-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			515 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			515 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: fixed_array.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
 | |
| // the array can be determined at run-time. It is a good replacement for
 | |
| // non-standard and deprecated uses of `alloca()` and variable length arrays
 | |
| // within the GCC extension. (See
 | |
| // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
 | |
| //
 | |
| // `FixedArray` allocates small arrays inline, keeping performance fast by
 | |
| // avoiding heap operations. It also helps reduce the chances of
 | |
| // accidentally overflowing your stack if large input is passed to
 | |
| // your function.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
 | |
| #define ABSL_CONTAINER_FIXED_ARRAY_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <initializer_list>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <new>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/algorithm/algorithm.h"
 | |
| #include "absl/base/dynamic_annotations.h"
 | |
| #include "absl/base/internal/throw_delegate.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/base/optimization.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/container/internal/compressed_tuple.h"
 | |
| #include "absl/memory/memory.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // FixedArray
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A `FixedArray` provides a run-time fixed-size array, allocating a small array
 | |
| // inline for efficiency.
 | |
| //
 | |
| // Most users should not specify an `inline_elements` argument and let
 | |
| // `FixedArray` automatically determine the number of elements
 | |
| // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
 | |
| // `FixedArray` implementation will use inline storage for arrays with a
 | |
| // length <= `inline_elements`.
 | |
| //
 | |
| // Note that a `FixedArray` constructed with a `size_type` argument will
 | |
| // default-initialize its values by leaving trivially constructible types
 | |
| // uninitialized (e.g. int, int[4], double), and others default-constructed.
 | |
| // This matches the behavior of c-style arrays and `std::array`, but not
 | |
| // `std::vector`.
 | |
| //
 | |
| // Note that `FixedArray` does not provide a public allocator; if it requires a
 | |
| // heap allocation, it will do so with global `::operator new[]()` and
 | |
| // `::operator delete[]()`, even if T provides class-scope overrides for these
 | |
| // operators.
 | |
| template <typename T, size_t N = kFixedArrayUseDefault,
 | |
|           typename A = std::allocator<T>>
 | |
| class FixedArray {
 | |
|   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
 | |
|                 "Arrays with unknown bounds cannot be used with FixedArray.");
 | |
| 
 | |
|   static constexpr size_t kInlineBytesDefault = 256;
 | |
| 
 | |
|   using AllocatorTraits = std::allocator_traits<A>;
 | |
|   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
 | |
|   // but this seems to be mostly pedantic.
 | |
|   template <typename Iterator>
 | |
|   using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
 | |
|       typename std::iterator_traits<Iterator>::iterator_category,
 | |
|       std::forward_iterator_tag>::value>;
 | |
|   static constexpr bool NoexceptCopyable() {
 | |
|     return std::is_nothrow_copy_constructible<StorageElement>::value &&
 | |
|            absl::allocator_is_nothrow<allocator_type>::value;
 | |
|   }
 | |
|   static constexpr bool NoexceptMovable() {
 | |
|     return std::is_nothrow_move_constructible<StorageElement>::value &&
 | |
|            absl::allocator_is_nothrow<allocator_type>::value;
 | |
|   }
 | |
|   static constexpr bool DefaultConstructorIsNonTrivial() {
 | |
|     return !absl::is_trivially_default_constructible<StorageElement>::value;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   using allocator_type = typename AllocatorTraits::allocator_type;
 | |
|   using value_type = typename allocator_type::value_type;
 | |
|   using pointer = typename allocator_type::pointer;
 | |
|   using const_pointer = typename allocator_type::const_pointer;
 | |
|   using reference = typename allocator_type::reference;
 | |
|   using const_reference = typename allocator_type::const_reference;
 | |
|   using size_type = typename allocator_type::size_type;
 | |
|   using difference_type = typename allocator_type::difference_type;
 | |
|   using iterator = pointer;
 | |
|   using const_iterator = const_pointer;
 | |
|   using reverse_iterator = std::reverse_iterator<iterator>;
 | |
|   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | |
| 
 | |
|   static constexpr size_type inline_elements =
 | |
|       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
 | |
|                                   : static_cast<size_type>(N));
 | |
| 
 | |
|   FixedArray(
 | |
|       const FixedArray& other,
 | |
|       const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
 | |
|       : FixedArray(other.begin(), other.end(), a) {}
 | |
| 
 | |
|   FixedArray(
 | |
|       FixedArray&& other,
 | |
|       const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
 | |
|       : FixedArray(std::make_move_iterator(other.begin()),
 | |
|                    std::make_move_iterator(other.end()), a) {}
 | |
| 
 | |
|   // Creates an array object that can store `n` elements.
 | |
|   // Note that trivially constructible elements will be uninitialized.
 | |
|   explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
 | |
|       : storage_(n, a) {
 | |
|     if (DefaultConstructorIsNonTrivial()) {
 | |
|       memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
 | |
|                                       storage_.end());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Creates an array initialized with `n` copies of `val`.
 | |
|   FixedArray(size_type n, const value_type& val,
 | |
|              const allocator_type& a = allocator_type())
 | |
|       : storage_(n, a) {
 | |
|     memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
 | |
|                                     storage_.end(), val);
 | |
|   }
 | |
| 
 | |
|   // Creates an array initialized with the size and contents of `init_list`.
 | |
|   FixedArray(std::initializer_list<value_type> init_list,
 | |
|              const allocator_type& a = allocator_type())
 | |
|       : FixedArray(init_list.begin(), init_list.end(), a) {}
 | |
| 
 | |
|   // Creates an array initialized with the elements from the input
 | |
|   // range. The array's size will always be `std::distance(first, last)`.
 | |
|   // REQUIRES: Iterator must be a forward_iterator or better.
 | |
|   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
 | |
|   FixedArray(Iterator first, Iterator last,
 | |
|              const allocator_type& a = allocator_type())
 | |
|       : storage_(std::distance(first, last), a) {
 | |
|     memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
 | |
|   }
 | |
| 
 | |
|   ~FixedArray() noexcept {
 | |
|     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
 | |
|       AllocatorTraits::destroy(storage_.alloc(), cur);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assignments are deleted because they break the invariant that the size of a
 | |
|   // `FixedArray` never changes.
 | |
|   void operator=(FixedArray&&) = delete;
 | |
|   void operator=(const FixedArray&) = delete;
 | |
| 
 | |
|   // FixedArray::size()
 | |
|   //
 | |
|   // Returns the length of the fixed array.
 | |
|   size_type size() const { return storage_.size(); }
 | |
| 
 | |
|   // FixedArray::max_size()
 | |
|   //
 | |
|   // Returns the largest possible value of `std::distance(begin(), end())` for a
 | |
|   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
 | |
|   // over the number of bytes taken by T.
 | |
|   constexpr size_type max_size() const {
 | |
|     return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
 | |
|   }
 | |
| 
 | |
|   // FixedArray::empty()
 | |
|   //
 | |
|   // Returns whether or not the fixed array is empty.
 | |
|   bool empty() const { return size() == 0; }
 | |
| 
 | |
|   // FixedArray::memsize()
 | |
|   //
 | |
|   // Returns the memory size of the fixed array in bytes.
 | |
|   size_t memsize() const { return size() * sizeof(value_type); }
 | |
| 
 | |
|   // FixedArray::data()
 | |
|   //
 | |
|   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
 | |
|   // can be used to access (but not modify) the contained elements.
 | |
|   const_pointer data() const { return AsValueType(storage_.begin()); }
 | |
| 
 | |
|   // Overload of FixedArray::data() to return a T* pointer to elements of the
 | |
|   // fixed array. This pointer can be used to access and modify the contained
 | |
|   // elements.
 | |
|   pointer data() { return AsValueType(storage_.begin()); }
 | |
| 
 | |
|   // FixedArray::operator[]
 | |
|   //
 | |
|   // Returns a reference the ith element of the fixed array.
 | |
|   // REQUIRES: 0 <= i < size()
 | |
|   reference operator[](size_type i) {
 | |
|     assert(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of FixedArray::operator()[] to return a const reference to the
 | |
|   // ith element of the fixed array.
 | |
|   // REQUIRES: 0 <= i < size()
 | |
|   const_reference operator[](size_type i) const {
 | |
|     assert(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // FixedArray::at
 | |
|   //
 | |
|   // Bounds-checked access.  Returns a reference to the ith element of the
 | |
|   // fiexed array, or throws std::out_of_range
 | |
|   reference at(size_type i) {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of FixedArray::at() to return a const reference to the ith element
 | |
|   // of the fixed array.
 | |
|   const_reference at(size_type i) const {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // FixedArray::front()
 | |
|   //
 | |
|   // Returns a reference to the first element of the fixed array.
 | |
|   reference front() { return *begin(); }
 | |
| 
 | |
|   // Overload of FixedArray::front() to return a reference to the first element
 | |
|   // of a fixed array of const values.
 | |
|   const_reference front() const { return *begin(); }
 | |
| 
 | |
|   // FixedArray::back()
 | |
|   //
 | |
|   // Returns a reference to the last element of the fixed array.
 | |
|   reference back() { return *(end() - 1); }
 | |
| 
 | |
|   // Overload of FixedArray::back() to return a reference to the last element
 | |
|   // of a fixed array of const values.
 | |
|   const_reference back() const { return *(end() - 1); }
 | |
| 
 | |
|   // FixedArray::begin()
 | |
|   //
 | |
|   // Returns an iterator to the beginning of the fixed array.
 | |
|   iterator begin() { return data(); }
 | |
| 
 | |
|   // Overload of FixedArray::begin() to return a const iterator to the
 | |
|   // beginning of the fixed array.
 | |
|   const_iterator begin() const { return data(); }
 | |
| 
 | |
|   // FixedArray::cbegin()
 | |
|   //
 | |
|   // Returns a const iterator to the beginning of the fixed array.
 | |
|   const_iterator cbegin() const { return begin(); }
 | |
| 
 | |
|   // FixedArray::end()
 | |
|   //
 | |
|   // Returns an iterator to the end of the fixed array.
 | |
|   iterator end() { return data() + size(); }
 | |
| 
 | |
|   // Overload of FixedArray::end() to return a const iterator to the end of the
 | |
|   // fixed array.
 | |
|   const_iterator end() const { return data() + size(); }
 | |
| 
 | |
|   // FixedArray::cend()
 | |
|   //
 | |
|   // Returns a const iterator to the end of the fixed array.
 | |
|   const_iterator cend() const { return end(); }
 | |
| 
 | |
|   // FixedArray::rbegin()
 | |
|   //
 | |
|   // Returns a reverse iterator from the end of the fixed array.
 | |
|   reverse_iterator rbegin() { return reverse_iterator(end()); }
 | |
| 
 | |
|   // Overload of FixedArray::rbegin() to return a const reverse iterator from
 | |
|   // the end of the fixed array.
 | |
|   const_reverse_iterator rbegin() const {
 | |
|     return const_reverse_iterator(end());
 | |
|   }
 | |
| 
 | |
|   // FixedArray::crbegin()
 | |
|   //
 | |
|   // Returns a const reverse iterator from the end of the fixed array.
 | |
|   const_reverse_iterator crbegin() const { return rbegin(); }
 | |
| 
 | |
|   // FixedArray::rend()
 | |
|   //
 | |
|   // Returns a reverse iterator from the beginning of the fixed array.
 | |
|   reverse_iterator rend() { return reverse_iterator(begin()); }
 | |
| 
 | |
|   // Overload of FixedArray::rend() for returning a const reverse iterator
 | |
|   // from the beginning of the fixed array.
 | |
|   const_reverse_iterator rend() const {
 | |
|     return const_reverse_iterator(begin());
 | |
|   }
 | |
| 
 | |
|   // FixedArray::crend()
 | |
|   //
 | |
|   // Returns a reverse iterator from the beginning of the fixed array.
 | |
|   const_reverse_iterator crend() const { return rend(); }
 | |
| 
 | |
|   // FixedArray::fill()
 | |
|   //
 | |
|   // Assigns the given `value` to all elements in the fixed array.
 | |
|   void fill(const value_type& val) { std::fill(begin(), end(), val); }
 | |
| 
 | |
|   // Relational operators. Equality operators are elementwise using
 | |
|   // `operator==`, while order operators order FixedArrays lexicographically.
 | |
|   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
 | |
|   }
 | |
| 
 | |
|   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return !(lhs == rhs);
 | |
|   }
 | |
| 
 | |
|   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
 | |
|                                         rhs.end());
 | |
|   }
 | |
| 
 | |
|   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return rhs < lhs;
 | |
|   }
 | |
| 
 | |
|   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return !(rhs < lhs);
 | |
|   }
 | |
| 
 | |
|   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return !(lhs < rhs);
 | |
|   }
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H h, const FixedArray& v) {
 | |
|     return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
 | |
|                       v.size());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // StorageElement
 | |
|   //
 | |
|   // For FixedArrays with a C-style-array value_type, StorageElement is a POD
 | |
|   // wrapper struct called StorageElementWrapper that holds the value_type
 | |
|   // instance inside. This is needed for construction and destruction of the
 | |
|   // entire array regardless of how many dimensions it has. For all other cases,
 | |
|   // StorageElement is just an alias of value_type.
 | |
|   //
 | |
|   // Maintainer's Note: The simpler solution would be to simply wrap value_type
 | |
|   // in a struct whether it's an array or not. That causes some paranoid
 | |
|   // diagnostics to misfire, believing that 'data()' returns a pointer to a
 | |
|   // single element, rather than the packed array that it really is.
 | |
|   // e.g.:
 | |
|   //
 | |
|   //     FixedArray<char> buf(1);
 | |
|   //     sprintf(buf.data(), "foo");
 | |
|   //
 | |
|   //     error: call to int __builtin___sprintf_chk(etc...)
 | |
|   //     will always overflow destination buffer [-Werror]
 | |
|   //
 | |
|   template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
 | |
|             size_t InnerN = std::extent<OuterT>::value>
 | |
|   struct StorageElementWrapper {
 | |
|     InnerT array[InnerN];
 | |
|   };
 | |
| 
 | |
|   using StorageElement =
 | |
|       absl::conditional_t<std::is_array<value_type>::value,
 | |
|                           StorageElementWrapper<value_type>, value_type>;
 | |
| 
 | |
|   static pointer AsValueType(pointer ptr) { return ptr; }
 | |
|   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
 | |
|     return std::addressof(ptr->array);
 | |
|   }
 | |
| 
 | |
|   static_assert(sizeof(StorageElement) == sizeof(value_type), "");
 | |
|   static_assert(alignof(StorageElement) == alignof(value_type), "");
 | |
| 
 | |
|   class NonEmptyInlinedStorage {
 | |
|    public:
 | |
|     StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
 | |
|     void AnnotateConstruct(size_type n);
 | |
|     void AnnotateDestruct(size_type n);
 | |
| 
 | |
| #ifdef ADDRESS_SANITIZER
 | |
|     void* RedzoneBegin() { return &redzone_begin_; }
 | |
|     void* RedzoneEnd() { return &redzone_end_ + 1; }
 | |
| #endif  // ADDRESS_SANITIZER
 | |
| 
 | |
|    private:
 | |
|     ADDRESS_SANITIZER_REDZONE(redzone_begin_);
 | |
|     alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
 | |
|     ADDRESS_SANITIZER_REDZONE(redzone_end_);
 | |
|   };
 | |
| 
 | |
|   class EmptyInlinedStorage {
 | |
|    public:
 | |
|     StorageElement* data() { return nullptr; }
 | |
|     void AnnotateConstruct(size_type) {}
 | |
|     void AnnotateDestruct(size_type) {}
 | |
|   };
 | |
| 
 | |
|   using InlinedStorage =
 | |
|       absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
 | |
|                           NonEmptyInlinedStorage>;
 | |
| 
 | |
|   // Storage
 | |
|   //
 | |
|   // An instance of Storage manages the inline and out-of-line memory for
 | |
|   // instances of FixedArray. This guarantees that even when construction of
 | |
|   // individual elements fails in the FixedArray constructor body, the
 | |
|   // destructor for Storage will still be called and out-of-line memory will be
 | |
|   // properly deallocated.
 | |
|   //
 | |
|   class Storage : public InlinedStorage {
 | |
|    public:
 | |
|     Storage(size_type n, const allocator_type& a)
 | |
|         : size_alloc_(n, a), data_(InitializeData()) {}
 | |
| 
 | |
|     ~Storage() noexcept {
 | |
|       if (UsingInlinedStorage(size())) {
 | |
|         InlinedStorage::AnnotateDestruct(size());
 | |
|       } else {
 | |
|         AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     size_type size() const { return size_alloc_.template get<0>(); }
 | |
|     StorageElement* begin() const { return data_; }
 | |
|     StorageElement* end() const { return begin() + size(); }
 | |
|     allocator_type& alloc() { return size_alloc_.template get<1>(); }
 | |
| 
 | |
|    private:
 | |
|     static bool UsingInlinedStorage(size_type n) {
 | |
|       return n <= inline_elements;
 | |
|     }
 | |
| 
 | |
|     StorageElement* InitializeData() {
 | |
|       if (UsingInlinedStorage(size())) {
 | |
|         InlinedStorage::AnnotateConstruct(size());
 | |
|         return InlinedStorage::data();
 | |
|       } else {
 | |
|         return reinterpret_cast<StorageElement*>(
 | |
|             AllocatorTraits::allocate(alloc(), size()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
 | |
|     container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
 | |
|     StorageElement* data_;
 | |
|   };
 | |
| 
 | |
|   Storage storage_;
 | |
| };
 | |
| 
 | |
| template <typename T, size_t N, typename A>
 | |
| constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
 | |
| 
 | |
| template <typename T, size_t N, typename A>
 | |
| constexpr typename FixedArray<T, N, A>::size_type
 | |
|     FixedArray<T, N, A>::inline_elements;
 | |
| 
 | |
| template <typename T, size_t N, typename A>
 | |
| void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
 | |
|     typename FixedArray<T, N, A>::size_type n) {
 | |
| #ifdef ADDRESS_SANITIZER
 | |
|   if (!n) return;
 | |
|   ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n);
 | |
|   ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin());
 | |
| #endif                   // ADDRESS_SANITIZER
 | |
|   static_cast<void>(n);  // Mark used when not in asan mode
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N, typename A>
 | |
| void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
 | |
|     typename FixedArray<T, N, A>::size_type n) {
 | |
| #ifdef ADDRESS_SANITIZER
 | |
|   if (!n) return;
 | |
|   ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd());
 | |
|   ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data());
 | |
| #endif                   // ADDRESS_SANITIZER
 | |
|   static_cast<void>(n);  // Mark used when not in asan mode
 | |
| }
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
 |