | 
						|
    // Note needs lazy generation of values.
 | 
						|
    Generator<V> g(kBenchmarkValues * kAddRemBatchSize);
 | 
						|
 | 
						|
    for (size_t i = 0; i < half; ++i) {
 | 
						|
      container.insert(g(add_keys[i]));
 | 
						|
      container.insert(g(half + remove_keys[i]));
 | 
						|
    }
 | 
						|
 | 
						|
    // There are three parts each of size "half":
 | 
						|
    // 1 is being deleted from  [offset - half, offset)
 | 
						|
    // 2 is standing            [offset, offset + half)
 | 
						|
    // 3 is being inserted into [offset + half, offset + 2 * half)
 | 
						|
    size_t offset = 0;
 | 
						|
 | 
						|
    for (size_t i = 0; i < kAddRemBatchSize; ++i) {
 | 
						|
      std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
 | 
						|
      std::shuffle(add_keys.begin(), add_keys.end(), rand);
 | 
						|
      offset += half;
 | 
						|
 | 
						|
      state.ResumeTiming();
 | 
						|
      for (size_t idx = 0; idx < half; ++idx) {
 | 
						|
        container.erase(key_of_value(g(offset - half + remove_keys[idx])));
 | 
						|
        container.insert(g(offset + half + add_keys[idx]));
 | 
						|
      }
 | 
						|
      state.PauseTiming();
 | 
						|
    }
 | 
						|
    state.ResumeTiming();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Mixed insertion and deletion in the same range using pre-constructed values.
 | 
						|
template <typename T>
 | 
						|
void BM_MixedAddRem(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | 
						|
 | 
						|
  ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
 | 
						|
 | 
						|
  T container;
 | 
						|
 | 
						|
  // Create two random shuffles
 | 
						|
  std::vector<int> remove_keys(kBenchmarkValues);
 | 
						|
  std::vector<int> add_keys(kBenchmarkValues);
 | 
						|
 | 
						|
  // We want to do the exact same work repeatedly, and the benchmark can end
 | 
						|
  // after a different number of iterations depending on the speed of the
 | 
						|
  // individual run so we use a large batch size here and ensure that we do
 | 
						|
  // deterministic work every batch.
 | 
						|
  while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) {
 | 
						|
    state.PauseTiming();
 | 
						|
 | 
						|
    container.clear();
 | 
						|
 | 
						|
    constexpr int kSeed = 7;
 | 
						|
    std::mt19937_64 rand(kSeed);
 | 
						|
 | 
						|
    std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2);
 | 
						|
 | 
						|
    // Insert the first half of the values (already in random order)
 | 
						|
    container.insert(values.begin(), values.begin() + kBenchmarkValues);
 | 
						|
 | 
						|
    // Insert the first half of the values (already in random order)
 | 
						|
    for (size_t i = 0; i < kBenchmarkValues; ++i) {
 | 
						|
      // remove_keys and add_keys will be swapped before each round,
 | 
						|
      // therefore fill add_keys here w/ the keys being inserted, so
 | 
						|
      // they'll be the first to be removed.
 | 
						|
      remove_keys[i] = i + kBenchmarkValues;
 | 
						|
      add_keys[i] = i;
 | 
						|
    }
 | 
						|
 | 
						|
    for (size_t i = 0; i < kAddRemBatchSize; ++i) {
 | 
						|
      remove_keys.swap(add_keys);
 | 
						|
      std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
 | 
						|
      std::shuffle(add_keys.begin(), add_keys.end(), rand);
 | 
						|
 | 
						|
      state.ResumeTiming();
 | 
						|
      for (size_t idx = 0; idx < kBenchmarkValues; ++idx) {
 | 
						|
        container.erase(key_of_value(values[remove_keys[idx]]));
 | 
						|
        container.insert(values[add_keys[idx]]);
 | 
						|
      }
 | 
						|
      state.PauseTiming();
 | 
						|
    }
 | 
						|
    state.ResumeTiming();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Insertion at end, removal from the beginning.  This benchmark
 | 
						|
// counts two value constructors.
 | 
						|
// TODO(ezb): we could add a GenerateNext version of generator that could reduce
 | 
						|
// noise for string-like types.
 | 
						|
template <typename T>
 | 
						|
void BM_Fifo(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
 | 
						|
  T container;
 | 
						|
  // Need lazy generation of values as state.max_iterations is large.
 | 
						|
  Generator<V> g(kBenchmarkValues + state.max_iterations);
 | 
						|
 | 
						|
  for (int i = 0; i < kBenchmarkValues; i++) {
 | 
						|
    container.insert(g(i));
 | 
						|
  }
 | 
						|
 | 
						|
  while (state.KeepRunning()) {
 | 
						|
    container.erase(container.begin());
 | 
						|
    container.insert(container.end(), g(state.iterations() + kBenchmarkValues));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Iteration (forward) through the tree
 | 
						|
template <typename T>
 | 
						|
void BM_FwdIter(benchmark::State& state) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
  using R = typename T::value_type const*;
 | 
						|
 | 
						|
  std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | 
						|
  T container(values.begin(), values.end());
 | 
						|
 | 
						|
  auto iter = container.end();
 | 
						|
 | 
						|
  R r = nullptr;
 | 
						|
 | 
						|
  while (state.KeepRunning()) {
 | 
						|
    if (iter == container.end()) iter = container.begin();
 | 
						|
    r = &(*iter);
 | 
						|
    ++iter;
 | 
						|
  }
 | 
						|
 | 
						|
  benchmark::DoNotOptimize(r);
 | 
						|
}
 | 
						|
 | 
						|
// Benchmark random range-construction of a container.
 | 
						|
template <typename T>
 | 
						|
void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) {
 | 
						|
  using V = typename remove_pair_const<typename T::value_type>::type;
 | 
						|
 | 
						|
  std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | 
						|
  if (sorted) {
 | 
						|
    std::sort(values.begin(), values.end());
 | 
						|
  }
 | 
						|
  {
 | 
						|
    T container(values.begin(), values.end());
 | 
						|
  }
 | 
						|
 | 
						|
  while (state.KeepRunning()) {
 | 
						|
    T container(values.begin(), values.end());
 | 
						|
    benchmark::DoNotOptimize(container);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_InsertRangeRandom(benchmark::State& state) {
 | 
						|
  BM_RangeConstructionImpl<T>(state, false);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_InsertRangeSorted(benchmark::State& state) {
 | 
						|
  BM_RangeConstructionImpl<T>(state, true);
 | 
						|
}
 | 
						|
 | 
						|
#define STL_ORDERED_TYPES(value)                     \
 | 
						|
  using stl_set_##value = std::set<value>;           \
 | 
						|
  using stl_map_##value = std::map<value, intptr_t>; \
 | 
						|
  using stl_multiset_##value = std::multiset<value>; \
 | 
						|
  using stl_multimap_##value = std::multimap<value, intptr_t>
 | 
						|
 | 
						|
using StdString = std::string;
 | 
						|
STL_ORDERED_TYPES(int32_t);
 | 
						|
STL_ORDERED_TYPES(int64_t);
 | 
						|
STL_ORDERED_TYPES(StdString);
 | 
						|
STL_ORDERED_TYPES(Cord);
 | 
						|
STL_ORDERED_TYPES(Time);
 | 
						|
 | 
						|
#define STL_UNORDERED_TYPES(value)                                       \
 | 
						|
  using stl_unordered_set_##value = std::unordered_set<value>;           \
 | 
						|
  using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \
 | 
						|
  using flat_hash_set_##value = flat_hash_set<value>;                    \
 | 
						|
  using flat_hash_map_##value = flat_hash_map<value, intptr_t>;          \
 | 
						|
  using stl_unordered_multiset_##value = std::unordered_multiset<value>; \
 | 
						|
  using stl_unordered_multimap_##value =                                 \
 | 
						|
      std::unordered_multimap<value, intptr_t>
 | 
						|
 | 
						|
#define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash)                           \
 | 
						|
  using stl_unordered_set_##value = std::unordered_set<value, hash>;           \
 | 
						|
  using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \
 | 
						|
  using flat_hash_set_##value = flat_hash_set<value, hash>;                    \
 | 
						|
  using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>;          \
 | 
						|
  using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \
 | 
						|
  using stl_unordered_multimap_##value =                                       \
 | 
						|
      std::unordered_multimap<value, intptr_t, hash>
 | 
						|
 | 
						|
STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>);
 | 
						|
 | 
						|
STL_UNORDERED_TYPES(int32_t);
 | 
						|
STL_UNORDERED_TYPES(int64_t);
 | 
						|
STL_UNORDERED_TYPES(StdString);
 | 
						|
STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>);
 | 
						|
 | 
						|
#define BTREE_TYPES(value)                                            \
 | 
						|
  using btree_256_set_##value =                                       \
 | 
						|
      btree_set<value, std::less<value>, std::allocator<value>>;      \
 | 
						|
  using btree_256_map_##value =                                       \
 | 
						|
      btree_map<value, intptr_t, std::less<value>,                    \
 | 
						|
                std::allocator<std::pair<const value, intptr_t>>>;    \
 | 
						|
  using btree_256_multiset_##value =                                  \
 | 
						|
      btree_multiset<value, std::less<value>, std::allocator<value>>; \
 | 
						|
  using btree_256_multimap_##value =                                  \
 | 
						|
      btree_multimap<value, intptr_t, std::less<value>,               \
 | 
						|
                     std::allocator<std::pair<const value, intptr_t>>>
 | 
						|
 | 
						|
BTREE_TYPES(int32_t);
 | 
						|
BTREE_TYPES(int64_t);
 | 
						|
BTREE_TYPES(StdString);
 | 
						|
BTREE_TYPES(Cord);
 | 
						|
BTREE_TYPES(Time);
 | 
						|
 | 
						|
#define MY_BENCHMARK4(type, func)                                              \
 | 
						|
  void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \
 | 
						|
  BENCHMARK(BM_##type##_##func)
 | 
						|
 | 
						|
#define MY_BENCHMARK3(type)               \
 | 
						|
  MY_BENCHMARK4(type, Insert);            \
 | 
						|
  MY_BENCHMARK4(type, InsertSorted);      \
 | 
						|
  MY_BENCHMARK4(type, InsertEnd);         \
 | 
						|
  MY_BENCHMARK4(type, InsertSmall);       \
 | 
						|
  MY_BENCHMARK4(type, Lookup);            \
 | 
						|
  MY_BENCHMARK4(type, FullLookup);        \
 | 
						|
  MY_BENCHMARK4(type, Delete);            \
 | 
						|
  MY_BENCHMARK4(type, DeleteRange);       \
 | 
						|
  MY_BENCHMARK4(type, QueueAddRem);       \
 | 
						|
  MY_BENCHMARK4(type, MixedAddRem);       \
 | 
						|
  MY_BENCHMARK4(type, Fifo);              \
 | 
						|
  MY_BENCHMARK4(type, FwdIter);           \
 | 
						|
  MY_BENCHMARK4(type, InsertRangeRandom); \
 | 
						|
  MY_BENCHMARK4(type, InsertRangeSorted)
 | 
						|
 | 
						|
#define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \
 | 
						|
  MY_BENCHMARK3(stl_##type);                    \
 | 
						|
  MY_BENCHMARK3(stl_unordered_##type);          \
 | 
						|
  MY_BENCHMARK3(btree_256_##type)
 | 
						|
 | 
						|
#define MY_BENCHMARK2(type)                \
 | 
						|
  MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \
 | 
						|
  MY_BENCHMARK3(flat_hash_##type)
 | 
						|
 | 
						|
// Define MULTI_TESTING to see benchmarks for multi-containers also.
 | 
						|
//
 | 
						|
// You can use --copt=-DMULTI_TESTING.
 | 
						|
#ifdef MULTI_TESTING
 | 
						|
#define MY_BENCHMARK(type)                            \
 | 
						|
  MY_BENCHMARK2(set_##type);                          \
 | 
						|
  MY_BENCHMARK2(map_##type);                          \
 | 
						|
  MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \
 | 
						|
  MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type)
 | 
						|
#else
 | 
						|
#define MY_BENCHMARK(type)   \
 | 
						|
  MY_BENCHMARK2(set_##type); \
 | 
						|
  MY_BENCHMARK2(map_##type)
 | 
						|
#endif
 | 
						|
 | 
						|
MY_BENCHMARK(int32_t);
 | 
						|
MY_BENCHMARK(int64_t);
 | 
						|
MY_BENCHMARK(StdString);
 | 
						|
MY_BENCHMARK(Cord);
 | 
						|
MY_BENCHMARK(Time);
 | 
						|
 | 
						|
// Define a type whose size and cost of moving are independently customizable.
 | 
						|
// When sizeof(value_type) increases, we expect btree to no longer have as much
 | 
						|
// cache-locality advantage over STL. When cost of moving increases, we expect
 | 
						|
// btree to actually do more work than STL because it has to move values around
 | 
						|
// and STL doesn't have to.
 | 
						|
template <int Size, int Copies>
 | 
						|
struct BigType {
 | 
						|
  BigType() : BigType(0) {}
 | 
						|
  explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
 | 
						|
 | 
						|
  void Copy(const BigType& other) {
 | 
						|
    for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
 | 
						|
    // If Copies > Size, do extra copies.
 | 
						|
    for (int i = Size, idx = 0; i < Copies; ++i) {
 | 
						|
      int64_t tmp = other.values[idx];
 | 
						|
      benchmark::DoNotOptimize(tmp);
 | 
						|
      idx = idx + 1 == Size ? 0 : idx + 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BigType(const BigType& other) { Copy(other); }
 | 
						|
  BigType& operator=(const BigType& other) {
 | 
						|
    Copy(other);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare only the first Copies elements if Copies is less than Size.
 | 
						|
  bool operator<(const BigType& other) const {
 | 
						|
    return std::lexicographical_compare(
 | 
						|
        values.begin(), values.begin() + std::min(Size, Copies),
 | 
						|
        other.values.begin(), other.values.begin() + std::min(Size, Copies));
 | 
						|
  }
 | 
						|
  bool operator==(const BigType& other) const {
 | 
						|
    return std::equal(values.begin(), values.begin() + std::min(Size, Copies),
 | 
						|
                      other.values.begin());
 | 
						|
  }
 | 
						|
 | 
						|
  // Support absl::Hash.
 | 
						|
  template <typename State>
 | 
						|
  friend State AbslHashValue(State h, const BigType& b) {
 | 
						|
    for (int i = 0; i < Size && i < Copies; ++i)
 | 
						|
      h = State::combine(std::move(h), b.values[i]);
 | 
						|
    return h;
 | 
						|
  }
 | 
						|
 | 
						|
  std::array<int64_t, Size> values;
 | 
						|
};
 | 
						|
 | 
						|
#define BIG_TYPE_BENCHMARKS(SIZE, COPIES)                                     \
 | 
						|
  using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \
 | 
						|
  using stl_map_size##SIZE##copies##COPIES =                                  \
 | 
						|
      std::map<BigType<SIZE, COPIES>, intptr_t>;                              \
 | 
						|
  using stl_multiset_size##SIZE##copies##COPIES =                             \
 | 
						|
      std::multiset<BigType<SIZE, COPIES>>;                                   \
 | 
						|
  using stl_multimap_size##SIZE##copies##COPIES =                             \
 | 
						|
      std::multimap<BigType<SIZE, COPIES>, intptr_t>;                         \
 | 
						|
  using stl_unordered_set_size##SIZE##copies##COPIES =                        \
 | 
						|
      std::unordered_set<BigType<SIZE, COPIES>,                               \
 | 
						|
                         absl::Hash<BigType<SIZE, COPIES>>>;                  \
 | 
						|
  using stl_unordered_map_size##SIZE##copies##COPIES =                        \
 | 
						|
      std::unordered_map<BigType<SIZE, COPIES>, intptr_t,                     \
 | 
						|
                         absl::Hash<BigType<SIZE, COPIES>>>;                  \
 | 
						|
  using flat_hash_set_size##SIZE##copies##COPIES =                            \
 | 
						|
      flat_hash_set<BigType<SIZE, COPIES>>;                                   \
 | 
						|
  using flat_hash_map_size##SIZE##copies##COPIES =                            \
 | 
						|
      flat_hash_map<BigType<SIZE, COPIES>, intptr_t>;                         \
 | 
						|
  using stl_unordered_multiset_size##SIZE##copies##COPIES =                   \
 | 
						|
      std::unordered_multiset<BigType<SIZE, COPIES>,                          \
 | 
						|
                              absl::Hash<BigType<SIZE, COPIES>>>;             \
 | 
						|
  using stl_unordered_multimap_size##SIZE##copies##COPIES =                   \
 | 
						|
      std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t,                \
 | 
						|
                              absl::Hash<BigType<SIZE, COPIES>>>;             \
 | 
						|
  using btree_256_set_size##SIZE##copies##COPIES =                            \
 | 
						|
      btree_set<BigType<SIZE, COPIES>>;                                       \
 | 
						|
  using btree_256_map_size##SIZE##copies##COPIES =                            \
 | 
						|
      btree_map<BigType<SIZE, COPIES>, intptr_t>;                             \
 | 
						|
  using btree_256_multiset_size##SIZE##copies##COPIES =                       \
 | 
						|
      btree_multiset<BigType<SIZE, COPIES>>;                                  \
 | 
						|
  using btree_256_multimap_size##SIZE##copies##COPIES =                       \
 | 
						|
      btree_multimap<BigType<SIZE, COPIES>, intptr_t>;                        \
 | 
						|
  MY_BENCHMARK(size##SIZE##copies##COPIES)
 | 
						|
 | 
						|
// Define BIG_TYPE_TESTING to see benchmarks for more big types.
 | 
						|
//
 | 
						|
// You can use --copt=-DBIG_TYPE_TESTING.
 | 
						|
#ifndef NODESIZE_TESTING
 | 
						|
#ifdef BIG_TYPE_TESTING
 | 
						|
BIG_TYPE_BENCHMARKS(1, 4);
 | 
						|
BIG_TYPE_BENCHMARKS(4, 1);
 | 
						|
BIG_TYPE_BENCHMARKS(4, 4);
 | 
						|
BIG_TYPE_BENCHMARKS(1, 8);
 | 
						|
BIG_TYPE_BENCHMARKS(8, 1);
 | 
						|
BIG_TYPE_BENCHMARKS(8, 8);
 | 
						|
BIG_TYPE_BENCHMARKS(1, 16);
 | 
						|
BIG_TYPE_BENCHMARKS(16, 1);
 | 
						|
BIG_TYPE_BENCHMARKS(16, 16);
 | 
						|
BIG_TYPE_BENCHMARKS(1, 32);
 | 
						|
BIG_TYPE_BENCHMARKS(32, 1);
 | 
						|
BIG_TYPE_BENCHMARKS(32, 32);
 | 
						|
#else
 | 
						|
BIG_TYPE_BENCHMARKS(32, 32);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Benchmark using unique_ptrs to large value types. In order to be able to use
 | 
						|
// the same benchmark code as the other types, use a type that holds a
 | 
						|
// unique_ptr and has a copy constructor.
 | 
						|
template <int Size>
 | 
						|
struct BigTypePtr {
 | 
						|
  BigTypePtr() : BigTypePtr(0) {}
 | 
						|
  explicit BigTypePtr(int x) {
 | 
						|
    ptr = absl::make_unique<BigType<Size, Size>>(x);
 | 
						|
  }
 | 
						|
  BigTypePtr(const BigTypePtr& other) {
 | 
						|
    ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
 | 
						|
  }
 | 
						|
  BigTypePtr(BigTypePtr&& other) noexcept = default;
 | 
						|
  BigTypePtr& operator=(const BigTypePtr& other) {
 | 
						|
    ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
 | 
						|
  }
 | 
						|
  BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
 | 
						|
 | 
						|
  bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
 | 
						|
  bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
 | 
						|
 | 
						|
  std::unique_ptr<BigType<Size, Size>> ptr;
 | 
						|
};
 | 
						|
 | 
						|
template <int Size>
 | 
						|
double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) {
 | 
						|
  const double bytes_used =
 | 
						|
      b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
 | 
						|
  const double bytes_per_value = bytes_used / b.size();
 | 
						|
  BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
 | 
						|
  return bytes_per_value;
 | 
						|
}
 | 
						|
template <int Size>
 | 
						|
double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) {
 | 
						|
  const double bytes_used =
 | 
						|
      b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
 | 
						|
  const double bytes_per_value = bytes_used / b.size();
 | 
						|
  BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
 | 
						|
  return bytes_per_value;
 | 
						|
}
 | 
						|
 | 
						|
#define BIG_TYPE_PTR_BENCHMARKS(SIZE)                                          \
 | 
						|
  using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \
 | 
						|
  using stl_map_size##SIZE##copies##SIZE##ptr =                                \
 | 
						|
      std::map<int, BigType<SIZE, SIZE>>;                                      \
 | 
						|
  using stl_unordered_set_size##SIZE##copies##SIZE##ptr =                      \
 | 
						|
      std::unordered_set<BigType<SIZE, SIZE>,                                  \
 | 
						|
                         absl::Hash<BigType<SIZE, SIZE>>>;                     \
 | 
						|
  using stl_unordered_map_size##SIZE##copies##SIZE##ptr =                      \
 | 
						|
      std::unordered_map<int, BigType<SIZE, SIZE>>;                            \
 | 
						|
  using flat_hash_set_size##SIZE##copies##SIZE##ptr =                          \
 | 
						|
      flat_hash_set<BigType<SIZE, SIZE>>;                                      \
 | 
						|
  using flat_hash_map_size##SIZE##copies##SIZE##ptr =                          \
 | 
						|
      flat_hash_map<int, BigTypePtr<SIZE>>;                                    \
 | 
						|
  using btree_256_set_size##SIZE##copies##SIZE##ptr =                          \
 | 
						|
      btree_set<BigTypePtr<SIZE>>;                                             \
 | 
						|
  using btree_256_map_size##SIZE##copies##SIZE##ptr =                          \
 | 
						|
      btree_map<int, BigTypePtr<SIZE>>;                                        \
 | 
						|
  MY_BENCHMARK3(stl_set_size##SIZE##copies##SIZE##ptr);                        \
 | 
						|
  MY_BENCHMARK3(stl_unordered_set_size##SIZE##copies##SIZE##ptr);              \
 | 
						|
  MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr);                  \
 | 
						|
  MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr);                  \
 | 
						|
  MY_BENCHMARK3(stl_map_size##SIZE##copies##SIZE##ptr);                        \
 | 
						|
  MY_BENCHMARK3(stl_unordered_map_size##SIZE##copies##SIZE##ptr);              \
 | 
						|
  MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr);                  \
 | 
						|
  MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr)
 | 
						|
 | 
						|
BIG_TYPE_PTR_BENCHMARKS(32);
 | 
						|
 | 
						|
}  // namespace
 | 
						|
}  // namespace container_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 |