-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			2613 lines
		
	
	
	
		
			91 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2613 lines
		
	
	
	
		
			91 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2018 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
// A btree implementation of the STL set and map interfaces. A btree is smaller
 | 
						|
// and generally also faster than STL set/map (refer to the benchmarks below).
 | 
						|
// The red-black tree implementation of STL set/map has an overhead of 3
 | 
						|
// pointers (left, right and parent) plus the node color information for each
 | 
						|
// stored value. So a set<int32_t> consumes 40 bytes for each value stored in
 | 
						|
// 64-bit mode. This btree implementation stores multiple values on fixed
 | 
						|
// size nodes (usually 256 bytes) and doesn't store child pointers for leaf
 | 
						|
// nodes. The result is that a btree_set<int32_t> may use much less memory per
 | 
						|
// stored value. For the random insertion benchmark in btree_bench.cc, a
 | 
						|
// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
 | 
						|
//
 | 
						|
// The packing of multiple values on to each node of a btree has another effect
 | 
						|
// besides better space utilization: better cache locality due to fewer cache
 | 
						|
// lines being accessed. Better cache locality translates into faster
 | 
						|
// operations.
 | 
						|
//
 | 
						|
// CAVEATS
 | 
						|
//
 | 
						|
// Insertions and deletions on a btree can cause splitting, merging or
 | 
						|
// rebalancing of btree nodes. And even without these operations, insertions
 | 
						|
// and deletions on a btree will move values around within a node. In both
 | 
						|
// cases, the result is that insertions and deletions can invalidate iterators
 | 
						|
// pointing to values other than the one being inserted/deleted. Therefore, this
 | 
						|
// container does not provide pointer stability. This is notably different from
 | 
						|
// STL set/map which takes care to not invalidate iterators on insert/erase
 | 
						|
// except, of course, for iterators pointing to the value being erased.  A
 | 
						|
// partial workaround when erasing is available: erase() returns an iterator
 | 
						|
// pointing to the item just after the one that was erased (or end() if none
 | 
						|
// exists).
 | 
						|
 | 
						|
#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
 | 
						|
#define ABSL_CONTAINER_INTERNAL_BTREE_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstring>
 | 
						|
#include <functional>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <new>
 | 
						|
#include <string>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "absl/base/macros.h"
 | 
						|
#include "absl/container/internal/common.h"
 | 
						|
#include "absl/container/internal/compressed_tuple.h"
 | 
						|
#include "absl/container/internal/container_memory.h"
 | 
						|
#include "absl/container/internal/layout.h"
 | 
						|
#include "absl/memory/memory.h"
 | 
						|
#include "absl/meta/type_traits.h"
 | 
						|
#include "absl/strings/string_view.h"
 | 
						|
#include "absl/types/compare.h"
 | 
						|
#include "absl/utility/utility.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace container_internal {
 | 
						|
 | 
						|
// A helper class that indicates if the Compare parameter is a key-compare-to
 | 
						|
// comparator.
 | 
						|
template <typename Compare, typename T>
 | 
						|
using btree_is_key_compare_to =
 | 
						|
    std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>,
 | 
						|
                        absl::weak_ordering>;
 | 
						|
 | 
						|
struct StringBtreeDefaultLess {
 | 
						|
  using is_transparent = void;
 | 
						|
 | 
						|
  StringBtreeDefaultLess() = default;
 | 
						|
 | 
						|
  // Compatibility constructor.
 | 
						|
  StringBtreeDefaultLess(std::less<std::string>) {}  // NOLINT
 | 
						|
  StringBtreeDefaultLess(std::less<string_view>) {}  // NOLINT
 | 
						|
 | 
						|
  absl::weak_ordering operator()(absl::string_view lhs,
 | 
						|
                                 absl::string_view rhs) const {
 | 
						|
    return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct StringBtreeDefaultGreater {
 | 
						|
  using is_transparent = void;
 | 
						|
 | 
						|
  StringBtreeDefaultGreater() = default;
 | 
						|
 | 
						|
  StringBtreeDefaultGreater(std::greater<std::string>) {}  // NOLINT
 | 
						|
  StringBtreeDefaultGreater(std::greater<string_view>) {}  // NOLINT
 | 
						|
 | 
						|
  absl::weak_ordering operator()(absl::string_view lhs,
 | 
						|
                                 absl::string_view rhs) const {
 | 
						|
    return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// A helper class to convert a boolean comparison into a three-way "compare-to"
 | 
						|
// comparison that returns a negative value to indicate less-than, zero to
 | 
						|
// indicate equality and a positive value to indicate greater-than. This helper
 | 
						|
// class is specialized for less<std::string>, greater<std::string>,
 | 
						|
// less<string_view>, and greater<string_view>.
 | 
						|
//
 | 
						|
// key_compare_to_adapter is provided so that btree users
 | 
						|
// automatically get the more efficient compare-to code when using common
 | 
						|
// google string types with common comparison functors.
 | 
						|
// These string-like specializations also turn on heterogeneous lookup by
 | 
						|
// default.
 | 
						|
template <typename Compare>
 | 
						|
struct key_compare_to_adapter {
 | 
						|
  using type = Compare;
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct key_compare_to_adapter<std::less<std::string>> {
 | 
						|
  using type = StringBtreeDefaultLess;
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct key_compare_to_adapter<std::greater<std::string>> {
 | 
						|
  using type = StringBtreeDefaultGreater;
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct key_compare_to_adapter<std::less<absl::string_view>> {
 | 
						|
  using type = StringBtreeDefaultLess;
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct key_compare_to_adapter<std::greater<absl::string_view>> {
 | 
						|
  using type = StringBtreeDefaultGreater;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
 | 
						|
          bool Multi, typename SlotPolicy>
 | 
						|
struct common_params {
 | 
						|
  // If Compare is a common comparator for a std::string-like type, then we adapt it
 | 
						|
  // to use heterogeneous lookup and to be a key-compare-to comparator.
 | 
						|
  using key_compare = typename key_compare_to_adapter<Compare>::type;
 | 
						|
  // A type which indicates if we have a key-compare-to functor or a plain old
 | 
						|
  // key-compare functor.
 | 
						|
  using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
 | 
						|
 | 
						|
  using allocator_type = Alloc;
 | 
						|
  using key_type = Key;
 | 
						|
  using size_type = std::make_signed<size_t>::type;
 | 
						|
  using difference_type = ptrdiff_t;
 | 
						|
 | 
						|
  // True if this is a multiset or multimap.
 | 
						|
  using is_multi_container = std::integral_constant<bool, Multi>;
 | 
						|
 | 
						|
  using slot_policy = SlotPolicy;
 | 
						|
  using slot_type = typename slot_policy::slot_type;
 | 
						|
  using value_type = typename slot_policy::value_type;
 | 
						|
  using init_type = typename slot_policy::mutable_value_type;
 | 
						|
  using pointer = value_type *;
 | 
						|
  using const_pointer = const value_type *;
 | 
						|
  using reference = value_type &;
 | 
						|
  using const_reference = const value_type &;
 | 
						|
 | 
						|
  enum {
 | 
						|
    kTargetNodeSize = TargetNodeSize,
 | 
						|
 | 
						|
    // Upper bound for the available space for values. This is largest for leaf
 | 
						|
    // nodes, which have overhead of at least a pointer + 4 bytes (for storing
 | 
						|
    // 3 field_types and an enum).
 | 
						|
    kNodeValueSpace =
 | 
						|
        TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
 | 
						|
  };
 | 
						|
 | 
						|
  // This is an integral type large enough to hold as many
 | 
						|
  // ValueSize-values as will fit a node of TargetNodeSize bytes.
 | 
						|
  using node_count_type =
 | 
						|
      absl::conditional_t<(kNodeValueSpace / sizeof(value_type) >
 | 
						|
                           (std::numeric_limits<uint8_t>::max)()),
 | 
						|
                          uint16_t, uint8_t>;  // NOLINT
 | 
						|
 | 
						|
  // The following methods are necessary for passing this struct as PolicyTraits
 | 
						|
  // for node_handle and/or are used within btree.
 | 
						|
  static value_type &element(slot_type *slot) {
 | 
						|
    return slot_policy::element(slot);
 | 
						|
  }
 | 
						|
  static const value_type &element(const slot_type *slot) {
 | 
						|
    return slot_policy::element(slot);
 | 
						|
  }
 | 
						|
  template <class... Args>
 | 
						|
  static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
 | 
						|
    slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
  static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
 | 
						|
    slot_policy::construct(alloc, slot, other);
 | 
						|
  }
 | 
						|
  static void destroy(Alloc *alloc, slot_type *slot) {
 | 
						|
    slot_policy::destroy(alloc, slot);
 | 
						|
  }
 | 
						|
  static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
 | 
						|
    construct(alloc, new_slot, old_slot);
 | 
						|
    destroy(alloc, old_slot);
 | 
						|
  }
 | 
						|
  static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
 | 
						|
    slot_policy::swap(alloc, a, b);
 | 
						|
  }
 | 
						|
  static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
 | 
						|
    slot_policy::move(alloc, src, dest);
 | 
						|
  }
 | 
						|
  static void move(Alloc *alloc, slot_type *first, slot_type *last,
 | 
						|
                   slot_type *result) {
 | 
						|
    slot_policy::move(alloc, first, last, result);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// A parameters structure for holding the type parameters for a btree_map.
 | 
						|
// Compare and Alloc should be nothrow copy-constructible.
 | 
						|
template <typename Key, typename Data, typename Compare, typename Alloc,
 | 
						|
          int TargetNodeSize, bool Multi>
 | 
						|
struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | 
						|
                                  map_slot_policy<Key, Data>> {
 | 
						|
  using super_type = typename map_params::common_params;
 | 
						|
  using mapped_type = Data;
 | 
						|
  // This type allows us to move keys when it is safe to do so. It is safe
 | 
						|
  // for maps in which value_type and mutable_value_type are layout compatible.
 | 
						|
  using slot_policy = typename super_type::slot_policy;
 | 
						|
  using slot_type = typename super_type::slot_type;
 | 
						|
  using value_type = typename super_type::value_type;
 | 
						|
  using init_type = typename super_type::init_type;
 | 
						|
 | 
						|
  using key_compare = typename super_type::key_compare;
 | 
						|
  // Inherit from key_compare for empty base class optimization.
 | 
						|
  struct value_compare : private key_compare {
 | 
						|
    value_compare() = default;
 | 
						|
    explicit value_compare(const key_compare &cmp) : key_compare(cmp) {}
 | 
						|
 | 
						|
    template <typename T, typename U>
 | 
						|
    auto operator()(const T &left, const U &right) const
 | 
						|
        -> decltype(std::declval<key_compare>()(left.first, right.first)) {
 | 
						|
      return key_compare::operator()(left.first, right.first);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  using is_map_container = std::true_type;
 | 
						|
 | 
						|
  static const Key &key(const value_type &x) { return x.first; }
 | 
						|
  static const Key &key(const init_type &x) { return x.first; }
 | 
						|
  static const Key &key(const slot_type *x) { return slot_policy::key(x); }
 | 
						|
  static mapped_type &value(value_type *value) { return value->second; }
 | 
						|
};
 | 
						|
 | 
						|
// This type implements the necessary functions from the
 | 
						|
// absl::container_internal::slot_type interface.
 | 
						|
template <typename Key>
 | 
						|
struct set_slot_policy {
 | 
						|
  using slot_type = Key;
 | 
						|
  using value_type = Key;
 | 
						|
  using mutable_value_type = Key;
 | 
						|
 | 
						|
  static value_type &element(slot_type *slot) { return *slot; }
 | 
						|
  static const value_type &element(const slot_type *slot) { return *slot; }
 | 
						|
 | 
						|
  template <typename Alloc, class... Args>
 | 
						|
  static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
 | 
						|
    absl::allocator_traits<Alloc>::construct(*alloc, slot,
 | 
						|
                                             std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Alloc>
 | 
						|
  static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
 | 
						|
    absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Alloc>
 | 
						|
  static void destroy(Alloc *alloc, slot_type *slot) {
 | 
						|
    absl::allocator_traits<Alloc>::destroy(*alloc, slot);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Alloc>
 | 
						|
  static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
 | 
						|
    using std::swap;
 | 
						|
    swap(*a, *b);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Alloc>
 | 
						|
  static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
 | 
						|
    *dest = std::move(*src);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename Alloc>
 | 
						|
  static void move(Alloc *alloc, slot_type *first, slot_type *last,
 | 
						|
                   slot_type *result) {
 | 
						|
    for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
 | 
						|
      move(alloc, src, dest);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// A parameters structure for holding the type parameters for a btree_set.
 | 
						|
// Compare and Alloc should be nothrow copy-constructible.
 | 
						|
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
 | 
						|
          bool Multi>
 | 
						|
struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
 | 
						|
                                  set_slot_policy<Key>> {
 | 
						|
  using value_type = Key;
 | 
						|
  using slot_type = typename set_params::common_params::slot_type;
 | 
						|
  using value_compare = typename set_params::common_params::key_compare;
 | 
						|
  using is_map_container = std::false_type;
 | 
						|
 | 
						|
  static const Key &key(const value_type &x) { return x; }
 | 
						|
  static const Key &key(const slot_type *x) { return *x; }
 | 
						|
};
 | 
						|
 | 
						|
// An adapter class that converts a lower-bound compare into an upper-bound
 | 
						|
// compare. Note: there is no need to make a version of this adapter specialized
 | 
						|
// for key-compare-to functors because the upper-bound (the first value greater
 | 
						|
// than the input) is never an exact match.
 | 
						|
template <typename Compare>
 | 
						|
struct upper_bound_adapter {
 | 
						|
  explicit upper_bound_adapter(const Compare &c) : comp(c) {}
 | 
						|
  template <typename K, typename LK>
 | 
						|
  bool operator()(const K &a, const LK &b) const {
 | 
						|
    // Returns true when a is not greater than b.
 | 
						|
    return !compare_internal::compare_result_as_less_than(comp(b, a));
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  Compare comp;
 | 
						|
};
 | 
						|
 | 
						|
enum class MatchKind : uint8_t { kEq, kNe };
 | 
						|
 | 
						|
template <typename V, bool IsCompareTo>
 | 
						|
struct SearchResult {
 | 
						|
  V value;
 | 
						|
  MatchKind match;
 | 
						|
 | 
						|
  static constexpr bool HasMatch() { return true; }
 | 
						|
  bool IsEq() const { return match == MatchKind::kEq; }
 | 
						|
};
 | 
						|
 | 
						|
// When we don't use CompareTo, `match` is not present.
 | 
						|
// This ensures that callers can't use it accidentally when it provides no
 | 
						|
// useful information.
 | 
						|
template <typename V>
 | 
						|
struct SearchResult<V, false> {
 | 
						|
  V value;
 | 
						|
 | 
						|
  static constexpr bool HasMatch() { return false; }
 | 
						|
  static constexpr bool IsEq() { return false; }
 | 
						|
};
 | 
						|
 | 
						|
// A node in the btree holding. The same node type is used for both internal
 | 
						|
// and leaf nodes in the btree, though the nodes are allocated in such a way
 | 
						|
// that the children array is only valid in internal nodes.
 | 
						|
template <typename Params>
 | 
						|
class btree_node {
 | 
						|
  using is_key_compare_to = typename Params::is_key_compare_to;
 | 
						|
  using is_multi_container = typename Params::is_multi_container;
 | 
						|
  using field_type = typename Params::node_count_type;
 | 
						|
  using allocator_type = typename Params::allocator_type;
 | 
						|
  using slot_type = typename Params::slot_type;
 | 
						|
 | 
						|
 public:
 | 
						|
  using params_type = Params;
 | 
						|
  using key_type = typename Params::key_type;
 | 
						|
  using value_type = typename Params::value_type;
 | 
						|
  using pointer = typename Params::pointer;
 | 
						|
  using const_pointer = typename Params::const_pointer;
 | 
						|
  using reference = typename Params::reference;
 | 
						|
  using const_reference = typename Params::const_reference;
 | 
						|
  using key_compare = typename Params::key_compare;
 | 
						|
  using size_type = typename Params::size_type;
 | 
						|
  using difference_type = typename Params::difference_type;
 | 
						|
 | 
						|
  // Btree decides whether to use linear node search as follows:
 | 
						|
  //   - If the key is arithmetic and the comparator is std::less or
 | 
						|
  //     std::greater, choose linear.
 | 
						|
  //   - Otherwise, choose binary.
 | 
						|
  // TODO(ezb): Might make sense to add condition(s) based on node-size.
 | 
						|
  using use_linear_search = std::integral_constant<
 | 
						|
      bool,
 | 
						|
                std::is_arithmetic<key_type>::value &&
 | 
						|
                    (std::is_same<std::less<key_type>, key_compare>::value ||
 | 
						|
                     std::is_same<std::greater<key_type>, key_compare>::value)>;
 | 
						|
 | 
						|
  // This class is organized by gtl::Layout as if it had the following
 | 
						|
  // structure:
 | 
						|
  //   // A pointer to the node's parent.
 | 
						|
  //   btree_node *parent;
 | 
						|
  //
 | 
						|
  //   // The position of the node in the node's parent.
 | 
						|
  //   field_type position;
 | 
						|
  //   // The index of the first populated value in `values`.
 | 
						|
  //   // TODO(ezb): right now, `start` is always 0. Update insertion/merge
 | 
						|
  //   // logic to allow for floating storage within nodes.
 | 
						|
  //   field_type start;
 | 
						|
  //   // The count of the number of populated values in the node.
 | 
						|
  //   field_type count;
 | 
						|
  //   // The maximum number of values the node can hold. This is an integer in
 | 
						|
  //   // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
 | 
						|
  //   // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
 | 
						|
  //   // nodes (even though there are still kNodeValues values in the node).
 | 
						|
  //   // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
 | 
						|
  //   // to free extra bits for is_root, etc.
 | 
						|
  //   field_type max_count;
 | 
						|
  //
 | 
						|
  //   // The array of values. The capacity is `max_count` for leaf nodes and
 | 
						|
  //   // kNodeValues for internal nodes. Only the values in
 | 
						|
  //   // [start, start + count) have been initialized and are valid.
 | 
						|
  //   slot_type values[max_count];
 | 
						|
  //
 | 
						|
  //   // The array of child pointers. The keys in children[i] are all less
 | 
						|
  //   // than key(i). The keys in children[i + 1] are all greater than key(i).
 | 
						|
  //   // There are 0 children for leaf nodes and kNodeValues + 1 children for
 | 
						|
  //   // internal nodes.
 | 
						|
  //   btree_node *children[kNodeValues + 1];
 | 
						|
  //
 | 
						|
  // This class is only constructed by EmptyNodeType. Normally, pointers to the
 | 
						|
  // layout above are allocated, cast to btree_node*, and de-allocated within
 | 
						|
  // the btree implementation.
 | 
						|
  ~btree_node() = default;
 | 
						|
  btree_node(btree_node const &) = delete;
 | 
						|
  btree_node &operator=(btree_node const &) = delete;
 | 
						|
 | 
						|
  // Public for EmptyNodeType.
 | 
						|
  constexpr static size_type Alignment() {
 | 
						|
    static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
 | 
						|
                  "Alignment of all nodes must be equal.");
 | 
						|
    return InternalLayout().Alignment();
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  btree_node() = default;
 | 
						|
 | 
						|
 private:
 | 
						|
  using layout_type = absl::container_internal::Layout<btree_node *, field_type,
 | 
						|
                                                       slot_type, btree_node *>;
 | 
						|
  constexpr static size_type SizeWithNValues(size_type n) {
 | 
						|
    return layout_type(/*parent*/ 1,
 | 
						|
                       /*position, start, count, max_count*/ 4,
 | 
						|
                       /*values*/ n,
 | 
						|
                       /*children*/ 0)
 | 
						|
        .AllocSize();
 | 
						|
  }
 | 
						|
  // A lower bound for the overhead of fields other than values in a leaf node.
 | 
						|
  constexpr static size_type MinimumOverhead() {
 | 
						|
    return SizeWithNValues(1) - sizeof(value_type);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute how many values we can fit onto a leaf node taking into account
 | 
						|
  // padding.
 | 
						|
  constexpr static size_type NodeTargetValues(const int begin, const int end) {
 | 
						|
    return begin == end ? begin
 | 
						|
                        : SizeWithNValues((begin + end) / 2 + 1) >
 | 
						|
                                  params_type::kTargetNodeSize
 | 
						|
                              ? NodeTargetValues(begin, (begin + end) / 2)
 | 
						|
                              : NodeTargetValues((begin + end) / 2 + 1, end);
 | 
						|
  }
 | 
						|
 | 
						|
  enum {
 | 
						|
    kTargetNodeSize = params_type::kTargetNodeSize,
 | 
						|
    kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize),
 | 
						|
 | 
						|
    // We need a minimum of 3 values per internal node in order to perform
 | 
						|
    // splitting (1 value for the two nodes involved in the split and 1 value
 | 
						|
    // propagated to the parent as the delimiter for the split).
 | 
						|
    kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
 | 
						|
 | 
						|
    // The node is internal (i.e. is not a leaf node) if and only if `max_count`
 | 
						|
    // has this value.
 | 
						|
    kInternalNodeMaxCount = 0,
 | 
						|
  };
 | 
						|
 | 
						|
  // Leaves can have less than kNodeValues values.
 | 
						|
  constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
 | 
						|
    return layout_type(/*parent*/ 1,
 | 
						|
                       /*position, start, count, max_count*/ 4,
 | 
						|
                       /*values*/ max_values,
 | 
						|
                       /*children*/ 0);
 | 
						|
  }
 | 
						|
  constexpr static layout_type InternalLayout() {
 | 
						|
    return layout_type(/*parent*/ 1,
 | 
						|
                       /*position, start, count, max_count*/ 4,
 | 
						|
                       /*values*/ kNodeValues,
 | 
						|
                       /*children*/ kNodeValues + 1);
 | 
						|
  }
 | 
						|
  constexpr static size_type LeafSize(const int max_values = kNodeValues) {
 | 
						|
    return LeafLayout(max_values).AllocSize();
 | 
						|
  }
 | 
						|
  constexpr static size_type InternalSize() {
 | 
						|
    return InternalLayout().AllocSize();
 | 
						|
  }
 | 
						|
 | 
						|
  // N is the index of the type in the Layout definition.
 | 
						|
  // ElementType<N> is the Nth type in the Layout definition.
 | 
						|
  template <size_type N>
 | 
						|
  inline typename layout_type::template ElementType<N> *GetField() {
 | 
						|
    // We assert that we don't read from values that aren't there.
 | 
						|
    assert(N < 3 || !leaf());
 | 
						|
    return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
 | 
						|
  }
 | 
						|
  template <size_type N>
 | 
						|
  inline const typename layout_type::template ElementType<N> *GetField() const {
 | 
						|
    assert(N < 3 || !leaf());
 | 
						|
    return InternalLayout().template Pointer<N>(
 | 
						|
        reinterpret_cast<const char *>(this));
 | 
						|
  }
 | 
						|
  void set_parent(btree_node *p) { *GetField<0>() = p; }
 | 
						|
  field_type &mutable_count() { return GetField<1>()[2]; }
 | 
						|
  slot_type *slot(int i) { return &GetField<2>()[i]; }
 | 
						|
  const slot_type *slot(int i) const { return &GetField<2>()[i]; }
 | 
						|
  void set_position(field_type v) { GetField<1>()[0] = v; }
 | 
						|
  void set_start(field_type v) { GetField<1>()[1] = v; }
 | 
						|
  void set_count(field_type v) { GetField<1>()[2] = v; }
 | 
						|
  // This method is only called by the node init methods.
 | 
						|
  void set_max_count(field_type v) { GetField<1>()[3] = v; }
 | 
						|
 | 
						|
 public:
 | 
						|
  // Whether this is a leaf node or not. This value doesn't change after the
 | 
						|
  // node is created.
 | 
						|
  bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
 | 
						|
 | 
						|
  // Getter for the position of this node in its parent.
 | 
						|
  field_type position() const { return GetField<1>()[0]; }
 | 
						|
 | 
						|
  // Getter for the offset of the first value in the `values` array.
 | 
						|
  field_type start() const { return GetField<1>()[1]; }
 | 
						|
 | 
						|
  // Getters for the number of values stored in this node.
 | 
						|
  field_type count() const { return GetField<1>()[2]; }
 | 
						|
  field_type max_count() const {
 | 
						|
    // Internal nodes have max_count==kInternalNodeMaxCount.
 | 
						|
    // Leaf nodes have max_count in [1, kNodeValues].
 | 
						|
    const field_type max_count = GetField<1>()[3];
 | 
						|
    return max_count == field_type{kInternalNodeMaxCount}
 | 
						|
               ? field_type{kNodeValues}
 | 
						|
               : max_count;
 | 
						|
  }
 | 
						|
 | 
						|
  // Getter for the parent of this node.
 | 
						|
  btree_node *parent() const { return *GetField<0>(); }
 | 
						|
  // Getter for whether the node is the root of the tree. The parent of the
 | 
						|
  // root of the tree is the leftmost node in the tree which is guaranteed to
 | 
						|
  // be a leaf.
 | 
						|
  bool is_root() const { return parent()->leaf(); }
 | 
						|
  void make_root() {
 | 
						|
    assert(parent()->is_root());
 | 
						|
    set_parent(parent()->parent());
 | 
						|
  }
 | 
						|
 | 
						|
  // Getters for the key/value at position i in the node.
 | 
						|
  const key_type &key(int i) const { return params_type::key(slot(i)); }
 | 
						|
  reference value(int i) { return params_type::element(slot(i)); }
 | 
						|
  const_reference value(int i) const { return params_type::element(slot(i)); }
 | 
						|
 | 
						|
  // Getters/setter for the child at position i in the node.
 | 
						|
  btree_node *child(int i) const { return GetField<3>()[i]; }
 | 
						|
  btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
 | 
						|
  void clear_child(int i) {
 | 
						|
    absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
 | 
						|
  }
 | 
						|
  void set_child(int i, btree_node *c) {
 | 
						|
    absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
 | 
						|
    mutable_child(i) = c;
 | 
						|
    c->set_position(i);
 | 
						|
  }
 | 
						|
  void init_child(int i, btree_node *c) {
 | 
						|
    set_child(i, c);
 | 
						|
    c->set_parent(this);
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the position of the first value whose key is not less than k.
 | 
						|
  template <typename K>
 | 
						|
  SearchResult<int, is_key_compare_to::value> lower_bound(
 | 
						|
      const K &k, const key_compare &comp) const {
 | 
						|
    return use_linear_search::value ? linear_search(k, comp)
 | 
						|
                                    : binary_search(k, comp);
 | 
						|
  }
 | 
						|
  // Returns the position of the first value whose key is greater than k.
 | 
						|
  template <typename K>
 | 
						|
  int upper_bound(const K &k, const key_compare &comp) const {
 | 
						|
    auto upper_compare = upper_bound_adapter<key_compare>(comp);
 | 
						|
    return use_linear_search::value ? linear_search(k, upper_compare).value
 | 
						|
                                    : binary_search(k, upper_compare).value;
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename K, typename Compare>
 | 
						|
  SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
 | 
						|
  linear_search(const K &k, const Compare &comp) const {
 | 
						|
    return linear_search_impl(k, 0, count(), comp,
 | 
						|
                              btree_is_key_compare_to<Compare, key_type>());
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename K, typename Compare>
 | 
						|
  SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
 | 
						|
  binary_search(const K &k, const Compare &comp) const {
 | 
						|
    return binary_search_impl(k, 0, count(), comp,
 | 
						|
                              btree_is_key_compare_to<Compare, key_type>());
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the position of the first value whose key is not less than k using
 | 
						|
  // linear search performed using plain compare.
 | 
						|
  template <typename K, typename Compare>
 | 
						|
  SearchResult<int, false> linear_search_impl(
 | 
						|
      const K &k, int s, const int e, const Compare &comp,
 | 
						|
      std::false_type /* IsCompareTo */) const {
 | 
						|
    while (s < e) {
 | 
						|
      if (!comp(key(s), k)) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ++s;
 | 
						|
    }
 | 
						|
    return {s};
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the position of the first value whose key is not less than k using
 | 
						|
  // linear search performed using compare-to.
 | 
						|
  template <typename K, typename Compare>
 | 
						|
  SearchResult<int, true> linear_search_impl(
 | 
						|
      const K &k, int s, const int e, const Compare &comp,
 | 
						|
      std::true_type /* IsCompareTo */) const {
 | 
						|
    while (s < e) {
 | 
						|
      const absl::weak_ordering c = comp(key(s), k);
 | 
						|
      if (c == 0) {
 | 
						|
        return {s, MatchKind::kEq};
 | 
						|
      } else if (c > 0) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ++s;
 | 
						|
    }
 | 
						|
    return {s, MatchKind::kNe};
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the position of the first value whose key is not less than k using
 | 
						|
  // binary search performed using plain compare.
 | 
						|
  template <typename K, typename Compare>
 | 
						|
  SearchResult<int, false> binary_search_impl(
 | 
						|
      const K &k, int s, int e, const Compare &comp,
 | 
						|
      std::false_type /* IsCompareTo */) const {
 | 
						|
    while (s != e) {
 | 
						|
      const int mid = (s + e) >> 1;
 | 
						|
      if (comp(key(mid), k)) {
 | 
						|
        s = mid + 1;
 | 
						|
      } else {
 | 
						|
        e = mid;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return {s};
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the position of the first value whose key is not less than k using
 | 
						|
  // binary search performed using compare-to.
 | 
						|
  template <typename K, typename CompareTo>
 | 
						|
  SearchResult<int, true> binary_search_impl(
 | 
						|
      const K &k, int s, int e, const CompareTo &comp,
 | 
						|
      std::true_type /* IsCompareTo */) const {
 | 
						|
    if (is_multi_container::value) {
 | 
						|
      MatchKind exact_match = MatchKind::kNe;
 | 
						|
      while (s != e) {
 | 
						|
        const int mid = (s + e) >> 1;
 | 
						|
        const absl::weak_ordering c = comp(key(mid), k);
 | 
						|
        if (c < 0) {
 | 
						|
          s = mid + 1;
 | 
						|
        } else {
 | 
						|
          e = mid;
 | 
						|
          if (c == 0) {
 | 
						|
            // Need to return the first value whose key is not less than k,
 | 
						|
            // which requires continuing the binary search if this is a
 | 
						|
            // multi-container.
 | 
						|
            exact_match = MatchKind::kEq;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return {s, exact_match};
 | 
						|
    } else {  // Not a multi-container.
 | 
						|
      while (s != e) {
 | 
						|
        const int mid = (s + e) >> 1;
 | 
						|
        const absl::weak_ordering c = comp(key(mid), k);
 | 
						|
        if (c < 0) {
 | 
						|
          s = mid + 1;
 | 
						|
        } else if (c > 0) {
 | 
						|
          e = mid;
 | 
						|
        } else {
 | 
						|
          return {mid, MatchKind::kEq};
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return {s, MatchKind::kNe};
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emplaces a value at position i, shifting all existing values and
 | 
						|
  // children at positions >= i to the right by 1.
 | 
						|
  template <typename... Args>
 | 
						|
  void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
 | 
						|
 | 
						|
  // Removes the value at position i, shifting all existing values and children
 | 
						|
  // at positions > i to the left by 1.
 | 
						|
  void remove_value(int i, allocator_type *alloc);
 | 
						|
 | 
						|
  // Removes the values at positions [i, i + to_erase), shifting all values
 | 
						|
  // after that range to the left by to_erase. Does not change children at all.
 | 
						|
  void remove_values_ignore_children(int i, int to_erase,
 | 
						|
                                     allocator_type *alloc);
 | 
						|
 | 
						|
  // Rebalances a node with its right sibling.
 | 
						|
  void rebalance_right_to_left(int to_move, btree_node *right,
 | 
						|
                               allocator_type *alloc);
 | 
						|
  void rebalance_left_to_right(int to_move, btree_node *right,
 | 
						|
                               allocator_type *alloc);
 | 
						|
 | 
						|
  // Splits a node, moving a portion of the node's values to its right sibling.
 | 
						|
  void split(int insert_position, btree_node *dest, allocator_type *alloc);
 | 
						|
 | 
						|
  // Merges a node with its right sibling, moving all of the values and the
 | 
						|
  // delimiting key in the parent node onto itself.
 | 
						|
  void merge(btree_node *sibling, allocator_type *alloc);
 | 
						|
 | 
						|
  // Swap the contents of "this" and "src".
 | 
						|
  void swap(btree_node *src, allocator_type *alloc);
 | 
						|
 | 
						|
  // Node allocation/deletion routines.
 | 
						|
  static btree_node *init_leaf(btree_node *n, btree_node *parent,
 | 
						|
                               int max_count) {
 | 
						|
    n->set_parent(parent);
 | 
						|
    n->set_position(0);
 | 
						|
    n->set_start(0);
 | 
						|
    n->set_count(0);
 | 
						|
    n->set_max_count(max_count);
 | 
						|
    absl::container_internal::SanitizerPoisonMemoryRegion(
 | 
						|
        n->slot(0), max_count * sizeof(slot_type));
 | 
						|
    return n;
 | 
						|
  }
 | 
						|
  static btree_node *init_internal(btree_node *n, btree_node *parent) {
 | 
						|
    init_leaf(n, parent, kNodeValues);
 | 
						|
    // Set `max_count` to a sentinel value to indicate that this node is
 | 
						|
    // internal.
 | 
						|
    n->set_max_count(kInternalNodeMaxCount);
 | 
						|
    absl::container_internal::SanitizerPoisonMemoryRegion(
 | 
						|
        &n->mutable_child(0), (kNodeValues + 1) * sizeof(btree_node *));
 | 
						|
    return n;
 | 
						|
  }
 | 
						|
  void destroy(allocator_type *alloc) {
 | 
						|
    for (int i = 0; i < count(); ++i) {
 | 
						|
      value_destroy(i, alloc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 public:
 | 
						|
  // Exposed only for tests.
 | 
						|
  static bool testonly_uses_linear_node_search() {
 | 
						|
    return use_linear_search::value;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename... Args>
 | 
						|
  void value_init(const size_type i, allocator_type *alloc, Args &&... args) {
 | 
						|
    absl::container_internal::SanitizerUnpoisonObject(slot(i));
 | 
						|
    params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
  void value_destroy(const size_type i, allocator_type *alloc) {
 | 
						|
    params_type::destroy(alloc, slot(i));
 | 
						|
    absl::container_internal::SanitizerPoisonObject(slot(i));
 | 
						|
  }
 | 
						|
 | 
						|
  // Move n values starting at value i in this node into the values starting at
 | 
						|
  // value j in node x.
 | 
						|
  void uninitialized_move_n(const size_type n, const size_type i,
 | 
						|
                            const size_type j, btree_node *x,
 | 
						|
                            allocator_type *alloc) {
 | 
						|
    absl::container_internal::SanitizerUnpoisonMemoryRegion(
 | 
						|
        x->slot(j), n * sizeof(slot_type));
 | 
						|
    for (slot_type *src = slot(i), *end = src + n, *dest = x->slot(j);
 | 
						|
         src != end; ++src, ++dest) {
 | 
						|
      params_type::construct(alloc, dest, src);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Destroys a range of n values, starting at index i.
 | 
						|
  void value_destroy_n(const size_type i, const size_type n,
 | 
						|
                       allocator_type *alloc) {
 | 
						|
    for (int j = 0; j < n; ++j) {
 | 
						|
      value_destroy(i + j, alloc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename P>
 | 
						|
  friend class btree;
 | 
						|
  template <typename N, typename R, typename P>
 | 
						|
  friend struct btree_iterator;
 | 
						|
  friend class BtreeNodePeer;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Node, typename Reference, typename Pointer>
 | 
						|
struct btree_iterator {
 | 
						|
 private:
 | 
						|
  using key_type = typename Node::key_type;
 | 
						|
  using size_type = typename Node::size_type;
 | 
						|
  using params_type = typename Node::params_type;
 | 
						|
 | 
						|
  using node_type = Node;
 | 
						|
  using normal_node = typename std::remove_const<Node>::type;
 | 
						|
  using const_node = const Node;
 | 
						|
  using normal_pointer = typename params_type::pointer;
 | 
						|
  using normal_reference = typename params_type::reference;
 | 
						|
  using const_pointer = typename params_type::const_pointer;
 | 
						|
  using const_reference = typename params_type::const_reference;
 | 
						|
  using slot_type = typename params_type::slot_type;
 | 
						|
 | 
						|
  using iterator =
 | 
						|
      btree_iterator<normal_node, normal_reference, normal_pointer>;
 | 
						|
  using const_iterator =
 | 
						|
      btree_iterator<const_node, const_reference, const_pointer>;
 | 
						|
 | 
						|
 public:
 | 
						|
  // These aliases are public for std::iterator_traits.
 | 
						|
  using difference_type = typename Node::difference_type;
 | 
						|
  using value_type = typename params_type::value_type;
 | 
						|
  using pointer = Pointer;
 | 
						|
  using reference = Reference;
 | 
						|
  using iterator_category = std::bidirectional_iterator_tag;
 | 
						|
 | 
						|
  btree_iterator() : node(nullptr), position(-1) {}
 | 
						|
  btree_iterator(Node *n, int p) : node(n), position(p) {}
 | 
						|
 | 
						|
  // NOTE: this SFINAE allows for implicit conversions from iterator to
 | 
						|
  // const_iterator, but it specifically avoids defining copy constructors so
 | 
						|
  // that btree_iterator can be trivially copyable. This is for performance and
 | 
						|
  // binary size reasons.
 | 
						|
  template <typename N, typename R, typename P,
 | 
						|
            absl::enable_if_t<
 | 
						|
                std::is_same<btree_iterator<N, R, P>, iterator>::value &&
 | 
						|
                    std::is_same<btree_iterator, const_iterator>::value,
 | 
						|
                int> = 0>
 | 
						|
  btree_iterator(const btree_iterator<N, R, P> &x)  // NOLINT
 | 
						|
      : node(x.node), position(x.position) {}
 | 
						|
 | 
						|
 private:
 | 
						|
  // This SFINAE allows explicit conversions from const_iterator to
 | 
						|
  // iterator, but also avoids defining a copy constructor.
 | 
						|
  // NOTE: the const_cast is safe because this constructor is only called by
 | 
						|
  // non-const methods and the container owns the nodes.
 | 
						|
  template <typename N, typename R, typename P,
 | 
						|
            absl::enable_if_t<
 | 
						|
                std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
 | 
						|
                    std::is_same<btree_iterator, iterator>::value,
 | 
						|
                int> = 0>
 | 
						|
  explicit btree_iterator(const btree_iterator<N, R, P> &x)
 | 
						|
      : node(const_cast<node_type *>(x.node)), position(x.position) {}
 | 
						|
 | 
						|
  // Increment/decrement the iterator.
 | 
						|
  void increment() {
 | 
						|
    if (node->leaf() && ++position < node->count()) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    increment_slow();
 | 
						|
  }
 | 
						|
  void increment_slow();
 | 
						|
 | 
						|
  void decrement() {
 | 
						|
    if (node->leaf() && --position >= 0) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    decrement_slow();
 | 
						|
  }
 | 
						|
  void decrement_slow();
 | 
						|
 | 
						|
 public:
 | 
						|
  bool operator==(const const_iterator &x) const {
 | 
						|
    return node == x.node && position == x.position;
 | 
						|
  }
 | 
						|
  bool operator!=(const const_iterator &x) const {
 | 
						|
    return node != x.node || position != x.position;
 | 
						|
  }
 | 
						|
 | 
						|
  // Accessors for the key/value the iterator is pointing at.
 | 
						|
  reference operator*() const {
 | 
						|
    return node->value(position);
 | 
						|
  }
 | 
						|
  pointer operator->() const {
 | 
						|
    return &node->value(position);
 | 
						|
  }
 | 
						|
 | 
						|
  btree_iterator& operator++() {
 | 
						|
    increment();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  btree_iterator& operator--() {
 | 
						|
    decrement();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  btree_iterator operator++(int) {
 | 
						|
    btree_iterator tmp = *this;
 | 
						|
    ++*this;
 | 
						|
    return tmp;
 | 
						|
  }
 | 
						|
  btree_iterator operator--(int) {
 | 
						|
    btree_iterator tmp = *this;
 | 
						|
    --*this;
 | 
						|
    return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename Params>
 | 
						|
  friend class btree;
 | 
						|
  template <typename Tree>
 | 
						|
  friend class btree_container;
 | 
						|
  template <typename Tree>
 | 
						|
  friend class btree_set_container;
 | 
						|
  template <typename Tree>
 | 
						|
  friend class btree_map_container;
 | 
						|
  template <typename Tree>
 | 
						|
  friend class btree_multiset_container;
 | 
						|
  template <typename N, typename R, typename P>
 | 
						|
  friend struct btree_iterator;
 | 
						|
  template <typename TreeType, typename CheckerType>
 | 
						|
  friend class base_checker;
 | 
						|
 | 
						|
  const key_type &key() const { return node->key(position); }
 | 
						|
  slot_type *slot() { return node->slot(position); }
 | 
						|
 | 
						|
  // The node in the tree the iterator is pointing at.
 | 
						|
  Node *node;
 | 
						|
  // The position within the node of the tree the iterator is pointing at.
 | 
						|
  // TODO(ezb): make this a field_type
 | 
						|
  int position;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Params>
 | 
						|
class btree {
 | 
						|
  using node_type = btree_node<Params>;
 | 
						|
  using is_key_compare_to = typename Params::is_key_compare_to;
 | 
						|
 | 
						|
  // We use a static empty node for the root/leftmost/rightmost of empty btrees
 | 
						|
  // in order to avoid branching in begin()/end().
 | 
						|
  struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
 | 
						|
    using field_type = typename node_type::field_type;
 | 
						|
    node_type *parent;
 | 
						|
    field_type position = 0;
 | 
						|
    field_type start = 0;
 | 
						|
    field_type count = 0;
 | 
						|
    // max_count must be != kInternalNodeMaxCount (so that this node is regarded
 | 
						|
    // as a leaf node). max_count() is never called when the tree is empty.
 | 
						|
    field_type max_count = node_type::kInternalNodeMaxCount + 1;
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
    // MSVC has constexpr code generations bugs here.
 | 
						|
    EmptyNodeType() : parent(this) {}
 | 
						|
#else
 | 
						|
    constexpr EmptyNodeType(node_type *p) : parent(p) {}
 | 
						|
#endif
 | 
						|
  };
 | 
						|
 | 
						|
  static node_type *EmptyNode() {
 | 
						|
#ifdef _MSC_VER
 | 
						|
    static EmptyNodeType* empty_node = new EmptyNodeType;
 | 
						|
    // This assert fails on some other construction methods.
 | 
						|
    assert(empty_node->parent == empty_node);
 | 
						|
    return empty_node;
 | 
						|
#else
 | 
						|
    static constexpr EmptyNodeType empty_node(
 | 
						|
        const_cast<EmptyNodeType *>(&empty_node));
 | 
						|
    return const_cast<EmptyNodeType *>(&empty_node);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  enum {
 | 
						|
    kNodeValues = node_type::kNodeValues,
 | 
						|
    kMinNodeValues = kNodeValues / 2,
 | 
						|
  };
 | 
						|
 | 
						|
  struct node_stats {
 | 
						|
    using size_type = typename Params::size_type;
 | 
						|
 | 
						|
    node_stats(size_type l, size_type i)
 | 
						|
        : leaf_nodes(l),
 | 
						|
          internal_nodes(i) {
 | 
						|
    }
 | 
						|
 | 
						|
    node_stats& operator+=(const node_stats &x) {
 | 
						|
      leaf_nodes += x.leaf_nodes;
 | 
						|
      internal_nodes += x.internal_nodes;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    size_type leaf_nodes;
 | 
						|
    size_type internal_nodes;
 | 
						|
  };
 | 
						|
 | 
						|
 public:
 | 
						|
  using key_type = typename Params::key_type;
 | 
						|
  using value_type = typename Params::value_type;
 | 
						|
  using size_type = typename Params::size_type;
 | 
						|
  using difference_type = typename Params::difference_type;
 | 
						|
  using key_compare = typename Params::key_compare;
 | 
						|
  using value_compare = typename Params::value_compare;
 | 
						|
  using allocator_type = typename Params::allocator_type;
 | 
						|
  using reference = typename Params::reference;
 | 
						|
  using const_reference = typename Params::const_reference;
 | 
						|
  using pointer = typename Params::pointer;
 | 
						|
  using const_pointer = typename Params::const_pointer;
 | 
						|
  using iterator = btree_iterator<node_type, reference, pointer>;
 | 
						|
  using const_iterator = typename iterator::const_iterator;
 | 
						|
  using reverse_iterator = std::reverse_iterator<iterator>;
 | 
						|
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | 
						|
  using node_handle_type = node_handle<Params, Params, allocator_type>;
 | 
						|
 | 
						|
  // Internal types made public for use by btree_container types.
 | 
						|
  using params_type = Params;
 | 
						|
  using slot_type = typename Params::slot_type;
 | 
						|
 | 
						|
 private:
 | 
						|
  // For use in copy_or_move_values_in_order.
 | 
						|
  const value_type &maybe_move_from_iterator(const_iterator x) { return *x; }
 | 
						|
  value_type &&maybe_move_from_iterator(iterator x) { return std::move(*x); }
 | 
						|
 | 
						|
  // Copies or moves (depending on the template parameter) the values in
 | 
						|
  // x into this btree in their order in x. This btree must be empty before this
 | 
						|
  // method is called. This method is used in copy construction, copy
 | 
						|
  // assignment, and move assignment.
 | 
						|
  template <typename Btree>
 | 
						|
  void copy_or_move_values_in_order(Btree *x);
 | 
						|
 | 
						|
  // Validates that various assumptions/requirements are true at compile time.
 | 
						|
  constexpr static bool static_assert_validation();
 | 
						|
 | 
						|
 public:
 | 
						|
  btree(const key_compare &comp, const allocator_type &alloc);
 | 
						|
 | 
						|
  btree(const btree &x);
 | 
						|
  btree(btree &&x) noexcept
 | 
						|
      : root_(std::move(x.root_)),
 | 
						|
        rightmost_(absl::exchange(x.rightmost_, EmptyNode())),
 | 
						|
        size_(absl::exchange(x.size_, 0)) {
 | 
						|
    x.mutable_root() = EmptyNode();
 | 
						|
  }
 | 
						|
 | 
						|
  ~btree() {
 | 
						|
    // Put static_asserts in destructor to avoid triggering them before the type
 | 
						|
    // is complete.
 | 
						|
    static_assert(static_assert_validation(), "This call must be elided.");
 | 
						|
    clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign the contents of x to *this.
 | 
						|
  btree &operator=(const btree &x);
 | 
						|
  btree &operator=(btree &&x) noexcept;
 | 
						|
 | 
						|
  iterator begin() {
 | 
						|
    return iterator(leftmost(), 0);
 | 
						|
  }
 | 
						|
  const_iterator begin() const {
 | 
						|
    return const_iterator(leftmost(), 0);
 | 
						|
  }
 | 
						|
  iterator end() { return iterator(rightmost_, rightmost_->count()); }
 | 
						|
  const_iterator end() const {
 | 
						|
    return const_iterator(rightmost_, rightmost_->count());
 | 
						|
  }
 | 
						|
  reverse_iterator rbegin() {
 | 
						|
    return reverse_iterator(end());
 | 
						|
  }
 | 
						|
  const_reverse_iterator rbegin() const {
 | 
						|
    return const_reverse_iterator(end());
 | 
						|
  }
 | 
						|
  reverse_iterator rend() {
 | 
						|
    return reverse_iterator(begin());
 | 
						|
  }
 | 
						|
  const_reverse_iterator rend() const {
 | 
						|
    return const_reverse_iterator(begin());
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds the first element whose key is not less than key.
 | 
						|
  template <typename K>
 | 
						|
  iterator lower_bound(const K &key) {
 | 
						|
    return internal_end(internal_lower_bound(key));
 | 
						|
  }
 | 
						|
  template <typename K>
 | 
						|
  const_iterator lower_bound(const K &key) const {
 | 
						|
    return internal_end(internal_lower_bound(key));
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds the first element whose key is greater than key.
 | 
						|
  template <typename K>
 | 
						|
  iterator upper_bound(const K &key) {
 | 
						|
    return internal_end(internal_upper_bound(key));
 | 
						|
  }
 | 
						|
  template <typename K>
 | 
						|
  const_iterator upper_bound(const K &key) const {
 | 
						|
    return internal_end(internal_upper_bound(key));
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds the range of values which compare equal to key. The first member of
 | 
						|
  // the returned pair is equal to lower_bound(key). The second member pair of
 | 
						|
  // the pair is equal to upper_bound(key).
 | 
						|
  template <typename K>
 | 
						|
  std::pair<iterator, iterator> equal_range(const K &key) {
 | 
						|
    return {lower_bound(key), upper_bound(key)};
 | 
						|
  }
 | 
						|
  template <typename K>
 | 
						|
  std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
 | 
						|
    return {lower_bound(key), upper_bound(key)};
 | 
						|
  }
 | 
						|
 | 
						|
  // Inserts a value into the btree only if it does not already exist. The
 | 
						|
  // boolean return value indicates whether insertion succeeded or failed.
 | 
						|
  // Requirement: if `key` already exists in the btree, does not consume `args`.
 | 
						|
  // Requirement: `key` is never referenced after consuming `args`.
 | 
						|
  template <typename... Args>
 | 
						|
  std::pair<iterator, bool> insert_unique(const key_type &key, Args &&... args);
 | 
						|
 | 
						|
  // Inserts with hint. Checks to see if the value should be placed immediately
 | 
						|
  // before `position` in the tree. If so, then the insertion will take
 | 
						|
  // amortized constant time. If not, the insertion will take amortized
 | 
						|
  // logarithmic time as if a call to insert_unique() were made.
 | 
						|
  // Requirement: if `key` already exists in the btree, does not consume `args`.
 | 
						|
  // Requirement: `key` is never referenced after consuming `args`.
 | 
						|
  template <typename... Args>
 | 
						|
  std::pair<iterator, bool> insert_hint_unique(iterator position,
 | 
						|
                                               const key_type &key,
 | 
						|
                                               Args &&... args);
 | 
						|
 | 
						|
  // Insert a range of values into the btree.
 | 
						|
  template <typename InputIterator>
 | 
						|
  void insert_iterator_unique(InputIterator b, InputIterator e);
 | 
						|
 | 
						|
  // Inserts a value into the btree.
 | 
						|
  template <typename ValueType>
 | 
						|
  iterator insert_multi(const key_type &key, ValueType &&v);
 | 
						|
 | 
						|
  // Inserts a value into the btree.
 | 
						|
  template <typename ValueType>
 | 
						|
  iterator insert_multi(ValueType &&v) {
 | 
						|
    return insert_multi(params_type::key(v), std::forward<ValueType>(v));
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert with hint. Check to see if the value should be placed immediately
 | 
						|
  // before position in the tree. If it does, then the insertion will take
 | 
						|
  // amortized constant time. If not, the insertion will take amortized
 | 
						|
  // logarithmic time as if a call to insert_multi(v) were made.
 | 
						|
  template <typename ValueType>
 | 
						|
  iterator insert_hint_multi(iterator position, ValueType &&v);
 | 
						|
 | 
						|
  // Insert a range of values into the btree.
 | 
						|
  template <typename InputIterator>
 | 
						|
  void insert_iterator_multi(InputIterator b, InputIterator e);
 | 
						|
 | 
						|
  // Erase the specified iterator from the btree. The iterator must be valid
 | 
						|
  // (i.e. not equal to end()).  Return an iterator pointing to the node after
 | 
						|
  // the one that was erased (or end() if none exists).
 | 
						|
  // Requirement: does not read the value at `*iter`.
 | 
						|
  iterator erase(iterator iter);
 | 
						|
 | 
						|
  // Erases range. Returns the number of keys erased and an iterator pointing
 | 
						|
  // to the element after the last erased element.
 | 
						|
  std::pair<size_type, iterator> erase(iterator begin, iterator end);
 | 
						|
 | 
						|
  // Erases the specified key from the btree. Returns 1 if an element was
 | 
						|
  // erased and 0 otherwise.
 | 
						|
  template <typename K>
 | 
						|
  size_type erase_unique(const K &key);
 | 
						|
 | 
						|
  // Erases all of the entries matching the specified key from the
 | 
						|
  // btree. Returns the number of elements erased.
 | 
						|
  template <typename K>
 | 
						|
  size_type erase_multi(const K &key);
 | 
						|
 | 
						|
  // Finds the iterator corresponding to a key or returns end() if the key is
 | 
						|
  // not present.
 | 
						|
  template <typename K>
 | 
						|
  iterator find(const K &key) {
 | 
						|
    return internal_end(internal_find(key));
 | 
						|
  }
 | 
						|
  template <typename K>
 | 
						|
  const_iterator find(const K &key) const {
 | 
						|
    return internal_end(internal_find(key));
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a count of the number of times the key appears in the btree.
 | 
						|
  template <typename K>
 | 
						|
  size_type count_unique(const K &key) const {
 | 
						|
    const iterator begin = internal_find(key);
 | 
						|
    if (begin.node == nullptr) {
 | 
						|
      // The key doesn't exist in the tree.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  // Returns a count of the number of times the key appears in the btree.
 | 
						|
  template <typename K>
 | 
						|
  size_type count_multi(const K &key) const {
 | 
						|
    const auto range = equal_range(key);
 | 
						|
    return std::distance(range.first, range.second);
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear the btree, deleting all of the values it contains.
 | 
						|
  void clear();
 | 
						|
 | 
						|
  // Swap the contents of *this and x.
 | 
						|
  void swap(btree &x);
 | 
						|
 | 
						|
  const key_compare &key_comp() const noexcept {
 | 
						|
    return root_.template get<0>();
 | 
						|
  }
 | 
						|
  template <typename K, typename LK>
 | 
						|
  bool compare_keys(const K &x, const LK &y) const {
 | 
						|
    return compare_internal::compare_result_as_less_than(key_comp()(x, y));
 | 
						|
  }
 | 
						|
 | 
						|
  value_compare value_comp() const { return value_compare(key_comp()); }
 | 
						|
 | 
						|
  // Verifies the structure of the btree.
 | 
						|
  void verify() const;
 | 
						|
 | 
						|
  // Size routines.
 | 
						|
  size_type size() const { return size_; }
 | 
						|
  size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
 | 
						|
  bool empty() const { return size_ == 0; }
 | 
						|
 | 
						|
  // The height of the btree. An empty tree will have height 0.
 | 
						|
  size_type height() const {
 | 
						|
    size_type h = 0;
 | 
						|
    if (!empty()) {
 | 
						|
      // Count the length of the chain from the leftmost node up to the
 | 
						|
      // root. We actually count from the root back around to the level below
 | 
						|
      // the root, but the calculation is the same because of the circularity
 | 
						|
      // of that traversal.
 | 
						|
      const node_type *n = root();
 | 
						|
      do {
 | 
						|
        ++h;
 | 
						|
        n = n->parent();
 | 
						|
      } while (n != root());
 | 
						|
    }
 | 
						|
    return h;
 | 
						|
  }
 | 
						|
 | 
						|
  // The number of internal, leaf and total nodes used by the btree.
 | 
						|
  size_type leaf_nodes() const {
 | 
						|
    return internal_stats(root()).leaf_nodes;
 | 
						|
  }
 | 
						|
  size_type internal_nodes() const {
 | 
						|
    return internal_stats(root()).internal_nodes;
 | 
						|
  }
 | 
						|
  size_type nodes() const {
 | 
						|
    node_stats stats = internal_stats(root());
 | 
						|
    return stats.leaf_nodes + stats.internal_nodes;
 | 
						|
  }
 | 
						|
 | 
						|
  // The total number of bytes used by the btree.
 | 
						|
  size_type bytes_used() const {
 | 
						|
    node_stats stats = internal_stats(root());
 | 
						|
    if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
 | 
						|
      return sizeof(*this) +
 | 
						|
             node_type::LeafSize(root()->max_count());
 | 
						|
    } else {
 | 
						|
      return sizeof(*this) +
 | 
						|
             stats.leaf_nodes * node_type::LeafSize() +
 | 
						|
             stats.internal_nodes * node_type::InternalSize();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The average number of bytes used per value stored in the btree.
 | 
						|
  static double average_bytes_per_value() {
 | 
						|
    // Returns the number of bytes per value on a leaf node that is 75%
 | 
						|
    // full. Experimentally, this matches up nicely with the computed number of
 | 
						|
    // bytes per value in trees that had their values inserted in random order.
 | 
						|
    return node_type::LeafSize() / (kNodeValues * 0.75);
 | 
						|
  }
 | 
						|
 | 
						|
  // The fullness of the btree. Computed as the number of elements in the btree
 | 
						|
  // divided by the maximum number of elements a tree with the current number
 | 
						|
  // of nodes could hold. A value of 1 indicates perfect space
 | 
						|
  // utilization. Smaller values indicate space wastage.
 | 
						|
  // Returns 0 for empty trees.
 | 
						|
  double fullness() const {
 | 
						|
    if (empty()) return 0.0;
 | 
						|
    return static_cast<double>(size()) / (nodes() * kNodeValues);
 | 
						|
  }
 | 
						|
  // The overhead of the btree structure in bytes per node. Computed as the
 | 
						|
  // total number of bytes used by the btree minus the number of bytes used for
 | 
						|
  // storing elements divided by the number of elements.
 | 
						|
  // Returns 0 for empty trees.
 | 
						|
  double overhead() const {
 | 
						|
    if (empty()) return 0.0;
 | 
						|
    return (bytes_used() - size() * sizeof(value_type)) /
 | 
						|
           static_cast<double>(size());
 | 
						|
  }
 | 
						|
 | 
						|
  // The allocator used by the btree.
 | 
						|
  allocator_type get_allocator() const {
 | 
						|
    return allocator();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Internal accessor routines.
 | 
						|
  node_type *root() { return root_.template get<2>(); }
 | 
						|
  const node_type *root() const { return root_.template get<2>(); }
 | 
						|
  node_type *&mutable_root() noexcept { return root_.template get<2>(); }
 | 
						|
  key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
 | 
						|
 | 
						|
  // The leftmost node is stored as the parent of the root node.
 | 
						|
  node_type *leftmost() { return root()->parent(); }
 | 
						|
  const node_type *leftmost() const { return root()->parent(); }
 | 
						|
 | 
						|
  // Allocator routines.
 | 
						|
  allocator_type *mutable_allocator() noexcept {
 | 
						|
    return &root_.template get<1>();
 | 
						|
  }
 | 
						|
  const allocator_type &allocator() const noexcept {
 | 
						|
    return root_.template get<1>();
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocates a correctly aligned node of at least size bytes using the
 | 
						|
  // allocator.
 | 
						|
  node_type *allocate(const size_type size) {
 | 
						|
    return reinterpret_cast<node_type *>(
 | 
						|
        absl::container_internal::Allocate<node_type::Alignment()>(
 | 
						|
            mutable_allocator(), size));
 | 
						|
  }
 | 
						|
 | 
						|
  // Node creation/deletion routines.
 | 
						|
  node_type* new_internal_node(node_type *parent) {
 | 
						|
    node_type *p = allocate(node_type::InternalSize());
 | 
						|
    return node_type::init_internal(p, parent);
 | 
						|
  }
 | 
						|
  node_type* new_leaf_node(node_type *parent) {
 | 
						|
    node_type *p = allocate(node_type::LeafSize());
 | 
						|
    return node_type::init_leaf(p, parent, kNodeValues);
 | 
						|
  }
 | 
						|
  node_type *new_leaf_root_node(const int max_count) {
 | 
						|
    node_type *p = allocate(node_type::LeafSize(max_count));
 | 
						|
    return node_type::init_leaf(p, p, max_count);
 | 
						|
  }
 | 
						|
 | 
						|
  // Deletion helper routines.
 | 
						|
  void erase_same_node(iterator begin, iterator end);
 | 
						|
  iterator erase_from_leaf_node(iterator begin, size_type to_erase);
 | 
						|
  iterator rebalance_after_delete(iterator iter);
 | 
						|
 | 
						|
  // Deallocates a node of a certain size in bytes using the allocator.
 | 
						|
  void deallocate(const size_type size, node_type *node) {
 | 
						|
    absl::container_internal::Deallocate<node_type::Alignment()>(
 | 
						|
        mutable_allocator(), node, size);
 | 
						|
  }
 | 
						|
 | 
						|
  void delete_internal_node(node_type *node) {
 | 
						|
    node->destroy(mutable_allocator());
 | 
						|
    deallocate(node_type::InternalSize(), node);
 | 
						|
  }
 | 
						|
  void delete_leaf_node(node_type *node) {
 | 
						|
    node->destroy(mutable_allocator());
 | 
						|
    deallocate(node_type::LeafSize(node->max_count()), node);
 | 
						|
  }
 | 
						|
 | 
						|
  // Rebalances or splits the node iter points to.
 | 
						|
  void rebalance_or_split(iterator *iter);
 | 
						|
 | 
						|
  // Merges the values of left, right and the delimiting key on their parent
 | 
						|
  // onto left, removing the delimiting key and deleting right.
 | 
						|
  void merge_nodes(node_type *left, node_type *right);
 | 
						|
 | 
						|
  // Tries to merge node with its left or right sibling, and failing that,
 | 
						|
  // rebalance with its left or right sibling. Returns true if a merge
 | 
						|
  // occurred, at which point it is no longer valid to access node. Returns
 | 
						|
  // false if no merging took place.
 | 
						|
  bool try_merge_or_rebalance(iterator *iter);
 | 
						|
 | 
						|
  // Tries to shrink the height of the tree by 1.
 | 
						|
  void try_shrink();
 | 
						|
 | 
						|
  iterator internal_end(iterator iter) {
 | 
						|
    return iter.node != nullptr ? iter : end();
 | 
						|
  }
 | 
						|
  const_iterator internal_end(const_iterator iter) const {
 | 
						|
    return iter.node != nullptr ? iter : end();
 | 
						|
  }
 | 
						|
 | 
						|
  // Emplaces a value into the btree immediately before iter. Requires that
 | 
						|
  // key(v) <= iter.key() and (--iter).key() <= key(v).
 | 
						|
  template <typename... Args>
 | 
						|
  iterator internal_emplace(iterator iter, Args &&... args);
 | 
						|
 | 
						|
  // Returns an iterator pointing to the first value >= the value "iter" is
 | 
						|
  // pointing at. Note that "iter" might be pointing to an invalid location as
 | 
						|
  // iter.position == iter.node->count(). This routine simply moves iter up in
 | 
						|
  // the tree to a valid location.
 | 
						|
  // Requires: iter.node is non-null.
 | 
						|
  template <typename IterType>
 | 
						|
  static IterType internal_last(IterType iter);
 | 
						|
 | 
						|
  // Returns an iterator pointing to the leaf position at which key would
 | 
						|
  // reside in the tree. We provide 2 versions of internal_locate. The first
 | 
						|
  // version uses a less-than comparator and is incapable of distinguishing when
 | 
						|
  // there is an exact match. The second version is for the key-compare-to
 | 
						|
  // specialization and distinguishes exact matches. The key-compare-to
 | 
						|
  // specialization allows the caller to avoid a subsequent comparison to
 | 
						|
  // determine if an exact match was made, which is important for keys with
 | 
						|
  // expensive comparison, such as strings.
 | 
						|
  template <typename K>
 | 
						|
  SearchResult<iterator, is_key_compare_to::value> internal_locate(
 | 
						|
      const K &key) const;
 | 
						|
 | 
						|
  template <typename K>
 | 
						|
  SearchResult<iterator, false> internal_locate_impl(
 | 
						|
      const K &key, std::false_type /* IsCompareTo */) const;
 | 
						|
 | 
						|
  template <typename K>
 | 
						|
  SearchResult<iterator, true> internal_locate_impl(
 | 
						|
      const K &key, std::true_type /* IsCompareTo */) const;
 | 
						|
 | 
						|
  // Internal routine which implements lower_bound().
 | 
						|
  template <typename K>
 | 
						|
  iterator internal_lower_bound(const K &key) const;
 | 
						|
 | 
						|
  // Internal routine which implements upper_bound().
 | 
						|
  template <typename K>
 | 
						|
  iterator internal_upper_bound(const K &key) const;
 | 
						|
 | 
						|
  // Internal routine which implements find().
 | 
						|
  template <typename K>
 | 
						|
  iterator internal_find(const K &key) const;
 | 
						|
 | 
						|
  // Deletes a node and all of its children.
 | 
						|
  void internal_clear(node_type *node);
 | 
						|
 | 
						|
  // Verifies the tree structure of node.
 | 
						|
  int internal_verify(const node_type *node,
 | 
						|
                      const key_type *lo, const key_type *hi) const;
 | 
						|
 | 
						|
  node_stats internal_stats(const node_type *node) const {
 | 
						|
    // The root can be a static empty node.
 | 
						|
    if (node == nullptr || (node == root() && empty())) {
 | 
						|
      return node_stats(0, 0);
 | 
						|
    }
 | 
						|
    if (node->leaf()) {
 | 
						|
      return node_stats(1, 0);
 | 
						|
    }
 | 
						|
    node_stats res(0, 1);
 | 
						|
    for (int i = 0; i <= node->count(); ++i) {
 | 
						|
      res += internal_stats(node->child(i));
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
 public:
 | 
						|
  // Exposed only for tests.
 | 
						|
  static bool testonly_uses_linear_node_search() {
 | 
						|
    return node_type::testonly_uses_linear_node_search();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // We use compressed tuple in order to save space because key_compare and
 | 
						|
  // allocator_type are usually empty.
 | 
						|
  absl::container_internal::CompressedTuple<key_compare, allocator_type,
 | 
						|
                                            node_type *>
 | 
						|
      root_;
 | 
						|
 | 
						|
  // A pointer to the rightmost node. Note that the leftmost node is stored as
 | 
						|
  // the root's parent.
 | 
						|
  node_type *rightmost_;
 | 
						|
 | 
						|
  // Number of values.
 | 
						|
  size_type size_;
 | 
						|
};
 | 
						|
 | 
						|
////
 | 
						|
// btree_node methods
 | 
						|
template <typename P>
 | 
						|
template <typename... Args>
 | 
						|
inline void btree_node<P>::emplace_value(const size_type i,
 | 
						|
                                         allocator_type *alloc,
 | 
						|
                                         Args &&... args) {
 | 
						|
  assert(i <= count());
 | 
						|
  // Shift old values to create space for new value and then construct it in
 | 
						|
  // place.
 | 
						|
  if (i < count()) {
 | 
						|
    value_init(count(), alloc, slot(count() - 1));
 | 
						|
    for (size_type j = count() - 1; j > i; --j)
 | 
						|
      params_type::move(alloc, slot(j - 1), slot(j));
 | 
						|
    value_destroy(i, alloc);
 | 
						|
  }
 | 
						|
  value_init(i, alloc, std::forward<Args>(args)...);
 | 
						|
  set_count(count() + 1);
 | 
						|
 | 
						|
  if (!leaf() && count() > i + 1) {
 | 
						|
    for (int j = count(); j > i + 1; --j) {
 | 
						|
      set_child(j, child(j - 1));
 | 
						|
    }
 | 
						|
    clear_child(i + 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
 | 
						|
  if (!leaf() && count() > i + 1) {
 | 
						|
    assert(child(i + 1)->count() == 0);
 | 
						|
    for (size_type j = i + 1; j < count(); ++j) {
 | 
						|
      set_child(j, child(j + 1));
 | 
						|
    }
 | 
						|
    clear_child(count());
 | 
						|
  }
 | 
						|
 | 
						|
  remove_values_ignore_children(i, /*to_erase=*/1, alloc);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
inline void btree_node<P>::remove_values_ignore_children(
 | 
						|
    const int i, const int to_erase, allocator_type *alloc) {
 | 
						|
  params_type::move(alloc, slot(i + to_erase), slot(count()), slot(i));
 | 
						|
  value_destroy_n(count() - to_erase, to_erase, alloc);
 | 
						|
  set_count(count() - to_erase);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree_node<P>::rebalance_right_to_left(const int to_move,
 | 
						|
                                            btree_node *right,
 | 
						|
                                            allocator_type *alloc) {
 | 
						|
  assert(parent() == right->parent());
 | 
						|
  assert(position() + 1 == right->position());
 | 
						|
  assert(right->count() >= count());
 | 
						|
  assert(to_move >= 1);
 | 
						|
  assert(to_move <= right->count());
 | 
						|
 | 
						|
  // 1) Move the delimiting value in the parent to the left node.
 | 
						|
  value_init(count(), alloc, parent()->slot(position()));
 | 
						|
 | 
						|
  // 2) Move the (to_move - 1) values from the right node to the left node.
 | 
						|
  right->uninitialized_move_n(to_move - 1, 0, count() + 1, this, alloc);
 | 
						|
 | 
						|
  // 3) Move the new delimiting value to the parent from the right node.
 | 
						|
  params_type::move(alloc, right->slot(to_move - 1),
 | 
						|
                    parent()->slot(position()));
 | 
						|
 | 
						|
  // 4) Shift the values in the right node to their correct position.
 | 
						|
  params_type::move(alloc, right->slot(to_move), right->slot(right->count()),
 | 
						|
                    right->slot(0));
 | 
						|
 | 
						|
  // 5) Destroy the now-empty to_move entries in the right node.
 | 
						|
  right->value_destroy_n(right->count() - to_move, to_move, alloc);
 | 
						|
 | 
						|
  if (!leaf()) {
 | 
						|
    // Move the child pointers from the right to the left node.
 | 
						|
    for (int i = 0; i < to_move; ++i) {
 | 
						|
      init_child(count() + i + 1, right->child(i));
 | 
						|
    }
 | 
						|
    for (int i = 0; i <= right->count() - to_move; ++i) {
 | 
						|
      assert(i + to_move <= right->max_count());
 | 
						|
      right->init_child(i, right->child(i + to_move));
 | 
						|
      right->clear_child(i + to_move);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fixup the counts on the left and right nodes.
 | 
						|
  set_count(count() + to_move);
 | 
						|
  right->set_count(right->count() - to_move);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree_node<P>::rebalance_left_to_right(const int to_move,
 | 
						|
                                            btree_node *right,
 | 
						|
                                            allocator_type *alloc) {
 | 
						|
  assert(parent() == right->parent());
 | 
						|
  assert(position() + 1 == right->position());
 | 
						|
  assert(count() >= right->count());
 | 
						|
  assert(to_move >= 1);
 | 
						|
  assert(to_move <= count());
 | 
						|
 | 
						|
  // Values in the right node are shifted to the right to make room for the
 | 
						|
  // new to_move values. Then, the delimiting value in the parent and the
 | 
						|
  // other (to_move - 1) values in the left node are moved into the right node.
 | 
						|
  // Lastly, a new delimiting value is moved from the left node into the
 | 
						|
  // parent, and the remaining empty left node entries are destroyed.
 | 
						|
 | 
						|
  if (right->count() >= to_move) {
 | 
						|
    // The original location of the right->count() values are sufficient to hold
 | 
						|
    // the new to_move entries from the parent and left node.
 | 
						|
 | 
						|
    // 1) Shift existing values in the right node to their correct positions.
 | 
						|
    right->uninitialized_move_n(to_move, right->count() - to_move,
 | 
						|
                                right->count(), right, alloc);
 | 
						|
    for (slot_type *src = right->slot(right->count() - to_move - 1),
 | 
						|
                   *dest = right->slot(right->count() - 1),
 | 
						|
                   *end = right->slot(0);
 | 
						|
         src >= end; --src, --dest) {
 | 
						|
      params_type::move(alloc, src, dest);
 | 
						|
    }
 | 
						|
 | 
						|
    // 2) Move the delimiting value in the parent to the right node.
 | 
						|
    params_type::move(alloc, parent()->slot(position()),
 | 
						|
                      right->slot(to_move - 1));
 | 
						|
 | 
						|
    // 3) Move the (to_move - 1) values from the left node to the right node.
 | 
						|
    params_type::move(alloc, slot(count() - (to_move - 1)), slot(count()),
 | 
						|
                      right->slot(0));
 | 
						|
  } else {
 | 
						|
    // The right node does not have enough initialized space to hold the new
 | 
						|
    // to_move entries, so part of them will move to uninitialized space.
 | 
						|
 | 
						|
    // 1) Shift existing values in the right node to their correct positions.
 | 
						|
    right->uninitialized_move_n(right->count(), 0, to_move, right, alloc);
 | 
						|
 | 
						|
    // 2) Move the delimiting value in the parent to the right node.
 | 
						|
    right->value_init(to_move - 1, alloc, parent()->slot(position()));
 | 
						|
 | 
						|
    // 3) Move the (to_move - 1) values from the left node to the right node.
 | 
						|
    const size_type uninitialized_remaining = to_move - right->count() - 1;
 | 
						|
    uninitialized_move_n(uninitialized_remaining,
 | 
						|
                         count() - uninitialized_remaining, right->count(),
 | 
						|
                         right, alloc);
 | 
						|
    params_type::move(alloc, slot(count() - (to_move - 1)),
 | 
						|
                      slot(count() - uninitialized_remaining), right->slot(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // 4) Move the new delimiting value to the parent from the left node.
 | 
						|
  params_type::move(alloc, slot(count() - to_move), parent()->slot(position()));
 | 
						|
 | 
						|
  // 5) Destroy the now-empty to_move entries in the left node.
 | 
						|
  value_destroy_n(count() - to_move, to_move, alloc);
 | 
						|
 | 
						|
  if (!leaf()) {
 | 
						|
    // Move the child pointers from the left to the right node.
 | 
						|
    for (int i = right->count(); i >= 0; --i) {
 | 
						|
      right->init_child(i + to_move, right->child(i));
 | 
						|
      right->clear_child(i);
 | 
						|
    }
 | 
						|
    for (int i = 1; i <= to_move; ++i) {
 | 
						|
      right->init_child(i - 1, child(count() - to_move + i));
 | 
						|
      clear_child(count() - to_move + i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fixup the counts on the left and right nodes.
 | 
						|
  set_count(count() - to_move);
 | 
						|
  right->set_count(right->count() + to_move);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree_node<P>::split(const int insert_position, btree_node *dest,
 | 
						|
                          allocator_type *alloc) {
 | 
						|
  assert(dest->count() == 0);
 | 
						|
  assert(max_count() == kNodeValues);
 | 
						|
 | 
						|
  // We bias the split based on the position being inserted. If we're
 | 
						|
  // inserting at the beginning of the left node then bias the split to put
 | 
						|
  // more values on the right node. If we're inserting at the end of the
 | 
						|
  // right node then bias the split to put more values on the left node.
 | 
						|
  if (insert_position == 0) {
 | 
						|
    dest->set_count(count() - 1);
 | 
						|
  } else if (insert_position == kNodeValues) {
 | 
						|
    dest->set_count(0);
 | 
						|
  } else {
 | 
						|
    dest->set_count(count() / 2);
 | 
						|
  }
 | 
						|
  set_count(count() - dest->count());
 | 
						|
  assert(count() >= 1);
 | 
						|
 | 
						|
  // Move values from the left sibling to the right sibling.
 | 
						|
  uninitialized_move_n(dest->count(), count(), 0, dest, alloc);
 | 
						|
 | 
						|
  // Destroy the now-empty entries in the left node.
 | 
						|
  value_destroy_n(count(), dest->count(), alloc);
 | 
						|
 | 
						|
  // The split key is the largest value in the left sibling.
 | 
						|
  set_count(count() - 1);
 | 
						|
  parent()->emplace_value(position(), alloc, slot(count()));
 | 
						|
  value_destroy(count(), alloc);
 | 
						|
  parent()->init_child(position() + 1, dest);
 | 
						|
 | 
						|
  if (!leaf()) {
 | 
						|
    for (int i = 0; i <= dest->count(); ++i) {
 | 
						|
      assert(child(count() + i + 1) != nullptr);
 | 
						|
      dest->init_child(i, child(count() + i + 1));
 | 
						|
      clear_child(count() + i + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
 | 
						|
  assert(parent() == src->parent());
 | 
						|
  assert(position() + 1 == src->position());
 | 
						|
 | 
						|
  // Move the delimiting value to the left node.
 | 
						|
  value_init(count(), alloc, parent()->slot(position()));
 | 
						|
 | 
						|
  // Move the values from the right to the left node.
 | 
						|
  src->uninitialized_move_n(src->count(), 0, count() + 1, this, alloc);
 | 
						|
 | 
						|
  // Destroy the now-empty entries in the right node.
 | 
						|
  src->value_destroy_n(0, src->count(), alloc);
 | 
						|
 | 
						|
  if (!leaf()) {
 | 
						|
    // Move the child pointers from the right to the left node.
 | 
						|
    for (int i = 0; i <= src->count(); ++i) {
 | 
						|
      init_child(count() + i + 1, src->child(i));
 | 
						|
      src->clear_child(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fixup the counts on the src and dest nodes.
 | 
						|
  set_count(1 + count() + src->count());
 | 
						|
  src->set_count(0);
 | 
						|
 | 
						|
  // Remove the value on the parent node.
 | 
						|
  parent()->remove_value(position(), alloc);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
 | 
						|
  using std::swap;
 | 
						|
  assert(leaf() == x->leaf());
 | 
						|
 | 
						|
  // Determine which is the smaller/larger node.
 | 
						|
  btree_node *smaller = this, *larger = x;
 | 
						|
  if (smaller->count() > larger->count()) {
 | 
						|
    swap(smaller, larger);
 | 
						|
  }
 | 
						|
 | 
						|
  // Swap the values.
 | 
						|
  for (slot_type *a = smaller->slot(0), *b = larger->slot(0),
 | 
						|
                 *end = a + smaller->count();
 | 
						|
       a != end; ++a, ++b) {
 | 
						|
    params_type::swap(alloc, a, b);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move values that can't be swapped.
 | 
						|
  const size_type to_move = larger->count() - smaller->count();
 | 
						|
  larger->uninitialized_move_n(to_move, smaller->count(), smaller->count(),
 | 
						|
                               smaller, alloc);
 | 
						|
  larger->value_destroy_n(smaller->count(), to_move, alloc);
 | 
						|
 | 
						|
  if (!leaf()) {
 | 
						|
    // Swap the child pointers.
 | 
						|
    std::swap_ranges(&smaller->mutable_child(0),
 | 
						|
                     &smaller->mutable_child(smaller->count() + 1),
 | 
						|
                     &larger->mutable_child(0));
 | 
						|
    // Update swapped children's parent pointers.
 | 
						|
    int i = 0;
 | 
						|
    for (; i <= smaller->count(); ++i) {
 | 
						|
      smaller->child(i)->set_parent(smaller);
 | 
						|
      larger->child(i)->set_parent(larger);
 | 
						|
    }
 | 
						|
    // Move the child pointers that couldn't be swapped.
 | 
						|
    for (; i <= larger->count(); ++i) {
 | 
						|
      smaller->init_child(i, larger->child(i));
 | 
						|
      larger->clear_child(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Swap the counts.
 | 
						|
  swap(mutable_count(), x->mutable_count());
 | 
						|
}
 | 
						|
 | 
						|
////
 | 
						|
// btree_iterator methods
 | 
						|
template <typename N, typename R, typename P>
 | 
						|
void btree_iterator<N, R, P>::increment_slow() {
 | 
						|
  if (node->leaf()) {
 | 
						|
    assert(position >= node->count());
 | 
						|
    btree_iterator save(*this);
 | 
						|
    while (position == node->count() && !node->is_root()) {
 | 
						|
      assert(node->parent()->child(node->position()) == node);
 | 
						|
      position = node->position();
 | 
						|
      node = node->parent();
 | 
						|
    }
 | 
						|
    if (position == node->count()) {
 | 
						|
      *this = save;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(position < node->count());
 | 
						|
    node = node->child(position + 1);
 | 
						|
    while (!node->leaf()) {
 | 
						|
      node = node->child(0);
 | 
						|
    }
 | 
						|
    position = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename N, typename R, typename P>
 | 
						|
void btree_iterator<N, R, P>::decrement_slow() {
 | 
						|
  if (node->leaf()) {
 | 
						|
    assert(position <= -1);
 | 
						|
    btree_iterator save(*this);
 | 
						|
    while (position < 0 && !node->is_root()) {
 | 
						|
      assert(node->parent()->child(node->position()) == node);
 | 
						|
      position = node->position() - 1;
 | 
						|
      node = node->parent();
 | 
						|
    }
 | 
						|
    if (position < 0) {
 | 
						|
      *this = save;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(position >= 0);
 | 
						|
    node = node->child(position);
 | 
						|
    while (!node->leaf()) {
 | 
						|
      node = node->child(node->count());
 | 
						|
    }
 | 
						|
    position = node->count() - 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
////
 | 
						|
// btree methods
 | 
						|
template <typename P>
 | 
						|
template <typename Btree>
 | 
						|
void btree<P>::copy_or_move_values_in_order(Btree *x) {
 | 
						|
  static_assert(std::is_same<btree, Btree>::value ||
 | 
						|
                    std::is_same<const btree, Btree>::value,
 | 
						|
                "Btree type must be same or const.");
 | 
						|
  assert(empty());
 | 
						|
 | 
						|
  // We can avoid key comparisons because we know the order of the
 | 
						|
  // values is the same order we'll store them in.
 | 
						|
  auto iter = x->begin();
 | 
						|
  if (iter == x->end()) return;
 | 
						|
  insert_multi(maybe_move_from_iterator(iter));
 | 
						|
  ++iter;
 | 
						|
  for (; iter != x->end(); ++iter) {
 | 
						|
    // If the btree is not empty, we can just insert the new value at the end
 | 
						|
    // of the tree.
 | 
						|
    internal_emplace(end(), maybe_move_from_iterator(iter));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
constexpr bool btree<P>::static_assert_validation() {
 | 
						|
  static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
 | 
						|
                "Key comparison must be nothrow copy constructible");
 | 
						|
  static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
 | 
						|
                "Allocator must be nothrow copy constructible");
 | 
						|
  static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
 | 
						|
                "iterator not trivially copyable.");
 | 
						|
 | 
						|
  // Note: We assert that kTargetValues, which is computed from
 | 
						|
  // Params::kTargetNodeSize, must fit the node_type::field_type.
 | 
						|
  static_assert(
 | 
						|
      kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))),
 | 
						|
      "target node size too large");
 | 
						|
 | 
						|
  // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
 | 
						|
  using compare_result_type =
 | 
						|
      absl::result_of_t<key_compare(key_type, key_type)>;
 | 
						|
  static_assert(
 | 
						|
      std::is_same<compare_result_type, bool>::value ||
 | 
						|
          std::is_convertible<compare_result_type, absl::weak_ordering>::value,
 | 
						|
      "key comparison function must return absl::{weak,strong}_ordering or "
 | 
						|
      "bool.");
 | 
						|
 | 
						|
  // Test the assumption made in setting kNodeValueSpace.
 | 
						|
  static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
 | 
						|
                "node space assumption incorrect");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
 | 
						|
    : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
btree<P>::btree(const btree &x) : btree(x.key_comp(), x.allocator()) {
 | 
						|
  copy_or_move_values_in_order(&x);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename... Args>
 | 
						|
auto btree<P>::insert_unique(const key_type &key, Args &&... args)
 | 
						|
    -> std::pair<iterator, bool> {
 | 
						|
  if (empty()) {
 | 
						|
    mutable_root() = rightmost_ = new_leaf_root_node(1);
 | 
						|
  }
 | 
						|
 | 
						|
  auto res = internal_locate(key);
 | 
						|
  iterator &iter = res.value;
 | 
						|
 | 
						|
  if (res.HasMatch()) {
 | 
						|
    if (res.IsEq()) {
 | 
						|
      // The key already exists in the tree, do nothing.
 | 
						|
      return {iter, false};
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    iterator last = internal_last(iter);
 | 
						|
    if (last.node && !compare_keys(key, last.key())) {
 | 
						|
      // The key already exists in the tree, do nothing.
 | 
						|
      return {last, false};
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return {internal_emplace(iter, std::forward<Args>(args)...), true};
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename... Args>
 | 
						|
inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key,
 | 
						|
                                         Args &&... args)
 | 
						|
    -> std::pair<iterator, bool> {
 | 
						|
  if (!empty()) {
 | 
						|
    if (position == end() || compare_keys(key, position.key())) {
 | 
						|
      iterator prev = position;
 | 
						|
      if (position == begin() || compare_keys((--prev).key(), key)) {
 | 
						|
        // prev.key() < key < position.key()
 | 
						|
        return {internal_emplace(position, std::forward<Args>(args)...), true};
 | 
						|
      }
 | 
						|
    } else if (compare_keys(position.key(), key)) {
 | 
						|
      ++position;
 | 
						|
      if (position == end() || compare_keys(key, position.key())) {
 | 
						|
        // {original `position`}.key() < key < {current `position`}.key()
 | 
						|
        return {internal_emplace(position, std::forward<Args>(args)...), true};
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // position.key() == key
 | 
						|
      return {position, false};
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return insert_unique(key, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename InputIterator>
 | 
						|
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e) {
 | 
						|
  for (; b != e; ++b) {
 | 
						|
    insert_hint_unique(end(), params_type::key(*b), *b);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename ValueType>
 | 
						|
auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
 | 
						|
  if (empty()) {
 | 
						|
    mutable_root() = rightmost_ = new_leaf_root_node(1);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator iter = internal_upper_bound(key);
 | 
						|
  if (iter.node == nullptr) {
 | 
						|
    iter = end();
 | 
						|
  }
 | 
						|
  return internal_emplace(iter, std::forward<ValueType>(v));
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename ValueType>
 | 
						|
auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
 | 
						|
  if (!empty()) {
 | 
						|
    const key_type &key = params_type::key(v);
 | 
						|
    if (position == end() || !compare_keys(position.key(), key)) {
 | 
						|
      iterator prev = position;
 | 
						|
      if (position == begin() || !compare_keys(key, (--prev).key())) {
 | 
						|
        // prev.key() <= key <= position.key()
 | 
						|
        return internal_emplace(position, std::forward<ValueType>(v));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      iterator next = position;
 | 
						|
      ++next;
 | 
						|
      if (next == end() || !compare_keys(next.key(), key)) {
 | 
						|
        // position.key() < key <= next.key()
 | 
						|
        return internal_emplace(next, std::forward<ValueType>(v));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return insert_multi(std::forward<ValueType>(v));
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename InputIterator>
 | 
						|
void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
 | 
						|
  for (; b != e; ++b) {
 | 
						|
    insert_hint_multi(end(), *b);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
auto btree<P>::operator=(const btree &x) -> btree & {
 | 
						|
  if (this != &x) {
 | 
						|
    clear();
 | 
						|
 | 
						|
    *mutable_key_comp() = x.key_comp();
 | 
						|
    if (absl::allocator_traits<
 | 
						|
            allocator_type>::propagate_on_container_copy_assignment::value) {
 | 
						|
      *mutable_allocator() = x.allocator();
 | 
						|
    }
 | 
						|
 | 
						|
    copy_or_move_values_in_order(&x);
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
auto btree<P>::operator=(btree &&x) noexcept -> btree & {
 | 
						|
  if (this != &x) {
 | 
						|
    clear();
 | 
						|
 | 
						|
    using std::swap;
 | 
						|
    if (absl::allocator_traits<
 | 
						|
            allocator_type>::propagate_on_container_copy_assignment::value) {
 | 
						|
      // Note: `root_` also contains the allocator and the key comparator.
 | 
						|
      swap(root_, x.root_);
 | 
						|
      swap(rightmost_, x.rightmost_);
 | 
						|
      swap(size_, x.size_);
 | 
						|
    } else {
 | 
						|
      if (allocator() == x.allocator()) {
 | 
						|
        swap(mutable_root(), x.mutable_root());
 | 
						|
        swap(*mutable_key_comp(), *x.mutable_key_comp());
 | 
						|
        swap(rightmost_, x.rightmost_);
 | 
						|
        swap(size_, x.size_);
 | 
						|
      } else {
 | 
						|
        // We aren't allowed to propagate the allocator and the allocator is
 | 
						|
        // different so we can't take over its memory. We must move each element
 | 
						|
        // individually. We need both `x` and `this` to have `x`s key comparator
 | 
						|
        // while moving the values so we can't swap the key comparators.
 | 
						|
        *mutable_key_comp() = x.key_comp();
 | 
						|
        copy_or_move_values_in_order(&x);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
auto btree<P>::erase(iterator iter) -> iterator {
 | 
						|
  bool internal_delete = false;
 | 
						|
  if (!iter.node->leaf()) {
 | 
						|
    // Deletion of a value on an internal node. First, move the largest value
 | 
						|
    // from our left child here, then delete that position (in remove_value()
 | 
						|
    // below). We can get to the largest value from our left child by
 | 
						|
    // decrementing iter.
 | 
						|
    iterator internal_iter(iter);
 | 
						|
    --iter;
 | 
						|
    assert(iter.node->leaf());
 | 
						|
    params_type::move(mutable_allocator(), iter.node->slot(iter.position),
 | 
						|
                      internal_iter.node->slot(internal_iter.position));
 | 
						|
    internal_delete = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the key from the leaf.
 | 
						|
  iter.node->remove_value(iter.position, mutable_allocator());
 | 
						|
  --size_;
 | 
						|
 | 
						|
  // We want to return the next value after the one we just erased. If we
 | 
						|
  // erased from an internal node (internal_delete == true), then the next
 | 
						|
  // value is ++(++iter). If we erased from a leaf node (internal_delete ==
 | 
						|
  // false) then the next value is ++iter. Note that ++iter may point to an
 | 
						|
  // internal node and the value in the internal node may move to a leaf node
 | 
						|
  // (iter.node) when rebalancing is performed at the leaf level.
 | 
						|
 | 
						|
  iterator res = rebalance_after_delete(iter);
 | 
						|
 | 
						|
  // If we erased from an internal node, advance the iterator.
 | 
						|
  if (internal_delete) {
 | 
						|
    ++res;
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
 | 
						|
  // Merge/rebalance as we walk back up the tree.
 | 
						|
  iterator res(iter);
 | 
						|
  bool first_iteration = true;
 | 
						|
  for (;;) {
 | 
						|
    if (iter.node == root()) {
 | 
						|
      try_shrink();
 | 
						|
      if (empty()) {
 | 
						|
        return end();
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (iter.node->count() >= kMinNodeValues) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    bool merged = try_merge_or_rebalance(&iter);
 | 
						|
    // On the first iteration, we should update `res` with `iter` because `res`
 | 
						|
    // may have been invalidated.
 | 
						|
    if (first_iteration) {
 | 
						|
      res = iter;
 | 
						|
      first_iteration = false;
 | 
						|
    }
 | 
						|
    if (!merged) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    iter.position = iter.node->position();
 | 
						|
    iter.node = iter.node->parent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust our return value. If we're pointing at the end of a node, advance
 | 
						|
  // the iterator.
 | 
						|
  if (res.position == res.node->count()) {
 | 
						|
    res.position = res.node->count() - 1;
 | 
						|
    ++res;
 | 
						|
  }
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
auto btree<P>::erase(iterator begin, iterator end)
 | 
						|
    -> std::pair<size_type, iterator> {
 | 
						|
  difference_type count = std::distance(begin, end);
 | 
						|
  assert(count >= 0);
 | 
						|
 | 
						|
  if (count == 0) {
 | 
						|
    return {0, begin};
 | 
						|
  }
 | 
						|
 | 
						|
  if (count == size_) {
 | 
						|
    clear();
 | 
						|
    return {count, this->end()};
 | 
						|
  }
 | 
						|
 | 
						|
  if (begin.node == end.node) {
 | 
						|
    erase_same_node(begin, end);
 | 
						|
    size_ -= count;
 | 
						|
    return {count, rebalance_after_delete(begin)};
 | 
						|
  }
 | 
						|
 | 
						|
  const size_type target_size = size_ - count;
 | 
						|
  while (size_ > target_size) {
 | 
						|
    if (begin.node->leaf()) {
 | 
						|
      const size_type remaining_to_erase = size_ - target_size;
 | 
						|
      const size_type remaining_in_node = begin.node->count() - begin.position;
 | 
						|
      begin = erase_from_leaf_node(
 | 
						|
          begin, (std::min)(remaining_to_erase, remaining_in_node));
 | 
						|
    } else {
 | 
						|
      begin = erase(begin);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return {count, begin};
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::erase_same_node(iterator begin, iterator end) {
 | 
						|
  assert(begin.node == end.node);
 | 
						|
  assert(end.position > begin.position);
 | 
						|
 | 
						|
  node_type *node = begin.node;
 | 
						|
  size_type to_erase = end.position - begin.position;
 | 
						|
  if (!node->leaf()) {
 | 
						|
    // Delete all children between begin and end.
 | 
						|
    for (size_type i = 0; i < to_erase; ++i) {
 | 
						|
      internal_clear(node->child(begin.position + i + 1));
 | 
						|
    }
 | 
						|
    // Rotate children after end into new positions.
 | 
						|
    for (size_type i = begin.position + to_erase + 1; i <= node->count(); ++i) {
 | 
						|
      node->set_child(i - to_erase, node->child(i));
 | 
						|
      node->clear_child(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  node->remove_values_ignore_children(begin.position, to_erase,
 | 
						|
                                      mutable_allocator());
 | 
						|
 | 
						|
  // Do not need to update rightmost_, because
 | 
						|
  // * either end == this->end(), and therefore node == rightmost_, and still
 | 
						|
  //   exists
 | 
						|
  // * or end != this->end(), and therefore rightmost_ hasn't been erased, since
 | 
						|
  //   it wasn't covered in [begin, end)
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase)
 | 
						|
    -> iterator {
 | 
						|
  node_type *node = begin.node;
 | 
						|
  assert(node->leaf());
 | 
						|
  assert(node->count() > begin.position);
 | 
						|
  assert(begin.position + to_erase <= node->count());
 | 
						|
 | 
						|
  node->remove_values_ignore_children(begin.position, to_erase,
 | 
						|
                                      mutable_allocator());
 | 
						|
 | 
						|
  size_ -= to_erase;
 | 
						|
 | 
						|
  return rebalance_after_delete(begin);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
auto btree<P>::erase_unique(const K &key) -> size_type {
 | 
						|
  const iterator iter = internal_find(key);
 | 
						|
  if (iter.node == nullptr) {
 | 
						|
    // The key doesn't exist in the tree, return nothing done.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  erase(iter);
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
auto btree<P>::erase_multi(const K &key) -> size_type {
 | 
						|
  const iterator begin = internal_lower_bound(key);
 | 
						|
  if (begin.node == nullptr) {
 | 
						|
    // The key doesn't exist in the tree, return nothing done.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  // Delete all of the keys between begin and upper_bound(key).
 | 
						|
  const iterator end = internal_end(internal_upper_bound(key));
 | 
						|
  return erase(begin, end).first;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::clear() {
 | 
						|
  if (!empty()) {
 | 
						|
    internal_clear(root());
 | 
						|
  }
 | 
						|
  mutable_root() = EmptyNode();
 | 
						|
  rightmost_ = EmptyNode();
 | 
						|
  size_ = 0;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::swap(btree &x) {
 | 
						|
  using std::swap;
 | 
						|
  if (absl::allocator_traits<
 | 
						|
          allocator_type>::propagate_on_container_swap::value) {
 | 
						|
    // Note: `root_` also contains the allocator and the key comparator.
 | 
						|
    swap(root_, x.root_);
 | 
						|
  } else {
 | 
						|
    // It's undefined behavior if the allocators are unequal here.
 | 
						|
    assert(allocator() == x.allocator());
 | 
						|
    swap(mutable_root(), x.mutable_root());
 | 
						|
    swap(*mutable_key_comp(), *x.mutable_key_comp());
 | 
						|
  }
 | 
						|
  swap(rightmost_, x.rightmost_);
 | 
						|
  swap(size_, x.size_);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::verify() const {
 | 
						|
  assert(root() != nullptr);
 | 
						|
  assert(leftmost() != nullptr);
 | 
						|
  assert(rightmost_ != nullptr);
 | 
						|
  assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
 | 
						|
  assert(leftmost() == (++const_iterator(root(), -1)).node);
 | 
						|
  assert(rightmost_ == (--const_iterator(root(), root()->count())).node);
 | 
						|
  assert(leftmost()->leaf());
 | 
						|
  assert(rightmost_->leaf());
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::rebalance_or_split(iterator *iter) {
 | 
						|
  node_type *&node = iter->node;
 | 
						|
  int &insert_position = iter->position;
 | 
						|
  assert(node->count() == node->max_count());
 | 
						|
  assert(kNodeValues == node->max_count());
 | 
						|
 | 
						|
  // First try to make room on the node by rebalancing.
 | 
						|
  node_type *parent = node->parent();
 | 
						|
  if (node != root()) {
 | 
						|
    if (node->position() > 0) {
 | 
						|
      // Try rebalancing with our left sibling.
 | 
						|
      node_type *left = parent->child(node->position() - 1);
 | 
						|
      assert(left->max_count() == kNodeValues);
 | 
						|
      if (left->count() < kNodeValues) {
 | 
						|
        // We bias rebalancing based on the position being inserted. If we're
 | 
						|
        // inserting at the end of the right node then we bias rebalancing to
 | 
						|
        // fill up the left node.
 | 
						|
        int to_move = (kNodeValues - left->count()) /
 | 
						|
                      (1 + (insert_position < kNodeValues));
 | 
						|
        to_move = (std::max)(1, to_move);
 | 
						|
 | 
						|
        if (((insert_position - to_move) >= 0) ||
 | 
						|
            ((left->count() + to_move) < kNodeValues)) {
 | 
						|
          left->rebalance_right_to_left(to_move, node, mutable_allocator());
 | 
						|
 | 
						|
          assert(node->max_count() - node->count() == to_move);
 | 
						|
          insert_position = insert_position - to_move;
 | 
						|
          if (insert_position < 0) {
 | 
						|
            insert_position = insert_position + left->count() + 1;
 | 
						|
            node = left;
 | 
						|
          }
 | 
						|
 | 
						|
          assert(node->count() < node->max_count());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (node->position() < parent->count()) {
 | 
						|
      // Try rebalancing with our right sibling.
 | 
						|
      node_type *right = parent->child(node->position() + 1);
 | 
						|
      assert(right->max_count() == kNodeValues);
 | 
						|
      if (right->count() < kNodeValues) {
 | 
						|
        // We bias rebalancing based on the position being inserted. If we're
 | 
						|
        // inserting at the beginning of the left node then we bias rebalancing
 | 
						|
        // to fill up the right node.
 | 
						|
        int to_move =
 | 
						|
            (kNodeValues - right->count()) / (1 + (insert_position > 0));
 | 
						|
        to_move = (std::max)(1, to_move);
 | 
						|
 | 
						|
        if ((insert_position <= (node->count() - to_move)) ||
 | 
						|
            ((right->count() + to_move) < kNodeValues)) {
 | 
						|
          node->rebalance_left_to_right(to_move, right, mutable_allocator());
 | 
						|
 | 
						|
          if (insert_position > node->count()) {
 | 
						|
            insert_position = insert_position - node->count() - 1;
 | 
						|
            node = right;
 | 
						|
          }
 | 
						|
 | 
						|
          assert(node->count() < node->max_count());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Rebalancing failed, make sure there is room on the parent node for a new
 | 
						|
    // value.
 | 
						|
    assert(parent->max_count() == kNodeValues);
 | 
						|
    if (parent->count() == kNodeValues) {
 | 
						|
      iterator parent_iter(node->parent(), node->position());
 | 
						|
      rebalance_or_split(&parent_iter);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Rebalancing not possible because this is the root node.
 | 
						|
    // Create a new root node and set the current root node as the child of the
 | 
						|
    // new root.
 | 
						|
    parent = new_internal_node(parent);
 | 
						|
    parent->init_child(0, root());
 | 
						|
    mutable_root() = parent;
 | 
						|
    // If the former root was a leaf node, then it's now the rightmost node.
 | 
						|
    assert(!parent->child(0)->leaf() || parent->child(0) == rightmost_);
 | 
						|
  }
 | 
						|
 | 
						|
  // Split the node.
 | 
						|
  node_type *split_node;
 | 
						|
  if (node->leaf()) {
 | 
						|
    split_node = new_leaf_node(parent);
 | 
						|
    node->split(insert_position, split_node, mutable_allocator());
 | 
						|
    if (rightmost_ == node) rightmost_ = split_node;
 | 
						|
  } else {
 | 
						|
    split_node = new_internal_node(parent);
 | 
						|
    node->split(insert_position, split_node, mutable_allocator());
 | 
						|
  }
 | 
						|
 | 
						|
  if (insert_position > node->count()) {
 | 
						|
    insert_position = insert_position - node->count() - 1;
 | 
						|
    node = split_node;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::merge_nodes(node_type *left, node_type *right) {
 | 
						|
  left->merge(right, mutable_allocator());
 | 
						|
  if (right->leaf()) {
 | 
						|
    if (rightmost_ == right) rightmost_ = left;
 | 
						|
    delete_leaf_node(right);
 | 
						|
  } else {
 | 
						|
    delete_internal_node(right);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
 | 
						|
  node_type *parent = iter->node->parent();
 | 
						|
  if (iter->node->position() > 0) {
 | 
						|
    // Try merging with our left sibling.
 | 
						|
    node_type *left = parent->child(iter->node->position() - 1);
 | 
						|
    assert(left->max_count() == kNodeValues);
 | 
						|
    if ((1 + left->count() + iter->node->count()) <= kNodeValues) {
 | 
						|
      iter->position += 1 + left->count();
 | 
						|
      merge_nodes(left, iter->node);
 | 
						|
      iter->node = left;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (iter->node->position() < parent->count()) {
 | 
						|
    // Try merging with our right sibling.
 | 
						|
    node_type *right = parent->child(iter->node->position() + 1);
 | 
						|
    assert(right->max_count() == kNodeValues);
 | 
						|
    if ((1 + iter->node->count() + right->count()) <= kNodeValues) {
 | 
						|
      merge_nodes(iter->node, right);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Try rebalancing with our right sibling. We don't perform rebalancing if
 | 
						|
    // we deleted the first element from iter->node and the node is not
 | 
						|
    // empty. This is a small optimization for the common pattern of deleting
 | 
						|
    // from the front of the tree.
 | 
						|
    if ((right->count() > kMinNodeValues) &&
 | 
						|
        ((iter->node->count() == 0) ||
 | 
						|
         (iter->position > 0))) {
 | 
						|
      int to_move = (right->count() - iter->node->count()) / 2;
 | 
						|
      to_move = (std::min)(to_move, right->count() - 1);
 | 
						|
      iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (iter->node->position() > 0) {
 | 
						|
    // Try rebalancing with our left sibling. We don't perform rebalancing if
 | 
						|
    // we deleted the last element from iter->node and the node is not
 | 
						|
    // empty. This is a small optimization for the common pattern of deleting
 | 
						|
    // from the back of the tree.
 | 
						|
    node_type *left = parent->child(iter->node->position() - 1);
 | 
						|
    if ((left->count() > kMinNodeValues) &&
 | 
						|
        ((iter->node->count() == 0) ||
 | 
						|
         (iter->position < iter->node->count()))) {
 | 
						|
      int to_move = (left->count() - iter->node->count()) / 2;
 | 
						|
      to_move = (std::min)(to_move, left->count() - 1);
 | 
						|
      left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
 | 
						|
      iter->position += to_move;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::try_shrink() {
 | 
						|
  if (root()->count() > 0) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Deleted the last item on the root node, shrink the height of the tree.
 | 
						|
  if (root()->leaf()) {
 | 
						|
    assert(size() == 0);
 | 
						|
    delete_leaf_node(root());
 | 
						|
    mutable_root() = EmptyNode();
 | 
						|
    rightmost_ = EmptyNode();
 | 
						|
  } else {
 | 
						|
    node_type *child = root()->child(0);
 | 
						|
    child->make_root();
 | 
						|
    delete_internal_node(root());
 | 
						|
    mutable_root() = child;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename IterType>
 | 
						|
inline IterType btree<P>::internal_last(IterType iter) {
 | 
						|
  assert(iter.node != nullptr);
 | 
						|
  while (iter.position == iter.node->count()) {
 | 
						|
    iter.position = iter.node->position();
 | 
						|
    iter.node = iter.node->parent();
 | 
						|
    if (iter.node->leaf()) {
 | 
						|
      iter.node = nullptr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return iter;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename... Args>
 | 
						|
inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
 | 
						|
    -> iterator {
 | 
						|
  if (!iter.node->leaf()) {
 | 
						|
    // We can't insert on an internal node. Instead, we'll insert after the
 | 
						|
    // previous value which is guaranteed to be on a leaf node.
 | 
						|
    --iter;
 | 
						|
    ++iter.position;
 | 
						|
  }
 | 
						|
  const int max_count = iter.node->max_count();
 | 
						|
  if (iter.node->count() == max_count) {
 | 
						|
    // Make room in the leaf for the new item.
 | 
						|
    if (max_count < kNodeValues) {
 | 
						|
      // Insertion into the root where the root is smaller than the full node
 | 
						|
      // size. Simply grow the size of the root node.
 | 
						|
      assert(iter.node == root());
 | 
						|
      iter.node =
 | 
						|
          new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count));
 | 
						|
      iter.node->swap(root(), mutable_allocator());
 | 
						|
      delete_leaf_node(root());
 | 
						|
      mutable_root() = iter.node;
 | 
						|
      rightmost_ = iter.node;
 | 
						|
    } else {
 | 
						|
      rebalance_or_split(&iter);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  iter.node->emplace_value(iter.position, mutable_allocator(),
 | 
						|
                           std::forward<Args>(args)...);
 | 
						|
  ++size_;
 | 
						|
  return iter;
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
inline auto btree<P>::internal_locate(const K &key) const
 | 
						|
    -> SearchResult<iterator, is_key_compare_to::value> {
 | 
						|
  return internal_locate_impl(key, is_key_compare_to());
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
inline auto btree<P>::internal_locate_impl(
 | 
						|
    const K &key, std::false_type /* IsCompareTo */) const
 | 
						|
    -> SearchResult<iterator, false> {
 | 
						|
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
						|
  for (;;) {
 | 
						|
    iter.position = iter.node->lower_bound(key, key_comp()).value;
 | 
						|
    // NOTE: we don't need to walk all the way down the tree if the keys are
 | 
						|
    // equal, but determining equality would require doing an extra comparison
 | 
						|
    // on each node on the way down, and we will need to go all the way to the
 | 
						|
    // leaf node in the expected case.
 | 
						|
    if (iter.node->leaf()) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    iter.node = iter.node->child(iter.position);
 | 
						|
  }
 | 
						|
  return {iter};
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
inline auto btree<P>::internal_locate_impl(
 | 
						|
    const K &key, std::true_type /* IsCompareTo */) const
 | 
						|
    -> SearchResult<iterator, true> {
 | 
						|
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
						|
  for (;;) {
 | 
						|
    SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
 | 
						|
    iter.position = res.value;
 | 
						|
    if (res.match == MatchKind::kEq) {
 | 
						|
      return {iter, MatchKind::kEq};
 | 
						|
    }
 | 
						|
    if (iter.node->leaf()) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    iter.node = iter.node->child(iter.position);
 | 
						|
  }
 | 
						|
  return {iter, MatchKind::kNe};
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
 | 
						|
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
						|
  for (;;) {
 | 
						|
    iter.position = iter.node->lower_bound(key, key_comp()).value;
 | 
						|
    if (iter.node->leaf()) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    iter.node = iter.node->child(iter.position);
 | 
						|
  }
 | 
						|
  return internal_last(iter);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
 | 
						|
  iterator iter(const_cast<node_type *>(root()), 0);
 | 
						|
  for (;;) {
 | 
						|
    iter.position = iter.node->upper_bound(key, key_comp());
 | 
						|
    if (iter.node->leaf()) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    iter.node = iter.node->child(iter.position);
 | 
						|
  }
 | 
						|
  return internal_last(iter);
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
template <typename K>
 | 
						|
auto btree<P>::internal_find(const K &key) const -> iterator {
 | 
						|
  auto res = internal_locate(key);
 | 
						|
  if (res.HasMatch()) {
 | 
						|
    if (res.IsEq()) {
 | 
						|
      return res.value;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const iterator iter = internal_last(res.value);
 | 
						|
    if (iter.node != nullptr && !compare_keys(key, iter.key())) {
 | 
						|
      return iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return {nullptr, 0};
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
void btree<P>::internal_clear(node_type *node) {
 | 
						|
  if (!node->leaf()) {
 | 
						|
    for (int i = 0; i <= node->count(); ++i) {
 | 
						|
      internal_clear(node->child(i));
 | 
						|
    }
 | 
						|
    delete_internal_node(node);
 | 
						|
  } else {
 | 
						|
    delete_leaf_node(node);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename P>
 | 
						|
int btree<P>::internal_verify(
 | 
						|
    const node_type *node, const key_type *lo, const key_type *hi) const {
 | 
						|
  assert(node->count() > 0);
 | 
						|
  assert(node->count() <= node->max_count());
 | 
						|
  if (lo) {
 | 
						|
    assert(!compare_keys(node->key(0), *lo));
 | 
						|
  }
 | 
						|
  if (hi) {
 | 
						|
    assert(!compare_keys(*hi, node->key(node->count() - 1)));
 | 
						|
  }
 | 
						|
  for (int i = 1; i < node->count(); ++i) {
 | 
						|
    assert(!compare_keys(node->key(i), node->key(i - 1)));
 | 
						|
  }
 | 
						|
  int count = node->count();
 | 
						|
  if (!node->leaf()) {
 | 
						|
    for (int i = 0; i <= node->count(); ++i) {
 | 
						|
      assert(node->child(i) != nullptr);
 | 
						|
      assert(node->child(i)->parent() == node);
 | 
						|
      assert(node->child(i)->position() == i);
 | 
						|
      count += internal_verify(
 | 
						|
          node->child(i),
 | 
						|
          (i == 0) ? lo : &node->key(i - 1),
 | 
						|
          (i == node->count()) ? hi : &node->key(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace container_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_CONTAINER_INTERNAL_BTREE_H_
 |