-- 7fa1107161a03dac53fb84c2b06d8092616c7b13 by Abseil Team <absl-team@google.com>: Harden the generic stacktrace implementation for use during early program execution PiperOrigin-RevId: 226375950 -- 079f9969329f5eb66f647dd3c44b17541b1bf217 by Matt Kulukundis <kfm@google.com>: Workaround platforms that have over-aggressive warnings on -Wexit-time-destructors PiperOrigin-RevId: 226362948 -- 1447943f509be681ca5495add0162c750ef237f1 by Matt Kulukundis <kfm@google.com>: Switch from 64 to size_t atomics so they work on embedded platforms that do not have 64 bit atomics. PiperOrigin-RevId: 226210704 -- d14d49837ae2bcde74051e0c79c18ee0f43866b9 by Tom Manshreck <shreck@google.com>: Develop initial documentation for API breaking changes process: PiperOrigin-RevId: 226210021 -- 7ea3d7fe0e86979dab83a5fc9cc3bf1d6cb3bd53 by Abseil Team <absl-team@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 226195522 -- 7de873e880d7f016a4fa1e08d626f0535cc470af by Abseil Team <absl-team@google.com>: Make Abseil LICENSE files newline terminated, with a single trailing blank line. Also remove line-ending whitespace. PiperOrigin-RevId: 226182949 -- 7d00643fadfad7f0d992c68bd9d2ed2e5bc960b0 by Matt Kulukundis <kfm@google.com>: Internal cleanup PiperOrigin-RevId: 226045282 -- c4a0a11c0ce2875271191e477f3d36eaaeca4613 by Matt Kulukundis <kfm@google.com>: Internal cleanup PiperOrigin-RevId: 226038273 -- 8ee4ebbb1ae5cda119e436e5ff7e3aa966608c10 by Matt Kulukundis <kfm@google.com>: Adds a global sampler which tracks a fraction of live tables for collecting telemetry data. PiperOrigin-RevId: 226032080 -- d576446f050518cd1b0ae447d682d8552f0e7e30 by Mark Barolak <mbar@google.com>: Replace an internal CaseEqual function with calls to the identical absl::EqualsIgnoreCase. This closes out a rather old TODO. PiperOrigin-RevId: 226024779 -- 6b23f1ee028a5ffa608c920424f1220a117a8f3d by Abseil Team <absl-team@google.com>: Add December 2018 LTS branch to list of LTS branches. PiperOrigin-RevId: 226011333 -- bb0833a43bdaef4c8c059b17bcd27ba9a085a114 by Mark Barolak <mbar@google.com>: Explicitly state that when the SimpleAtoi family of functions encounter an error, the value of their output parameter is unspecified. Also standardize the name of the output parameter to be `out`. PiperOrigin-RevId: 225997035 -- 46c1876b1a248eabda7545daa61a74a4cdfe9077 by Abseil Team <absl-team@google.com>: Remove deprecated CMake function absl_test, absl_library and absl_header_library PiperOrigin-RevId: 225950041 GitOrigin-RevId: 7fa1107161a03dac53fb84c2b06d8092616c7b13 Change-Id: I2ca9d3aada9292614527d1339a7557494139b806
		
			
				
	
	
		
			289 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/container/internal/hashtablez_sampler.h"
 | |
| 
 | |
| #include <atomic>
 | |
| #include <cassert>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| 
 | |
| #include "absl/base/attributes.h"
 | |
| #include "absl/container/internal/have_sse.h"
 | |
| #include "absl/debugging/stacktrace.h"
 | |
| #include "absl/memory/memory.h"
 | |
| #include "absl/synchronization/mutex.h"
 | |
| 
 | |
| namespace absl {
 | |
| namespace container_internal {
 | |
| constexpr int HashtablezInfo::kMaxStackDepth;
 | |
| 
 | |
| namespace {
 | |
| ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{
 | |
|    false
 | |
| };
 | |
| ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10};
 | |
| ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20};
 | |
| 
 | |
| // Returns the next pseudo-random value.
 | |
| // pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
 | |
| // This is the lrand64 generator.
 | |
| uint64_t NextRandom(uint64_t rnd) {
 | |
|   const uint64_t prng_mult = uint64_t{0x5DEECE66D};
 | |
|   const uint64_t prng_add = 0xB;
 | |
|   const uint64_t prng_mod_power = 48;
 | |
|   const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power);
 | |
|   return (prng_mult * rnd + prng_add) & prng_mod_mask;
 | |
| }
 | |
| 
 | |
| // Generates a geometric variable with the specified mean.
 | |
| // This is done by generating a random number between 0 and 1 and applying
 | |
| // the inverse cumulative distribution function for an exponential.
 | |
| // Specifically: Let m be the inverse of the sample period, then
 | |
| // the probability distribution function is m*exp(-mx) so the CDF is
 | |
| // p = 1 - exp(-mx), so
 | |
| // q = 1 - p = exp(-mx)
 | |
| // log_e(q) = -mx
 | |
| // -log_e(q)/m = x
 | |
| // log_2(q) * (-log_e(2) * 1/m) = x
 | |
| // In the code, q is actually in the range 1 to 2**26, hence the -26 below
 | |
| //
 | |
| int64_t GetGeometricVariable(int64_t mean) {
 | |
| #if ABSL_HAVE_THREAD_LOCAL
 | |
|   thread_local
 | |
| #else   // ABSL_HAVE_THREAD_LOCAL
 | |
|   // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when
 | |
|   // there are not thread locals.  Thus, a single global rng is acceptable for
 | |
|   // that case.
 | |
|   static
 | |
| #endif  // ABSL_HAVE_THREAD_LOCAL
 | |
|       uint64_t rng = []() {
 | |
|         // We don't get well distributed numbers from this so we call
 | |
|         // NextRandom() a bunch to mush the bits around.  We use a global_rand
 | |
|         // to handle the case where the same thread (by memory address) gets
 | |
|         // created and destroyed repeatedly.
 | |
|         ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
 | |
|         uint64_t r = reinterpret_cast<uint64_t>(&rng) +
 | |
|                    global_rand.fetch_add(1, std::memory_order_relaxed);
 | |
|         for (int i = 0; i < 20; ++i) {
 | |
|           r = NextRandom(r);
 | |
|         }
 | |
|         return r;
 | |
|       }();
 | |
| 
 | |
|   rng = NextRandom(rng);
 | |
| 
 | |
|   // Take the top 26 bits as the random number
 | |
|   // (This plus the 1<<58 sampling bound give a max possible step of
 | |
|   // 5194297183973780480 bytes.)
 | |
|   const uint64_t prng_mod_power = 48;  // Number of bits in prng
 | |
|   // The uint32_t cast is to prevent a (hard-to-reproduce) NAN
 | |
|   // under piii debug for some binaries.
 | |
|   double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0;
 | |
|   // Put the computed p-value through the CDF of a geometric.
 | |
|   double interval = (std::log2(q) - 26) * (-std::log(2.0) * mean);
 | |
| 
 | |
|   // Very large values of interval overflow int64_t. If we happen to
 | |
|   // hit such improbable condition, we simply cheat and clamp interval
 | |
|   // to largest supported value.
 | |
|   if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
 | |
|     return std::numeric_limits<int64_t>::max() / 2;
 | |
|   }
 | |
| 
 | |
|   // Small values of interval are equivalent to just sampling next time.
 | |
|   if (interval < 1) {
 | |
|     return 1;
 | |
|   }
 | |
|   return static_cast<int64_t>(interval);
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| HashtablezSampler& HashtablezSampler::Global() {
 | |
|   static auto* sampler = new HashtablezSampler();
 | |
|   return *sampler;
 | |
| }
 | |
| 
 | |
| HashtablezInfo::HashtablezInfo() { PrepareForSampling(); }
 | |
| HashtablezInfo::~HashtablezInfo() = default;
 | |
| 
 | |
| void HashtablezInfo::PrepareForSampling() {
 | |
|   capacity.store(0, std::memory_order_relaxed);
 | |
|   size.store(0, std::memory_order_relaxed);
 | |
|   num_erases.store(0, std::memory_order_relaxed);
 | |
|   max_probe_length.store(0, std::memory_order_relaxed);
 | |
|   total_probe_length.store(0, std::memory_order_relaxed);
 | |
|   hashes_bitwise_or.store(0, std::memory_order_relaxed);
 | |
|   hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed);
 | |
| 
 | |
|   create_time = absl::Now();
 | |
|   // The inliner makes hardcoded skip_count difficult (especially when combined
 | |
|   // with LTO).  We use the ability to exclude stacks by regex when encoding
 | |
|   // instead.
 | |
|   depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth,
 | |
|                               /* skip_count= */ 0);
 | |
|   dead = nullptr;
 | |
| }
 | |
| 
 | |
| HashtablezSampler::HashtablezSampler()
 | |
|     : dropped_samples_(0), size_estimate_(0), all_(nullptr) {
 | |
|   absl::MutexLock l(&graveyard_.init_mu);
 | |
|   graveyard_.dead = &graveyard_;
 | |
| }
 | |
| 
 | |
| HashtablezSampler::~HashtablezSampler() {
 | |
|   HashtablezInfo* s = all_.load(std::memory_order_acquire);
 | |
|   while (s != nullptr) {
 | |
|     HashtablezInfo* next = s->next;
 | |
|     delete s;
 | |
|     s = next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void HashtablezSampler::PushNew(HashtablezInfo* sample) {
 | |
|   sample->next = all_.load(std::memory_order_relaxed);
 | |
|   while (!all_.compare_exchange_weak(sample->next, sample,
 | |
|                                      std::memory_order_release,
 | |
|                                      std::memory_order_relaxed)) {
 | |
|   }
 | |
| }
 | |
| 
 | |
| void HashtablezSampler::PushDead(HashtablezInfo* sample) {
 | |
|   absl::MutexLock graveyard_lock(&graveyard_.init_mu);
 | |
|   absl::MutexLock sample_lock(&sample->init_mu);
 | |
|   sample->dead = graveyard_.dead;
 | |
|   graveyard_.dead = sample;
 | |
| }
 | |
| 
 | |
| HashtablezInfo* HashtablezSampler::PopDead() {
 | |
|   absl::MutexLock graveyard_lock(&graveyard_.init_mu);
 | |
| 
 | |
|   // The list is circular, so eventually it collapses down to
 | |
|   //   graveyard_.dead == &graveyard_
 | |
|   // when it is empty.
 | |
|   HashtablezInfo* sample = graveyard_.dead;
 | |
|   if (sample == &graveyard_) return nullptr;
 | |
| 
 | |
|   absl::MutexLock sample_lock(&sample->init_mu);
 | |
|   graveyard_.dead = sample->dead;
 | |
|   sample->PrepareForSampling();
 | |
|   return sample;
 | |
| }
 | |
| 
 | |
| HashtablezInfo* HashtablezSampler::Register() {
 | |
|   int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed);
 | |
|   if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) {
 | |
|     size_estimate_.fetch_sub(1, std::memory_order_relaxed);
 | |
|     dropped_samples_.fetch_add(1, std::memory_order_relaxed);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   HashtablezInfo* sample = PopDead();
 | |
|   if (sample == nullptr) {
 | |
|     // Resurrection failed.  Hire a new warlock.
 | |
|     sample = new HashtablezInfo();
 | |
|     PushNew(sample);
 | |
|   }
 | |
| 
 | |
|   return sample;
 | |
| }
 | |
| 
 | |
| void HashtablezSampler::Unregister(HashtablezInfo* sample) {
 | |
|   PushDead(sample);
 | |
|   size_estimate_.fetch_sub(1, std::memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| int64_t HashtablezSampler::Iterate(
 | |
|     const std::function<void(const HashtablezInfo& stack)>& f) {
 | |
|   HashtablezInfo* s = all_.load(std::memory_order_acquire);
 | |
|   while (s != nullptr) {
 | |
|     absl::MutexLock l(&s->init_mu);
 | |
|     if (s->dead == nullptr) {
 | |
|       f(*s);
 | |
|     }
 | |
|     s = s->next;
 | |
|   }
 | |
| 
 | |
|   return dropped_samples_.load(std::memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| HashtablezInfo* SampleSlow(int64_t* next_sample) {
 | |
|   bool first = *next_sample < 0;
 | |
|   *next_sample = GetGeometricVariable(
 | |
|       g_hashtablez_sample_parameter.load(std::memory_order_relaxed));
 | |
| 
 | |
|   // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold
 | |
|   // low enough that we will start sampling in a reasonable time, so we just use
 | |
|   // the default sampling rate.
 | |
|   if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr;
 | |
| 
 | |
|   // We will only be negative on our first count, so we should just retry in
 | |
|   // that case.
 | |
|   if (first) {
 | |
|     if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr;
 | |
|     return SampleSlow(next_sample);
 | |
|   }
 | |
| 
 | |
|   return HashtablezSampler::Global().Register();
 | |
| }
 | |
| 
 | |
| void UnsampleSlow(HashtablezInfo* info) {
 | |
|   HashtablezSampler::Global().Unregister(info);
 | |
| }
 | |
| 
 | |
| void RecordInsertSlow(HashtablezInfo* info, size_t hash,
 | |
|                       size_t distance_from_desired) {
 | |
|   // SwissTables probe in groups of 16, so scale this to count items probes and
 | |
|   // not offset from desired.
 | |
|   size_t probe_length = distance_from_desired;
 | |
| #if SWISSTABLE_HAVE_SSE2
 | |
|   probe_length /= 16;
 | |
| #else
 | |
|   probe_length /= 8;
 | |
| #endif
 | |
| 
 | |
|   info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed);
 | |
|   info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed);
 | |
|   info->max_probe_length.store(
 | |
|       std::max(info->max_probe_length.load(std::memory_order_relaxed),
 | |
|                probe_length),
 | |
|       std::memory_order_relaxed);
 | |
|   info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed);
 | |
|   info->size.fetch_add(1, std::memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| void SetHashtablezEnabled(bool enabled) {
 | |
|   g_hashtablez_enabled.store(enabled, std::memory_order_release);
 | |
| }
 | |
| 
 | |
| void SetHashtablezSampleParameter(int32_t rate) {
 | |
|   if (rate > 0) {
 | |
|     g_hashtablez_sample_parameter.store(rate, std::memory_order_release);
 | |
|   } else {
 | |
|     ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld",
 | |
|                  static_cast<long long>(rate));  // NOLINT(runtime/int)
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SetHashtablezMaxSamples(int32_t max) {
 | |
|   if (max > 0) {
 | |
|     g_hashtablez_max_samples.store(max, std::memory_order_release);
 | |
|   } else {
 | |
|     ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld",
 | |
|                  static_cast<long long>(max));  // NOLINT(runtime/int)
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace container_internal
 | |
| }  // namespace absl
 |