git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			130 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2019 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#ifndef ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
 | 
						|
#define ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include "absl/base/config.h"
 | 
						|
#include "absl/base/macros.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace base_internal {
 | 
						|
 | 
						|
// ExponentialBiased provides a small and fast random number generator for a
 | 
						|
// rounded exponential distribution. This generator manages very little state,
 | 
						|
// and imposes no synchronization overhead. This makes it useful in specialized
 | 
						|
// scenarios requiring minimum overhead, such as stride based periodic sampling.
 | 
						|
//
 | 
						|
// ExponentialBiased provides two closely related functions, GetSkipCount() and
 | 
						|
// GetStride(), both returning a rounded integer defining a number of events
 | 
						|
// required before some event with a given mean probability occurs.
 | 
						|
//
 | 
						|
// The distribution is useful to generate a random wait time or some periodic
 | 
						|
// event with a given mean probability. For example, if an action is supposed to
 | 
						|
// happen on average once every 'N' events, then we can get a random 'stride'
 | 
						|
// counting down how long before the event to happen. For example, if we'd want
 | 
						|
// to sample one in every 1000 'Frobber' calls, our code could look like this:
 | 
						|
//
 | 
						|
//   Frobber::Frobber() {
 | 
						|
//     stride_ = exponential_biased_.GetStride(1000);
 | 
						|
//   }
 | 
						|
//
 | 
						|
//   void Frobber::Frob(int arg) {
 | 
						|
//     if (--stride == 0) {
 | 
						|
//       SampleFrob(arg);
 | 
						|
//       stride_ = exponential_biased_.GetStride(1000);
 | 
						|
//     }
 | 
						|
//     ...
 | 
						|
//   }
 | 
						|
//
 | 
						|
// The rounding of the return value creates a bias, especially for smaller means
 | 
						|
// where the distribution of the fraction is not evenly distributed. We correct
 | 
						|
// this bias by tracking the fraction we rounded up or down on each iteration,
 | 
						|
// effectively tracking the distance between the cumulative value, and the
 | 
						|
// rounded cumulative value. For example, given a mean of 2:
 | 
						|
//
 | 
						|
//   raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923
 | 
						|
//   raw = 0.14624, cumulative = 1.77701, rounded = 2, bias =  0.14624
 | 
						|
//   raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805
 | 
						|
//   raw = 0.24206, cumulative = 6.95101, rounded = 7, bias =  0.24206
 | 
						|
//   etc...
 | 
						|
//
 | 
						|
// Adjusting with rounding bias is relatively trivial:
 | 
						|
//
 | 
						|
//    double value = bias_ + exponential_distribution(mean)();
 | 
						|
//    double rounded_value = std::round(value);
 | 
						|
//    bias_ = value - rounded_value;
 | 
						|
//    return rounded_value;
 | 
						|
//
 | 
						|
// This class is thread-compatible.
 | 
						|
class ExponentialBiased {
 | 
						|
 public:
 | 
						|
  // The number of bits set by NextRandom.
 | 
						|
  static constexpr int kPrngNumBits = 48;
 | 
						|
 | 
						|
  // `GetSkipCount()` returns the number of events to skip before some chosen
 | 
						|
  // event happens. For example, randomly tossing a coin, we will on average
 | 
						|
  // throw heads once before we get tails. We can simulate random coin tosses
 | 
						|
  // using GetSkipCount() as:
 | 
						|
  //
 | 
						|
  //   ExponentialBiased eb;
 | 
						|
  //   for (...) {
 | 
						|
  //     int number_of_heads_before_tail = eb.GetSkipCount(1);
 | 
						|
  //     for (int flips = 0; flips < number_of_heads_before_tail; ++flips) {
 | 
						|
  //       printf("head...");
 | 
						|
  //     }
 | 
						|
  //     printf("tail\n");
 | 
						|
  //   }
 | 
						|
  //
 | 
						|
  int64_t GetSkipCount(int64_t mean);
 | 
						|
 | 
						|
  // GetStride() returns the number of events required for a specific event to
 | 
						|
  // happen. See the class comments for a usage example. `GetStride()` is
 | 
						|
  // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or
 | 
						|
  // `GetSkipCount()` depends mostly on what best fits the use case.
 | 
						|
  int64_t GetStride(int64_t mean);
 | 
						|
 | 
						|
  // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
 | 
						|
  //
 | 
						|
  // This is public to enable testing.
 | 
						|
  static uint64_t NextRandom(uint64_t rnd);
 | 
						|
 | 
						|
 private:
 | 
						|
  void Initialize();
 | 
						|
 | 
						|
  uint64_t rng_{0};
 | 
						|
  double bias_{0};
 | 
						|
  bool initialized_{false};
 | 
						|
};
 | 
						|
 | 
						|
// Returns the next prng value.
 | 
						|
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
 | 
						|
// This is the lrand64 generator.
 | 
						|
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
 | 
						|
  const uint64_t prng_mult = uint64_t{0x5DEECE66D};
 | 
						|
  const uint64_t prng_add = 0xB;
 | 
						|
  const uint64_t prng_mod_power = 48;
 | 
						|
  const uint64_t prng_mod_mask =
 | 
						|
      ~((~static_cast<uint64_t>(0)) << prng_mod_power);
 | 
						|
  return (prng_mult * rnd + prng_add) & prng_mod_mask;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace base_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
 |