git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			271 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			271 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#ifndef ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
 | 
						|
#define ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <istream>
 | 
						|
#include <limits>
 | 
						|
#include <ostream>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "absl/random/internal/iostream_state_saver.h"
 | 
						|
#include "absl/random/uniform_real_distribution.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
// absl::zipf_distribution produces random integer-values in the range [0, k],
 | 
						|
// distributed according to the discrete probability function:
 | 
						|
//
 | 
						|
//  P(x) = (v + x) ^ -q
 | 
						|
//
 | 
						|
// The parameter `v` must be greater than 0 and the parameter `q` must be
 | 
						|
// greater than 1. If either of these parameters take invalid values then the
 | 
						|
// behavior is undefined.
 | 
						|
//
 | 
						|
// IntType is the result_type generated by the generator. It must be of integral
 | 
						|
// type; a static_assert ensures this is the case.
 | 
						|
//
 | 
						|
// The implementation is based on W.Hormann, G.Derflinger:
 | 
						|
//
 | 
						|
// "Rejection-Inversion to Generate Variates from Monotone Discrete
 | 
						|
// Distributions"
 | 
						|
//
 | 
						|
// http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz
 | 
						|
//
 | 
						|
template <typename IntType = int>
 | 
						|
class zipf_distribution {
 | 
						|
 public:
 | 
						|
  using result_type = IntType;
 | 
						|
 | 
						|
  class param_type {
 | 
						|
   public:
 | 
						|
    using distribution_type = zipf_distribution;
 | 
						|
 | 
						|
    // Preconditions: k > 0, v > 0, q > 1
 | 
						|
    // The precondidtions are validated when NDEBUG is not defined via
 | 
						|
    // a pair of assert() directives.
 | 
						|
    // If NDEBUG is defined and either or both of these parameters take invalid
 | 
						|
    // values, the behavior of the class is undefined.
 | 
						|
    explicit param_type(result_type k = (std::numeric_limits<IntType>::max)(),
 | 
						|
                        double q = 2.0, double v = 1.0);
 | 
						|
 | 
						|
    result_type k() const { return k_; }
 | 
						|
    double q() const { return q_; }
 | 
						|
    double v() const { return v_; }
 | 
						|
 | 
						|
    friend bool operator==(const param_type& a, const param_type& b) {
 | 
						|
      return a.k_ == b.k_ && a.q_ == b.q_ && a.v_ == b.v_;
 | 
						|
    }
 | 
						|
    friend bool operator!=(const param_type& a, const param_type& b) {
 | 
						|
      return !(a == b);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    friend class zipf_distribution;
 | 
						|
    inline double h(double x) const;
 | 
						|
    inline double hinv(double x) const;
 | 
						|
    inline double compute_s() const;
 | 
						|
    inline double pow_negative_q(double x) const;
 | 
						|
 | 
						|
    // Parameters here are exactly the same as the parameters of Algorithm ZRI
 | 
						|
    // in the paper.
 | 
						|
    IntType k_;
 | 
						|
    double q_;
 | 
						|
    double v_;
 | 
						|
 | 
						|
    double one_minus_q_;  // 1-q
 | 
						|
    double s_;
 | 
						|
    double one_minus_q_inv_;  // 1 / 1-q
 | 
						|
    double hxm_;              // h(k + 0.5)
 | 
						|
    double hx0_minus_hxm_;    // h(x0) - h(k + 0.5)
 | 
						|
 | 
						|
    static_assert(std::is_integral<IntType>::value,
 | 
						|
                  "Class-template absl::zipf_distribution<> must be "
 | 
						|
                  "parameterized using an integral type.");
 | 
						|
  };
 | 
						|
 | 
						|
  zipf_distribution()
 | 
						|
      : zipf_distribution((std::numeric_limits<IntType>::max)()) {}
 | 
						|
 | 
						|
  explicit zipf_distribution(result_type k, double q = 2.0, double v = 1.0)
 | 
						|
      : param_(k, q, v) {}
 | 
						|
 | 
						|
  explicit zipf_distribution(const param_type& p) : param_(p) {}
 | 
						|
 | 
						|
  void reset() {}
 | 
						|
 | 
						|
  template <typename URBG>
 | 
						|
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | 
						|
    return (*this)(g, param_);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename URBG>
 | 
						|
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | 
						|
                         const param_type& p);
 | 
						|
 | 
						|
  result_type k() const { return param_.k(); }
 | 
						|
  double q() const { return param_.q(); }
 | 
						|
  double v() const { return param_.v(); }
 | 
						|
 | 
						|
  param_type param() const { return param_; }
 | 
						|
  void param(const param_type& p) { param_ = p; }
 | 
						|
 | 
						|
  result_type(min)() const { return 0; }
 | 
						|
  result_type(max)() const { return k(); }
 | 
						|
 | 
						|
  friend bool operator==(const zipf_distribution& a,
 | 
						|
                         const zipf_distribution& b) {
 | 
						|
    return a.param_ == b.param_;
 | 
						|
  }
 | 
						|
  friend bool operator!=(const zipf_distribution& a,
 | 
						|
                         const zipf_distribution& b) {
 | 
						|
    return a.param_ != b.param_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  param_type param_;
 | 
						|
};
 | 
						|
 | 
						|
// --------------------------------------------------------------------------
 | 
						|
// Implementation details follow
 | 
						|
// --------------------------------------------------------------------------
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
zipf_distribution<IntType>::param_type::param_type(
 | 
						|
    typename zipf_distribution<IntType>::result_type k, double q, double v)
 | 
						|
    : k_(k), q_(q), v_(v), one_minus_q_(1 - q) {
 | 
						|
  assert(q > 1);
 | 
						|
  assert(v > 0);
 | 
						|
  assert(k > 0);
 | 
						|
  one_minus_q_inv_ = 1 / one_minus_q_;
 | 
						|
 | 
						|
  // Setup for the ZRI algorithm (pg 17 of the paper).
 | 
						|
  // Compute: h(i max) => h(k + 0.5)
 | 
						|
  constexpr double kMax = 18446744073709549568.0;
 | 
						|
  double kd = static_cast<double>(k);
 | 
						|
  // TODO(absl-team): Determine if this check is needed, and if so, add a test
 | 
						|
  // that fails for k > kMax
 | 
						|
  if (kd > kMax) {
 | 
						|
    // Ensure that our maximum value is capped to a value which will
 | 
						|
    // round-trip back through double.
 | 
						|
    kd = kMax;
 | 
						|
  }
 | 
						|
  hxm_ = h(kd + 0.5);
 | 
						|
 | 
						|
  // Compute: h(0)
 | 
						|
  const bool use_precomputed = (v == 1.0 && q == 2.0);
 | 
						|
  const double h0x5 = use_precomputed ? (-1.0 / 1.5)  // exp(-log(1.5))
 | 
						|
                                      : h(0.5);
 | 
						|
  const double elogv_q = (v_ == 1.0) ? 1 : pow_negative_q(v_);
 | 
						|
 | 
						|
  // h(0) = h(0.5) - exp(log(v) * -q)
 | 
						|
  hx0_minus_hxm_ = (h0x5 - elogv_q) - hxm_;
 | 
						|
 | 
						|
  // And s
 | 
						|
  s_ = use_precomputed ? 0.46153846153846123 : compute_s();
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
double zipf_distribution<IntType>::param_type::h(double x) const {
 | 
						|
  // std::exp(one_minus_q_ * std::log(v_ + x)) * one_minus_q_inv_;
 | 
						|
  x += v_;
 | 
						|
  return (one_minus_q_ == -1.0)
 | 
						|
             ? (-1.0 / x)  // -exp(-log(x))
 | 
						|
             : (std::exp(std::log(x) * one_minus_q_) * one_minus_q_inv_);
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
double zipf_distribution<IntType>::param_type::hinv(double x) const {
 | 
						|
  // std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)) - v_;
 | 
						|
  return -v_ + ((one_minus_q_ == -1.0)
 | 
						|
                    ? (-1.0 / x)  // exp(-log(-x))
 | 
						|
                    : std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)));
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
double zipf_distribution<IntType>::param_type::compute_s() const {
 | 
						|
  // 1 - hinv(h(1.5) - std::exp(std::log(v_ + 1) * -q_));
 | 
						|
  return 1.0 - hinv(h(1.5) - pow_negative_q(v_ + 1.0));
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
double zipf_distribution<IntType>::param_type::pow_negative_q(double x) const {
 | 
						|
  // std::exp(std::log(x) * -q_);
 | 
						|
  return q_ == 2.0 ? (1.0 / (x * x)) : std::exp(std::log(x) * -q_);
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
template <typename URBG>
 | 
						|
typename zipf_distribution<IntType>::result_type
 | 
						|
zipf_distribution<IntType>::operator()(
 | 
						|
    URBG& g, const param_type& p) {  // NOLINT(runtime/references)
 | 
						|
  absl::uniform_real_distribution<double> uniform_double;
 | 
						|
  double k;
 | 
						|
  for (;;) {
 | 
						|
    const double v = uniform_double(g);
 | 
						|
    const double u = p.hxm_ + v * p.hx0_minus_hxm_;
 | 
						|
    const double x = p.hinv(u);
 | 
						|
    k = rint(x);              // std::floor(x + 0.5);
 | 
						|
    if (k > p.k()) continue;  // reject k > max_k
 | 
						|
    if (k - x <= p.s_) break;
 | 
						|
    const double h = p.h(k + 0.5);
 | 
						|
    const double r = p.pow_negative_q(p.v_ + k);
 | 
						|
    if (u >= h - r) break;
 | 
						|
  }
 | 
						|
  IntType ki = static_cast<IntType>(k);
 | 
						|
  assert(ki <= p.k_);
 | 
						|
  return ki;
 | 
						|
}
 | 
						|
 | 
						|
template <typename CharT, typename Traits, typename IntType>
 | 
						|
std::basic_ostream<CharT, Traits>& operator<<(
 | 
						|
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | 
						|
    const zipf_distribution<IntType>& x) {
 | 
						|
  using stream_type =
 | 
						|
      typename random_internal::stream_format_type<IntType>::type;
 | 
						|
  auto saver = random_internal::make_ostream_state_saver(os);
 | 
						|
  os.precision(random_internal::stream_precision_helper<double>::kPrecision);
 | 
						|
  os << static_cast<stream_type>(x.k()) << os.fill() << x.q() << os.fill()
 | 
						|
     << x.v();
 | 
						|
  return os;
 | 
						|
}
 | 
						|
 | 
						|
template <typename CharT, typename Traits, typename IntType>
 | 
						|
std::basic_istream<CharT, Traits>& operator>>(
 | 
						|
    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | 
						|
    zipf_distribution<IntType>& x) {        // NOLINT(runtime/references)
 | 
						|
  using result_type = typename zipf_distribution<IntType>::result_type;
 | 
						|
  using param_type = typename zipf_distribution<IntType>::param_type;
 | 
						|
  using stream_type =
 | 
						|
      typename random_internal::stream_format_type<IntType>::type;
 | 
						|
  stream_type k;
 | 
						|
  double q;
 | 
						|
  double v;
 | 
						|
 | 
						|
  auto saver = random_internal::make_istream_state_saver(is);
 | 
						|
  is >> k >> q >> v;
 | 
						|
  if (!is.fail()) {
 | 
						|
    x.param(param_type(static_cast<result_type>(k), q, v));
 | 
						|
  }
 | 
						|
  return is;
 | 
						|
}
 | 
						|
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
 |