git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			572 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			572 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
 | |
| // symbols from arbitrary system and other headers, since it may be built
 | |
| // with different flags from other targets, using different levels of
 | |
| // optimization, potentially introducing ODR violations.
 | |
| 
 | |
| #include "absl/random/internal/randen_hwaes.h"
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "absl/base/attributes.h"
 | |
| #include "absl/random/internal/platform.h"
 | |
| #include "absl/random/internal/randen_traits.h"
 | |
| 
 | |
| // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
 | |
| // a hardware accelerated implementation of randen, or whether it
 | |
| // will contain stubs that exit the process.
 | |
| #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
 | |
| // The platform.h directives are sufficient to indicate whether
 | |
| // we should build accelerated implementations for x86.
 | |
| #if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH)
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| #endif
 | |
| #elif defined(ABSL_ARCH_PPC)
 | |
| // The platform.h directives are sufficient to indicate whether
 | |
| // we should build accelerated implementations for PPC.
 | |
| //
 | |
| // NOTE: This has mostly been tested on 64-bit Power variants,
 | |
| // and not embedded cpus such as powerpc32-8540
 | |
| #if ABSL_HAVE_ACCELERATED_AES
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| #endif
 | |
| #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
 | |
| // ARM is somewhat more complicated. We might support crypto natively...
 | |
| #if ABSL_HAVE_ACCELERATED_AES || \
 | |
|     (defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO))
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| 
 | |
| #elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \
 | |
|     (defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9)
 | |
| // ...or, on GCC, we can use an ASM directive to
 | |
| // instruct the assember to allow crypto instructions.
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| #define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1
 | |
| #endif
 | |
| #else
 | |
| // HWAES is unsupported by these architectures / platforms:
 | |
| //   __myriad2__
 | |
| //   __mips__
 | |
| //
 | |
| // Other architectures / platforms are unknown.
 | |
| //
 | |
| // See the Abseil documentation on supported macros at:
 | |
| // https://abseil.io/docs/cpp/platforms/macros
 | |
| #endif
 | |
| 
 | |
| #if !defined(ABSL_RANDEN_HWAES_IMPL)
 | |
| // No accelerated implementation is supported.
 | |
| // The RandenHwAes functions are stubs that print an error and exit.
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace random_internal {
 | |
| 
 | |
| // No accelerated implementation.
 | |
| bool HasRandenHwAesImplementation() { return false; }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| const void* RandenHwAes::GetKeys() {
 | |
|   // Attempted to dispatch to an unsupported dispatch target.
 | |
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
 | |
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
 | |
|   exit(1);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void RandenHwAes::Absorb(const void*, void*) {
 | |
|   // Attempted to dispatch to an unsupported dispatch target.
 | |
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
 | |
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void RandenHwAes::Generate(const void*, void*) {
 | |
|   // Attempted to dispatch to an unsupported dispatch target.
 | |
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
 | |
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| }  // namespace random_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #else  // defined(ABSL_RANDEN_HWAES_IMPL)
 | |
| //
 | |
| // Accelerated implementations are supported.
 | |
| // We need the per-architecture includes and defines.
 | |
| //
 | |
| namespace {
 | |
| 
 | |
| using absl::random_internal::RandenTraits;
 | |
| 
 | |
| // Randen operates on 128-bit vectors.
 | |
| struct alignas(16) u64x2 {
 | |
|   uint64_t data[2];
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // TARGET_CRYPTO defines a crypto attribute for each architecture.
 | |
| //
 | |
| // NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
 | |
| #if (defined(__clang__) || defined(__GNUC__))
 | |
| #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
 | |
| #define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
 | |
| #elif defined(ABSL_ARCH_PPC)
 | |
| #define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
 | |
| #else
 | |
| #define ABSL_TARGET_CRYPTO
 | |
| #endif
 | |
| #else
 | |
| #define ABSL_TARGET_CRYPTO
 | |
| #endif
 | |
| 
 | |
| #if defined(ABSL_ARCH_PPC)
 | |
| // NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
 | |
| // however the PPC altivec vector registers (and thus the AES instructions)
 | |
| // always operate in big-endian mode.
 | |
| 
 | |
| #include <altivec.h>
 | |
| // <altivec.h> #defines vector __vector; in C++, this is bad form.
 | |
| #undef vector
 | |
| 
 | |
| // Rely on the PowerPC AltiVec vector operations for accelerated AES
 | |
| // instructions. GCC support of the PPC vector types is described in:
 | |
| // https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
 | |
| //
 | |
| // Already provides operator^=.
 | |
| using Vector128 = __vector unsigned long long;  // NOLINT(runtime/int)
 | |
| 
 | |
| namespace {
 | |
| inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
 | |
|   // Reverses the bytes of the vector.
 | |
|   const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
 | |
|                                        7,  6,  5,  4,  3,  2,  1, 0};
 | |
|   return vec_perm(v, v, perm);
 | |
| }
 | |
| 
 | |
| // WARNING: these load/store in native byte order. It is OK to load and then
 | |
| // store an unchanged vector, but interpreting the bits as a number or input
 | |
| // to AES will have undefined results.
 | |
| inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
 | |
|   return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
 | |
|   vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
 | |
| }
 | |
| 
 | |
| // One round of AES. "round_key" is a public constant for breaking the
 | |
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | |
| inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
 | |
|                                              const Vector128& round_key) {
 | |
|   return Vector128(__builtin_crypto_vcipher(state, round_key));
 | |
| }
 | |
| 
 | |
| // Enables native loads in the round loop by pre-swapping.
 | |
| inline ABSL_TARGET_CRYPTO void SwapEndian(u64x2* state) {
 | |
|   for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
 | |
|     Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
 | |
| 
 | |
| // This asm directive will cause the file to be compiled with crypto extensions
 | |
| // whether or not the cpu-architecture supports it.
 | |
| #if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE
 | |
| asm(".arch_extension  crypto\n");
 | |
| 
 | |
| // Override missing defines.
 | |
| #if !defined(__ARM_NEON)
 | |
| #define __ARM_NEON 1
 | |
| #endif
 | |
| 
 | |
| #if !defined(__ARM_FEATURE_CRYPTO)
 | |
| #define __ARM_FEATURE_CRYPTO 1
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
 | |
| // uint8x16_t is the user alias for underlying __simd128_uint8_t type.
 | |
| // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
 | |
| //
 | |
| // <arm_neon> defines the following
 | |
| //
 | |
| // typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
 | |
| // typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
 | |
| // typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
 | |
| //
 | |
| // vld1q_v
 | |
| // vst1q_v
 | |
| // vaeseq_v
 | |
| // vaesmcq_v
 | |
| #include <arm_neon.h>
 | |
| 
 | |
| // Already provides operator^=.
 | |
| using Vector128 = uint8x16_t;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
 | |
|   return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
 | |
|   vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
 | |
| }
 | |
| 
 | |
| // One round of AES. "round_key" is a public constant for breaking the
 | |
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | |
| inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
 | |
|                                              const Vector128& round_key) {
 | |
|   // It is important to always use the full round function - omitting the
 | |
|   // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
 | |
|   // and does not help because we never decrypt.
 | |
|   //
 | |
|   // Note that ARM divides AES instructions differently than x86 / PPC,
 | |
|   // And we need to skip the first AddRoundKey step and add an extra
 | |
|   // AddRoundKey step to the end. Lucky for us this is just XOR.
 | |
|   return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
 | |
| // On x86 we rely on the aesni instructions
 | |
| #include <wmmintrin.h>
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Vector128 class is only wrapper for __m128i, benchmark indicates that it's
 | |
| // faster than using __m128i directly.
 | |
| class Vector128 {
 | |
|  public:
 | |
|   // Convert from/to intrinsics.
 | |
|   inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {}
 | |
| 
 | |
|   inline __m128i data() const { return data_; }
 | |
| 
 | |
|   inline Vector128& operator^=(const Vector128& other) {
 | |
|     data_ = _mm_xor_si128(data_, other.data());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   __m128i data_;
 | |
| };
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
 | |
|   return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
 | |
|   _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data());
 | |
| }
 | |
| 
 | |
| // One round of AES. "round_key" is a public constant for breaking the
 | |
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | |
| inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
 | |
|                                              const Vector128& round_key) {
 | |
|   // It is important to always use the full round function - omitting the
 | |
|   // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
 | |
|   // and does not help because we never decrypt.
 | |
|   return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wunknown-pragmas"
 | |
| #endif
 | |
| 
 | |
| // At this point, all of the platform-specific features have been defined /
 | |
| // implemented.
 | |
| //
 | |
| // REQUIRES: using Vector128 = ...
 | |
| // REQUIRES: Vector128 Vector128Load(void*) {...}
 | |
| // REQUIRES: void Vector128Store(Vector128, void*) {...}
 | |
| // REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
 | |
| // REQUIRES: void SwapEndian(uint64_t*) {...}
 | |
| //
 | |
| // PROVIDES: absl::random_internal::RandenHwAes::Absorb
 | |
| // PROVIDES: absl::random_internal::RandenHwAes::Generate
 | |
| namespace {
 | |
| 
 | |
| // Block shuffles applies a shuffle to the entire state between AES rounds.
 | |
| // Improved odd-even shuffle from "New criterion for diffusion property".
 | |
| inline ABSL_TARGET_CRYPTO void BlockShuffle(u64x2* state) {
 | |
|   static_assert(RandenTraits::kFeistelBlocks == 16,
 | |
|                 "Expecting 16 FeistelBlocks.");
 | |
| 
 | |
|   constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
 | |
|       7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
 | |
| 
 | |
|   const Vector128 v0 = Vector128Load(state + shuffle[0]);
 | |
|   const Vector128 v1 = Vector128Load(state + shuffle[1]);
 | |
|   const Vector128 v2 = Vector128Load(state + shuffle[2]);
 | |
|   const Vector128 v3 = Vector128Load(state + shuffle[3]);
 | |
|   const Vector128 v4 = Vector128Load(state + shuffle[4]);
 | |
|   const Vector128 v5 = Vector128Load(state + shuffle[5]);
 | |
|   const Vector128 v6 = Vector128Load(state + shuffle[6]);
 | |
|   const Vector128 v7 = Vector128Load(state + shuffle[7]);
 | |
|   const Vector128 w0 = Vector128Load(state + shuffle[8]);
 | |
|   const Vector128 w1 = Vector128Load(state + shuffle[9]);
 | |
|   const Vector128 w2 = Vector128Load(state + shuffle[10]);
 | |
|   const Vector128 w3 = Vector128Load(state + shuffle[11]);
 | |
|   const Vector128 w4 = Vector128Load(state + shuffle[12]);
 | |
|   const Vector128 w5 = Vector128Load(state + shuffle[13]);
 | |
|   const Vector128 w6 = Vector128Load(state + shuffle[14]);
 | |
|   const Vector128 w7 = Vector128Load(state + shuffle[15]);
 | |
| 
 | |
|   Vector128Store(v0, state + 0);
 | |
|   Vector128Store(v1, state + 1);
 | |
|   Vector128Store(v2, state + 2);
 | |
|   Vector128Store(v3, state + 3);
 | |
|   Vector128Store(v4, state + 4);
 | |
|   Vector128Store(v5, state + 5);
 | |
|   Vector128Store(v6, state + 6);
 | |
|   Vector128Store(v7, state + 7);
 | |
|   Vector128Store(w0, state + 8);
 | |
|   Vector128Store(w1, state + 9);
 | |
|   Vector128Store(w2, state + 10);
 | |
|   Vector128Store(w3, state + 11);
 | |
|   Vector128Store(w4, state + 12);
 | |
|   Vector128Store(w5, state + 13);
 | |
|   Vector128Store(w6, state + 14);
 | |
|   Vector128Store(w7, state + 15);
 | |
| }
 | |
| 
 | |
| // Feistel round function using two AES subrounds. Very similar to F()
 | |
| // from Simpira v2, but with independent subround keys. Uses 17 AES rounds
 | |
| // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
 | |
| // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
 | |
| // XORs are 'free' (included in the second AES instruction).
 | |
| inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
 | |
|     u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
 | |
|   static_assert(RandenTraits::kFeistelBlocks == 16,
 | |
|                 "Expecting 16 FeistelBlocks.");
 | |
| 
 | |
|   // MSVC does a horrible job at unrolling loops.
 | |
|   // So we unroll the loop by hand to improve the performance.
 | |
|   const Vector128 s0 = Vector128Load(state + 0);
 | |
|   const Vector128 s1 = Vector128Load(state + 1);
 | |
|   const Vector128 s2 = Vector128Load(state + 2);
 | |
|   const Vector128 s3 = Vector128Load(state + 3);
 | |
|   const Vector128 s4 = Vector128Load(state + 4);
 | |
|   const Vector128 s5 = Vector128Load(state + 5);
 | |
|   const Vector128 s6 = Vector128Load(state + 6);
 | |
|   const Vector128 s7 = Vector128Load(state + 7);
 | |
|   const Vector128 s8 = Vector128Load(state + 8);
 | |
|   const Vector128 s9 = Vector128Load(state + 9);
 | |
|   const Vector128 s10 = Vector128Load(state + 10);
 | |
|   const Vector128 s11 = Vector128Load(state + 11);
 | |
|   const Vector128 s12 = Vector128Load(state + 12);
 | |
|   const Vector128 s13 = Vector128Load(state + 13);
 | |
|   const Vector128 s14 = Vector128Load(state + 14);
 | |
|   const Vector128 s15 = Vector128Load(state + 15);
 | |
| 
 | |
|   // Encode even blocks with keys.
 | |
|   const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
 | |
|   const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
 | |
|   const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
 | |
|   const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
 | |
|   const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
 | |
|   const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
 | |
|   const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
 | |
|   const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
 | |
| 
 | |
|   // Encode odd blocks with even output from above.
 | |
|   const Vector128 o1 = AesRound(e0, s1);
 | |
|   const Vector128 o3 = AesRound(e2, s3);
 | |
|   const Vector128 o5 = AesRound(e4, s5);
 | |
|   const Vector128 o7 = AesRound(e6, s7);
 | |
|   const Vector128 o9 = AesRound(e8, s9);
 | |
|   const Vector128 o11 = AesRound(e10, s11);
 | |
|   const Vector128 o13 = AesRound(e12, s13);
 | |
|   const Vector128 o15 = AesRound(e14, s15);
 | |
| 
 | |
|   // Store odd blocks. (These will be shuffled later).
 | |
|   Vector128Store(o1, state + 1);
 | |
|   Vector128Store(o3, state + 3);
 | |
|   Vector128Store(o5, state + 5);
 | |
|   Vector128Store(o7, state + 7);
 | |
|   Vector128Store(o9, state + 9);
 | |
|   Vector128Store(o11, state + 11);
 | |
|   Vector128Store(o13, state + 13);
 | |
|   Vector128Store(o15, state + 15);
 | |
| 
 | |
|   return keys + 8;
 | |
| }
 | |
| 
 | |
| // Cryptographic permutation based via type-2 Generalized Feistel Network.
 | |
| // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
 | |
| // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
 | |
| // of Simpira v2, but more efficient than its generic construction for b=16.
 | |
| inline ABSL_TARGET_CRYPTO void Permute(
 | |
|     u64x2* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
 | |
|   // (Successfully unrolled; the first iteration jumps into the second half)
 | |
| #ifdef __clang__
 | |
| #pragma clang loop unroll_count(2)
 | |
| #endif
 | |
|   for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
 | |
|     keys = FeistelRound(state, keys);
 | |
|     BlockShuffle(state);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace random_internal {
 | |
| 
 | |
| bool HasRandenHwAesImplementation() { return true; }
 | |
| 
 | |
| const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
 | |
|   // Round keys for one AES per Feistel round and branch.
 | |
|   // The canonical implementation uses first digits of Pi.
 | |
| #if defined(ABSL_ARCH_PPC)
 | |
|   return kRandenRoundKeysBE;
 | |
| #else
 | |
|   return kRandenRoundKeys;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
 | |
|                                             void* state_void) {
 | |
|   static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1,
 | |
|                 "Unexpected Randen kCapacityBlocks");
 | |
|   static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16,
 | |
|                 "Unexpected Randen kStateBlocks");
 | |
| 
 | |
|   auto* state =
 | |
|       reinterpret_cast<u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(state_void);
 | |
|   const auto* seed =
 | |
|       reinterpret_cast<const u64x2 * ABSL_RANDOM_INTERNAL_RESTRICT>(seed_void);
 | |
| 
 | |
|   Vector128 b1 = Vector128Load(state + 1);
 | |
|   b1 ^= Vector128Load(seed + 0);
 | |
|   Vector128Store(b1, state + 1);
 | |
| 
 | |
|   Vector128 b2 = Vector128Load(state + 2);
 | |
|   b2 ^= Vector128Load(seed + 1);
 | |
|   Vector128Store(b2, state + 2);
 | |
| 
 | |
|   Vector128 b3 = Vector128Load(state + 3);
 | |
|   b3 ^= Vector128Load(seed + 2);
 | |
|   Vector128Store(b3, state + 3);
 | |
| 
 | |
|   Vector128 b4 = Vector128Load(state + 4);
 | |
|   b4 ^= Vector128Load(seed + 3);
 | |
|   Vector128Store(b4, state + 4);
 | |
| 
 | |
|   Vector128 b5 = Vector128Load(state + 5);
 | |
|   b5 ^= Vector128Load(seed + 4);
 | |
|   Vector128Store(b5, state + 5);
 | |
| 
 | |
|   Vector128 b6 = Vector128Load(state + 6);
 | |
|   b6 ^= Vector128Load(seed + 5);
 | |
|   Vector128Store(b6, state + 6);
 | |
| 
 | |
|   Vector128 b7 = Vector128Load(state + 7);
 | |
|   b7 ^= Vector128Load(seed + 6);
 | |
|   Vector128Store(b7, state + 7);
 | |
| 
 | |
|   Vector128 b8 = Vector128Load(state + 8);
 | |
|   b8 ^= Vector128Load(seed + 7);
 | |
|   Vector128Store(b8, state + 8);
 | |
| 
 | |
|   Vector128 b9 = Vector128Load(state + 9);
 | |
|   b9 ^= Vector128Load(seed + 8);
 | |
|   Vector128Store(b9, state + 9);
 | |
| 
 | |
|   Vector128 b10 = Vector128Load(state + 10);
 | |
|   b10 ^= Vector128Load(seed + 9);
 | |
|   Vector128Store(b10, state + 10);
 | |
| 
 | |
|   Vector128 b11 = Vector128Load(state + 11);
 | |
|   b11 ^= Vector128Load(seed + 10);
 | |
|   Vector128Store(b11, state + 11);
 | |
| 
 | |
|   Vector128 b12 = Vector128Load(state + 12);
 | |
|   b12 ^= Vector128Load(seed + 11);
 | |
|   Vector128Store(b12, state + 12);
 | |
| 
 | |
|   Vector128 b13 = Vector128Load(state + 13);
 | |
|   b13 ^= Vector128Load(seed + 12);
 | |
|   Vector128Store(b13, state + 13);
 | |
| 
 | |
|   Vector128 b14 = Vector128Load(state + 14);
 | |
|   b14 ^= Vector128Load(seed + 13);
 | |
|   Vector128Store(b14, state + 14);
 | |
| 
 | |
|   Vector128 b15 = Vector128Load(state + 15);
 | |
|   b15 ^= Vector128Load(seed + 14);
 | |
|   Vector128Store(b15, state + 15);
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void,
 | |
|                                               void* state_void) {
 | |
|   static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128),
 | |
|                 "Capacity mismatch");
 | |
| 
 | |
|   auto* state = reinterpret_cast<u64x2*>(state_void);
 | |
|   const auto* keys = reinterpret_cast<const u64x2*>(keys_void);
 | |
| 
 | |
|   const Vector128 prev_inner = Vector128Load(state);
 | |
| 
 | |
|   SwapEndian(state);
 | |
| 
 | |
|   Permute(state, keys);
 | |
| 
 | |
|   SwapEndian(state);
 | |
| 
 | |
|   // Ensure backtracking resistance.
 | |
|   Vector128 inner = Vector128Load(state);
 | |
|   inner ^= prev_inner;
 | |
|   Vector128Store(inner, state);
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| }  // namespace random_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // (ABSL_RANDEN_HWAES_IMPL)
 |