-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			916 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // This file contains string processing functions related to
 | |
| // numeric values.
 | |
| 
 | |
| #include "absl/strings/numbers.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cfloat>  // for DBL_DIG and FLT_DIG
 | |
| #include <cmath>   // for HUGE_VAL
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| #include "absl/base/internal/bits.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/strings/ascii.h"
 | |
| #include "absl/strings/charconv.h"
 | |
| #include "absl/strings/escaping.h"
 | |
| #include "absl/strings/internal/memutil.h"
 | |
| #include "absl/strings/match.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| bool SimpleAtof(absl::string_view str, float* out) {
 | |
|   *out = 0.0;
 | |
|   str = StripAsciiWhitespace(str);
 | |
|   if (!str.empty() && str[0] == '+') {
 | |
|     str.remove_prefix(1);
 | |
|   }
 | |
|   auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
 | |
|   if (result.ec == std::errc::invalid_argument) {
 | |
|     return false;
 | |
|   }
 | |
|   if (result.ptr != str.data() + str.size()) {
 | |
|     // not all non-whitespace characters consumed
 | |
|     return false;
 | |
|   }
 | |
|   // from_chars() with DR 3081's current wording will return max() on
 | |
|   // overflow.  SimpleAtof returns infinity instead.
 | |
|   if (result.ec == std::errc::result_out_of_range) {
 | |
|     if (*out > 1.0) {
 | |
|       *out = std::numeric_limits<float>::infinity();
 | |
|     } else if (*out < -1.0) {
 | |
|       *out = -std::numeric_limits<float>::infinity();
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimpleAtod(absl::string_view str, double* out) {
 | |
|   *out = 0.0;
 | |
|   str = StripAsciiWhitespace(str);
 | |
|   if (!str.empty() && str[0] == '+') {
 | |
|     str.remove_prefix(1);
 | |
|   }
 | |
|   auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
 | |
|   if (result.ec == std::errc::invalid_argument) {
 | |
|     return false;
 | |
|   }
 | |
|   if (result.ptr != str.data() + str.size()) {
 | |
|     // not all non-whitespace characters consumed
 | |
|     return false;
 | |
|   }
 | |
|   // from_chars() with DR 3081's current wording will return max() on
 | |
|   // overflow.  SimpleAtod returns infinity instead.
 | |
|   if (result.ec == std::errc::result_out_of_range) {
 | |
|     if (*out > 1.0) {
 | |
|       *out = std::numeric_limits<double>::infinity();
 | |
|     } else if (*out < -1.0) {
 | |
|       *out = -std::numeric_limits<double>::infinity();
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimpleAtob(absl::string_view str, bool* out) {
 | |
|   ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
 | |
|   if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
 | |
|       EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
 | |
|       EqualsIgnoreCase(str, "1")) {
 | |
|     *out = true;
 | |
|     return true;
 | |
|   }
 | |
|   if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
 | |
|       EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
 | |
|       EqualsIgnoreCase(str, "0")) {
 | |
|     *out = false;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // ----------------------------------------------------------------------
 | |
| // FastIntToBuffer() overloads
 | |
| //
 | |
| // Like the Fast*ToBuffer() functions above, these are intended for speed.
 | |
| // Unlike the Fast*ToBuffer() functions, however, these functions write
 | |
| // their output to the beginning of the buffer.  The caller is responsible
 | |
| // for ensuring that the buffer has enough space to hold the output.
 | |
| //
 | |
| // Returns a pointer to the end of the string (i.e. the null character
 | |
| // terminating the string).
 | |
| // ----------------------------------------------------------------------
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Used to optimize printing a decimal number's final digit.
 | |
| const char one_ASCII_final_digits[10][2] {
 | |
|   {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
 | |
|   {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) {
 | |
|   uint32_t digits;
 | |
|   // The idea of this implementation is to trim the number of divides to as few
 | |
|   // as possible, and also reducing memory stores and branches, by going in
 | |
|   // steps of two digits at a time rather than one whenever possible.
 | |
|   // The huge-number case is first, in the hopes that the compiler will output
 | |
|   // that case in one branch-free block of code, and only output conditional
 | |
|   // branches into it from below.
 | |
|   if (i >= 1000000000) {     // >= 1,000,000,000
 | |
|     digits = i / 100000000;  //      100,000,000
 | |
|     i -= digits * 100000000;
 | |
|     PutTwoDigits(digits, buffer);
 | |
|     buffer += 2;
 | |
|   lt100_000_000:
 | |
|     digits = i / 1000000;  // 1,000,000
 | |
|     i -= digits * 1000000;
 | |
|     PutTwoDigits(digits, buffer);
 | |
|     buffer += 2;
 | |
|   lt1_000_000:
 | |
|     digits = i / 10000;  // 10,000
 | |
|     i -= digits * 10000;
 | |
|     PutTwoDigits(digits, buffer);
 | |
|     buffer += 2;
 | |
|   lt10_000:
 | |
|     digits = i / 100;
 | |
|     i -= digits * 100;
 | |
|     PutTwoDigits(digits, buffer);
 | |
|     buffer += 2;
 | |
|  lt100:
 | |
|     digits = i;
 | |
|     PutTwoDigits(digits, buffer);
 | |
|     buffer += 2;
 | |
|     *buffer = 0;
 | |
|     return buffer;
 | |
|   }
 | |
| 
 | |
|   if (i < 100) {
 | |
|     digits = i;
 | |
|     if (i >= 10) goto lt100;
 | |
|     memcpy(buffer, one_ASCII_final_digits[i], 2);
 | |
|     return buffer + 1;
 | |
|   }
 | |
|   if (i < 10000) {  //    10,000
 | |
|     if (i >= 1000) goto lt10_000;
 | |
|     digits = i / 100;
 | |
|     i -= digits * 100;
 | |
|     *buffer++ = '0' + digits;
 | |
|     goto lt100;
 | |
|   }
 | |
|   if (i < 1000000) {  //    1,000,000
 | |
|     if (i >= 100000) goto lt1_000_000;
 | |
|     digits = i / 10000;  //    10,000
 | |
|     i -= digits * 10000;
 | |
|     *buffer++ = '0' + digits;
 | |
|     goto lt10_000;
 | |
|   }
 | |
|   if (i < 100000000) {  //    100,000,000
 | |
|     if (i >= 10000000) goto lt100_000_000;
 | |
|     digits = i / 1000000;  //   1,000,000
 | |
|     i -= digits * 1000000;
 | |
|     *buffer++ = '0' + digits;
 | |
|     goto lt1_000_000;
 | |
|   }
 | |
|   // we already know that i < 1,000,000,000
 | |
|   digits = i / 100000000;  //   100,000,000
 | |
|   i -= digits * 100000000;
 | |
|   *buffer++ = '0' + digits;
 | |
|   goto lt100_000_000;
 | |
| }
 | |
| 
 | |
| char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) {
 | |
|   uint32_t u = i;
 | |
|   if (i < 0) {
 | |
|     *buffer++ = '-';
 | |
|     // We need to do the negation in modular (i.e., "unsigned")
 | |
|     // arithmetic; MSVC++ apprently warns for plain "-u", so
 | |
|     // we write the equivalent expression "0 - u" instead.
 | |
|     u = 0 - u;
 | |
|   }
 | |
|   return numbers_internal::FastIntToBuffer(u, buffer);
 | |
| }
 | |
| 
 | |
| char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) {
 | |
|   uint32_t u32 = static_cast<uint32_t>(i);
 | |
|   if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer);
 | |
| 
 | |
|   // Here we know i has at least 10 decimal digits.
 | |
|   uint64_t top_1to11 = i / 1000000000;
 | |
|   u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
 | |
|   uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);
 | |
| 
 | |
|   if (top_1to11_32 == top_1to11) {
 | |
|     buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer);
 | |
|   } else {
 | |
|     // top_1to11 has more than 32 bits too; print it in two steps.
 | |
|     uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
 | |
|     uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
 | |
|     buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer);
 | |
|     PutTwoDigits(mid_2, buffer);
 | |
|     buffer += 2;
 | |
|   }
 | |
| 
 | |
|   // We have only 9 digits now, again the maximum uint32_t can handle fully.
 | |
|   uint32_t digits = u32 / 10000000;  // 10,000,000
 | |
|   u32 -= digits * 10000000;
 | |
|   PutTwoDigits(digits, buffer);
 | |
|   buffer += 2;
 | |
|   digits = u32 / 100000;  // 100,000
 | |
|   u32 -= digits * 100000;
 | |
|   PutTwoDigits(digits, buffer);
 | |
|   buffer += 2;
 | |
|   digits = u32 / 1000;  // 1,000
 | |
|   u32 -= digits * 1000;
 | |
|   PutTwoDigits(digits, buffer);
 | |
|   buffer += 2;
 | |
|   digits = u32 / 10;
 | |
|   u32 -= digits * 10;
 | |
|   PutTwoDigits(digits, buffer);
 | |
|   buffer += 2;
 | |
|   memcpy(buffer, one_ASCII_final_digits[u32], 2);
 | |
|   return buffer + 1;
 | |
| }
 | |
| 
 | |
| char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) {
 | |
|   uint64_t u = i;
 | |
|   if (i < 0) {
 | |
|     *buffer++ = '-';
 | |
|     u = 0 - u;
 | |
|   }
 | |
|   return numbers_internal::FastIntToBuffer(u, buffer);
 | |
| }
 | |
| 
 | |
| // Given a 128-bit number expressed as a pair of uint64_t, high half first,
 | |
| // return that number multiplied by the given 32-bit value.  If the result is
 | |
| // too large to fit in a 128-bit number, divide it by 2 until it fits.
 | |
| static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
 | |
|                                            uint32_t mul) {
 | |
|   uint64_t bits0_31 = num.second & 0xFFFFFFFF;
 | |
|   uint64_t bits32_63 = num.second >> 32;
 | |
|   uint64_t bits64_95 = num.first & 0xFFFFFFFF;
 | |
|   uint64_t bits96_127 = num.first >> 32;
 | |
| 
 | |
|   // The picture so far: each of these 64-bit values has only the lower 32 bits
 | |
|   // filled in.
 | |
|   // bits96_127:          [ 00000000 xxxxxxxx ]
 | |
|   // bits64_95:                    [ 00000000 xxxxxxxx ]
 | |
|   // bits32_63:                             [ 00000000 xxxxxxxx ]
 | |
|   // bits0_31:                                       [ 00000000 xxxxxxxx ]
 | |
| 
 | |
|   bits0_31 *= mul;
 | |
|   bits32_63 *= mul;
 | |
|   bits64_95 *= mul;
 | |
|   bits96_127 *= mul;
 | |
| 
 | |
|   // Now the top halves may also have value, though all 64 of their bits will
 | |
|   // never be set at the same time, since they are a result of a 32x32 bit
 | |
|   // multiply.  This makes the carry calculation slightly easier.
 | |
|   // bits96_127:          [ mmmmmmmm | mmmmmmmm ]
 | |
|   // bits64_95:                    [ | mmmmmmmm mmmmmmmm | ]
 | |
|   // bits32_63:                      |        [ mmmmmmmm | mmmmmmmm ]
 | |
|   // bits0_31:                       |                 [ | mmmmmmmm mmmmmmmm ]
 | |
|   // eventually:        [ bits128_up | ...bits64_127.... | ..bits0_63... ]
 | |
| 
 | |
|   uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
 | |
|   uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
 | |
|                         (bits0_63 < bits0_31);
 | |
|   uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
 | |
|   if (bits128_up == 0) return {bits64_127, bits0_63};
 | |
| 
 | |
|   int shift = 64 - base_internal::CountLeadingZeros64(bits128_up);
 | |
|   uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
 | |
|   uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
 | |
|   return {hi, lo};
 | |
| }
 | |
| 
 | |
| // Compute num * 5 ^ expfive, and return the first 128 bits of the result,
 | |
| // where the first bit is always a one.  So PowFive(1, 0) starts 0b100000,
 | |
| // PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
 | |
| static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
 | |
|   std::pair<uint64_t, uint64_t> result = {num, 0};
 | |
|   while (expfive >= 13) {
 | |
|     // 5^13 is the highest power of five that will fit in a 32-bit integer.
 | |
|     result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
 | |
|     expfive -= 13;
 | |
|   }
 | |
|   constexpr int powers_of_five[13] = {
 | |
|       1,
 | |
|       5,
 | |
|       5 * 5,
 | |
|       5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
 | |
|       5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
 | |
|   result = Mul32(result, powers_of_five[expfive & 15]);
 | |
|   int shift = base_internal::CountLeadingZeros64(result.first);
 | |
|   if (shift != 0) {
 | |
|     result.first = (result.first << shift) + (result.second >> (64 - shift));
 | |
|     result.second = (result.second << shift);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| struct ExpDigits {
 | |
|   int32_t exponent;
 | |
|   char digits[6];
 | |
| };
 | |
| 
 | |
| // SplitToSix converts value, a positive double-precision floating-point number,
 | |
| // into a base-10 exponent and 6 ASCII digits, where the first digit is never
 | |
| // zero.  For example, SplitToSix(1) returns an exponent of zero and a digits
 | |
| // array of {'1', '0', '0', '0', '0', '0'}.  If value is exactly halfway between
 | |
| // two possible representations, e.g. value = 100000.5, then "round to even" is
 | |
| // performed.
 | |
| static ExpDigits SplitToSix(const double value) {
 | |
|   ExpDigits exp_dig;
 | |
|   int exp = 5;
 | |
|   double d = value;
 | |
|   // First step: calculate a close approximation of the output, where the
 | |
|   // value d will be between 100,000 and 999,999, representing the digits
 | |
|   // in the output ASCII array, and exp is the base-10 exponent.  It would be
 | |
|   // faster to use a table here, and to look up the base-2 exponent of value,
 | |
|   // however value is an IEEE-754 64-bit number, so the table would have 2,000
 | |
|   // entries, which is not cache-friendly.
 | |
|   if (d >= 999999.5) {
 | |
|     if (d >= 1e+261) exp += 256, d *= 1e-256;
 | |
|     if (d >= 1e+133) exp += 128, d *= 1e-128;
 | |
|     if (d >= 1e+69) exp += 64, d *= 1e-64;
 | |
|     if (d >= 1e+37) exp += 32, d *= 1e-32;
 | |
|     if (d >= 1e+21) exp += 16, d *= 1e-16;
 | |
|     if (d >= 1e+13) exp += 8, d *= 1e-8;
 | |
|     if (d >= 1e+9) exp += 4, d *= 1e-4;
 | |
|     if (d >= 1e+7) exp += 2, d *= 1e-2;
 | |
|     if (d >= 1e+6) exp += 1, d *= 1e-1;
 | |
|   } else {
 | |
|     if (d < 1e-250) exp -= 256, d *= 1e256;
 | |
|     if (d < 1e-122) exp -= 128, d *= 1e128;
 | |
|     if (d < 1e-58) exp -= 64, d *= 1e64;
 | |
|     if (d < 1e-26) exp -= 32, d *= 1e32;
 | |
|     if (d < 1e-10) exp -= 16, d *= 1e16;
 | |
|     if (d < 1e-2) exp -= 8, d *= 1e8;
 | |
|     if (d < 1e+2) exp -= 4, d *= 1e4;
 | |
|     if (d < 1e+4) exp -= 2, d *= 1e2;
 | |
|     if (d < 1e+5) exp -= 1, d *= 1e1;
 | |
|   }
 | |
|   // At this point, d is in the range [99999.5..999999.5) and exp is in the
 | |
|   // range [-324..308]. Since we need to round d up, we want to add a half
 | |
|   // and truncate.
 | |
|   // However, the technique above may have lost some precision, due to its
 | |
|   // repeated multiplication by constants that each may be off by half a bit
 | |
|   // of precision.  This only matters if we're close to the edge though.
 | |
|   // Since we'd like to know if the fractional part of d is close to a half,
 | |
|   // we multiply it by 65536 and see if the fractional part is close to 32768.
 | |
|   // (The number doesn't have to be a power of two,but powers of two are faster)
 | |
|   uint64_t d64k = d * 65536;
 | |
|   int dddddd;  // A 6-digit decimal integer.
 | |
|   if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
 | |
|     // OK, it's fairly likely that precision was lost above, which is
 | |
|     // not a surprise given only 52 mantissa bits are available.  Therefore
 | |
|     // redo the calculation using 128-bit numbers.  (64 bits are not enough).
 | |
| 
 | |
|     // Start out with digits rounded down; maybe add one below.
 | |
|     dddddd = static_cast<int>(d64k / 65536);
 | |
| 
 | |
|     // mantissa is a 64-bit integer representing M.mmm... * 2^63.  The actual
 | |
|     // value we're representing, of course, is M.mmm... * 2^exp2.
 | |
|     int exp2;
 | |
|     double m = std::frexp(value, &exp2);
 | |
|     uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
 | |
|     // std::frexp returns an m value in the range [0.5, 1.0), however we
 | |
|     // can't multiply it by 2^64 and convert to an integer because some FPUs
 | |
|     // throw an exception when converting an number higher than 2^63 into an
 | |
|     // integer - even an unsigned 64-bit integer!  Fortunately it doesn't matter
 | |
|     // since m only has 52 significant bits anyway.
 | |
|     mantissa <<= 1;
 | |
|     exp2 -= 64;  // not needed, but nice for debugging
 | |
| 
 | |
|     // OK, we are here to compare:
 | |
|     //     (dddddd + 0.5) * 10^(exp-5)  vs.  mantissa * 2^exp2
 | |
|     // so we can round up dddddd if appropriate.  Those values span the full
 | |
|     // range of 600 orders of magnitude of IEE 64-bit floating-point.
 | |
|     // Fortunately, we already know they are very close, so we don't need to
 | |
|     // track the base-2 exponent of both sides.  This greatly simplifies the
 | |
|     // the math since the 2^exp2 calculation is unnecessary and the power-of-10
 | |
|     // calculation can become a power-of-5 instead.
 | |
| 
 | |
|     std::pair<uint64_t, uint64_t> edge, val;
 | |
|     if (exp >= 6) {
 | |
|       // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
 | |
|       // Since we're tossing powers of two, 2 * dddddd + 1 is the
 | |
|       // same as dddddd + 0.5
 | |
|       edge = PowFive(2 * dddddd + 1, exp - 5);
 | |
| 
 | |
|       val.first = mantissa;
 | |
|       val.second = 0;
 | |
|     } else {
 | |
|       // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
 | |
|       // above because (exp - 5) is negative.  So we compare (dddddd + 0.5) to
 | |
|       // mantissa * 5 ^ (5 - exp)
 | |
|       edge = PowFive(2 * dddddd + 1, 0);
 | |
| 
 | |
|       val = PowFive(mantissa, 5 - exp);
 | |
|     }
 | |
|     // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
 | |
|     //        val.second, edge.first, edge.second);
 | |
|     if (val > edge) {
 | |
|       dddddd++;
 | |
|     } else if (val == edge) {
 | |
|       dddddd += (dddddd & 1);
 | |
|     }
 | |
|   } else {
 | |
|     // Here, we are not close to the edge.
 | |
|     dddddd = static_cast<int>((d64k + 32768) / 65536);
 | |
|   }
 | |
|   if (dddddd == 1000000) {
 | |
|     dddddd = 100000;
 | |
|     exp += 1;
 | |
|   }
 | |
|   exp_dig.exponent = exp;
 | |
| 
 | |
|   int two_digits = dddddd / 10000;
 | |
|   dddddd -= two_digits * 10000;
 | |
|   numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]);
 | |
| 
 | |
|   two_digits = dddddd / 100;
 | |
|   dddddd -= two_digits * 100;
 | |
|   numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]);
 | |
| 
 | |
|   numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]);
 | |
|   return exp_dig;
 | |
| }
 | |
| 
 | |
| // Helper function for fast formatting of floating-point.
 | |
| // The result is the same as "%g", a.k.a. "%.6g".
 | |
| size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
 | |
|   static_assert(std::numeric_limits<float>::is_iec559,
 | |
|                 "IEEE-754/IEC-559 support only");
 | |
| 
 | |
|   char* out = buffer;  // we write data to out, incrementing as we go, but
 | |
|                        // FloatToBuffer always returns the address of the buffer
 | |
|                        // passed in.
 | |
| 
 | |
|   if (std::isnan(d)) {
 | |
|     strcpy(out, "nan");  // NOLINT(runtime/printf)
 | |
|     return 3;
 | |
|   }
 | |
|   if (d == 0) {  // +0 and -0 are handled here
 | |
|     if (std::signbit(d)) *out++ = '-';
 | |
|     *out++ = '0';
 | |
|     *out = 0;
 | |
|     return out - buffer;
 | |
|   }
 | |
|   if (d < 0) {
 | |
|     *out++ = '-';
 | |
|     d = -d;
 | |
|   }
 | |
|   if (std::isinf(d)) {
 | |
|     strcpy(out, "inf");  // NOLINT(runtime/printf)
 | |
|     return out + 3 - buffer;
 | |
|   }
 | |
| 
 | |
|   auto exp_dig = SplitToSix(d);
 | |
|   int exp = exp_dig.exponent;
 | |
|   const char* digits = exp_dig.digits;
 | |
|   out[0] = '0';
 | |
|   out[1] = '.';
 | |
|   switch (exp) {
 | |
|     case 5:
 | |
|       memcpy(out, &digits[0], 6), out += 6;
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|     case 4:
 | |
|       memcpy(out, &digits[0], 5), out += 5;
 | |
|       if (digits[5] != '0') {
 | |
|         *out++ = '.';
 | |
|         *out++ = digits[5];
 | |
|       }
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|     case 3:
 | |
|       memcpy(out, &digits[0], 4), out += 4;
 | |
|       if ((digits[5] | digits[4]) != '0') {
 | |
|         *out++ = '.';
 | |
|         *out++ = digits[4];
 | |
|         if (digits[5] != '0') *out++ = digits[5];
 | |
|       }
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|     case 2:
 | |
|       memcpy(out, &digits[0], 3), out += 3;
 | |
|       *out++ = '.';
 | |
|       memcpy(out, &digits[3], 3);
 | |
|       out += 3;
 | |
|       while (out[-1] == '0') --out;
 | |
|       if (out[-1] == '.') --out;
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|     case 1:
 | |
|       memcpy(out, &digits[0], 2), out += 2;
 | |
|       *out++ = '.';
 | |
|       memcpy(out, &digits[2], 4);
 | |
|       out += 4;
 | |
|       while (out[-1] == '0') --out;
 | |
|       if (out[-1] == '.') --out;
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|     case 0:
 | |
|       memcpy(out, &digits[0], 1), out += 1;
 | |
|       *out++ = '.';
 | |
|       memcpy(out, &digits[1], 5);
 | |
|       out += 5;
 | |
|       while (out[-1] == '0') --out;
 | |
|       if (out[-1] == '.') --out;
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|     case -4:
 | |
|       out[2] = '0';
 | |
|       ++out;
 | |
|       ABSL_FALLTHROUGH_INTENDED;
 | |
|     case -3:
 | |
|       out[2] = '0';
 | |
|       ++out;
 | |
|       ABSL_FALLTHROUGH_INTENDED;
 | |
|     case -2:
 | |
|       out[2] = '0';
 | |
|       ++out;
 | |
|       ABSL_FALLTHROUGH_INTENDED;
 | |
|     case -1:
 | |
|       out += 2;
 | |
|       memcpy(out, &digits[0], 6);
 | |
|       out += 6;
 | |
|       while (out[-1] == '0') --out;
 | |
|       *out = 0;
 | |
|       return out - buffer;
 | |
|   }
 | |
|   assert(exp < -4 || exp >= 6);
 | |
|   out[0] = digits[0];
 | |
|   assert(out[1] == '.');
 | |
|   out += 2;
 | |
|   memcpy(out, &digits[1], 5), out += 5;
 | |
|   while (out[-1] == '0') --out;
 | |
|   if (out[-1] == '.') --out;
 | |
|   *out++ = 'e';
 | |
|   if (exp > 0) {
 | |
|     *out++ = '+';
 | |
|   } else {
 | |
|     *out++ = '-';
 | |
|     exp = -exp;
 | |
|   }
 | |
|   if (exp > 99) {
 | |
|     int dig1 = exp / 100;
 | |
|     exp -= dig1 * 100;
 | |
|     *out++ = '0' + dig1;
 | |
|   }
 | |
|   PutTwoDigits(exp, out);
 | |
|   out += 2;
 | |
|   *out = 0;
 | |
|   return out - buffer;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Represents integer values of digits.
 | |
| // Uses 36 to indicate an invalid character since we support
 | |
| // bases up to 36.
 | |
| static const int8_t kAsciiToInt[256] = {
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s.
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5,
 | |
|     6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
 | |
|     18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
 | |
|     36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
 | |
|     24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
 | |
|     36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
 | |
| 
 | |
| // Parse the sign and optional hex or oct prefix in text.
 | |
| inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/,
 | |
|                                      int* base_ptr /*inout*/,
 | |
|                                      bool* negative_ptr /*output*/) {
 | |
|   if (text->data() == nullptr) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const char* start = text->data();
 | |
|   const char* end = start + text->size();
 | |
|   int base = *base_ptr;
 | |
| 
 | |
|   // Consume whitespace.
 | |
|   while (start < end && absl::ascii_isspace(start[0])) {
 | |
|     ++start;
 | |
|   }
 | |
|   while (start < end && absl::ascii_isspace(end[-1])) {
 | |
|     --end;
 | |
|   }
 | |
|   if (start >= end) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Consume sign.
 | |
|   *negative_ptr = (start[0] == '-');
 | |
|   if (*negative_ptr || start[0] == '+') {
 | |
|     ++start;
 | |
|     if (start >= end) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Consume base-dependent prefix.
 | |
|   //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
 | |
|   //  base 16: "0x" -> base 16
 | |
|   // Also validate the base.
 | |
|   if (base == 0) {
 | |
|     if (end - start >= 2 && start[0] == '0' &&
 | |
|         (start[1] == 'x' || start[1] == 'X')) {
 | |
|       base = 16;
 | |
|       start += 2;
 | |
|       if (start >= end) {
 | |
|         // "0x" with no digits after is invalid.
 | |
|         return false;
 | |
|       }
 | |
|     } else if (end - start >= 1 && start[0] == '0') {
 | |
|       base = 8;
 | |
|       start += 1;
 | |
|     } else {
 | |
|       base = 10;
 | |
|     }
 | |
|   } else if (base == 16) {
 | |
|     if (end - start >= 2 && start[0] == '0' &&
 | |
|         (start[1] == 'x' || start[1] == 'X')) {
 | |
|       start += 2;
 | |
|       if (start >= end) {
 | |
|         // "0x" with no digits after is invalid.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   } else if (base >= 2 && base <= 36) {
 | |
|     // okay
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   *text = absl::string_view(start, end - start);
 | |
|   *base_ptr = base;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Consume digits.
 | |
| //
 | |
| // The classic loop:
 | |
| //
 | |
| //   for each digit
 | |
| //     value = value * base + digit
 | |
| //   value *= sign
 | |
| //
 | |
| // The classic loop needs overflow checking.  It also fails on the most
 | |
| // negative integer, -2147483648 in 32-bit two's complement representation.
 | |
| //
 | |
| // My improved loop:
 | |
| //
 | |
| //  if (!negative)
 | |
| //    for each digit
 | |
| //      value = value * base
 | |
| //      value = value + digit
 | |
| //  else
 | |
| //    for each digit
 | |
| //      value = value * base
 | |
| //      value = value - digit
 | |
| //
 | |
| // Overflow checking becomes simple.
 | |
| 
 | |
| // Lookup tables per IntType:
 | |
| // vmax/base and vmin/base are precomputed because division costs at least 8ns.
 | |
| // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
 | |
| // struct of arrays) would probably be better in terms of d-cache for the most
 | |
| // commonly used bases.
 | |
| template <typename IntType>
 | |
| struct LookupTables {
 | |
|   static const IntType kVmaxOverBase[];
 | |
|   static const IntType kVminOverBase[];
 | |
| };
 | |
| 
 | |
| // An array initializer macro for X/base where base in [0, 36].
 | |
| // However, note that lookups for base in [0, 1] should never happen because
 | |
| // base has been validated to be in [2, 36] by safe_parse_sign_and_base().
 | |
| #define X_OVER_BASE_INITIALIZER(X)                                        \
 | |
|   {                                                                       \
 | |
|     0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
 | |
|         X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18,   \
 | |
|         X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26,   \
 | |
|         X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34,   \
 | |
|         X / 35, X / 36,                                                   \
 | |
|   }
 | |
| 
 | |
| template <typename IntType>
 | |
| const IntType LookupTables<IntType>::kVmaxOverBase[] =
 | |
|     X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
 | |
| 
 | |
| template <typename IntType>
 | |
| const IntType LookupTables<IntType>::kVminOverBase[] =
 | |
|     X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
 | |
| 
 | |
| #undef X_OVER_BASE_INITIALIZER
 | |
| 
 | |
| template <typename IntType>
 | |
| inline bool safe_parse_positive_int(absl::string_view text, int base,
 | |
|                                     IntType* value_p) {
 | |
|   IntType value = 0;
 | |
|   const IntType vmax = std::numeric_limits<IntType>::max();
 | |
|   assert(vmax > 0);
 | |
|   assert(base >= 0);
 | |
|   assert(vmax >= static_cast<IntType>(base));
 | |
|   const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
 | |
|   const char* start = text.data();
 | |
|   const char* end = start + text.size();
 | |
|   // loop over digits
 | |
|   for (; start < end; ++start) {
 | |
|     unsigned char c = static_cast<unsigned char>(start[0]);
 | |
|     int digit = kAsciiToInt[c];
 | |
|     if (digit >= base) {
 | |
|       *value_p = value;
 | |
|       return false;
 | |
|     }
 | |
|     if (value > vmax_over_base) {
 | |
|       *value_p = vmax;
 | |
|       return false;
 | |
|     }
 | |
|     value *= base;
 | |
|     if (value > vmax - digit) {
 | |
|       *value_p = vmax;
 | |
|       return false;
 | |
|     }
 | |
|     value += digit;
 | |
|   }
 | |
|   *value_p = value;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| inline bool safe_parse_negative_int(absl::string_view text, int base,
 | |
|                                     IntType* value_p) {
 | |
|   IntType value = 0;
 | |
|   const IntType vmin = std::numeric_limits<IntType>::min();
 | |
|   assert(vmin < 0);
 | |
|   assert(vmin <= 0 - base);
 | |
|   IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
 | |
|   // 2003 c++ standard [expr.mul]
 | |
|   // "... the sign of the remainder is implementation-defined."
 | |
|   // Although (vmin/base)*base + vmin%base is always vmin.
 | |
|   // 2011 c++ standard tightens the spec but we cannot rely on it.
 | |
|   // TODO(junyer): Handle this in the lookup table generation.
 | |
|   if (vmin % base > 0) {
 | |
|     vmin_over_base += 1;
 | |
|   }
 | |
|   const char* start = text.data();
 | |
|   const char* end = start + text.size();
 | |
|   // loop over digits
 | |
|   for (; start < end; ++start) {
 | |
|     unsigned char c = static_cast<unsigned char>(start[0]);
 | |
|     int digit = kAsciiToInt[c];
 | |
|     if (digit >= base) {
 | |
|       *value_p = value;
 | |
|       return false;
 | |
|     }
 | |
|     if (value < vmin_over_base) {
 | |
|       *value_p = vmin;
 | |
|       return false;
 | |
|     }
 | |
|     value *= base;
 | |
|     if (value < vmin + digit) {
 | |
|       *value_p = vmin;
 | |
|       return false;
 | |
|     }
 | |
|     value -= digit;
 | |
|   }
 | |
|   *value_p = value;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Input format based on POSIX.1-2008 strtol
 | |
| // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
 | |
| template <typename IntType>
 | |
| inline bool safe_int_internal(absl::string_view text, IntType* value_p,
 | |
|                               int base) {
 | |
|   *value_p = 0;
 | |
|   bool negative;
 | |
|   if (!safe_parse_sign_and_base(&text, &base, &negative)) {
 | |
|     return false;
 | |
|   }
 | |
|   if (!negative) {
 | |
|     return safe_parse_positive_int(text, base, value_p);
 | |
|   } else {
 | |
|     return safe_parse_negative_int(text, base, value_p);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| inline bool safe_uint_internal(absl::string_view text, IntType* value_p,
 | |
|                                int base) {
 | |
|   *value_p = 0;
 | |
|   bool negative;
 | |
|   if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
 | |
|     return false;
 | |
|   }
 | |
|   return safe_parse_positive_int(text, base, value_p);
 | |
| }
 | |
| }  // anonymous namespace
 | |
| 
 | |
| namespace numbers_internal {
 | |
| 
 | |
| // Digit conversion.
 | |
| ABSL_CONST_INIT const char kHexChar[] = "0123456789abcdef";
 | |
| 
 | |
| ABSL_CONST_INIT const char kHexTable[513] =
 | |
|     "000102030405060708090a0b0c0d0e0f"
 | |
|     "101112131415161718191a1b1c1d1e1f"
 | |
|     "202122232425262728292a2b2c2d2e2f"
 | |
|     "303132333435363738393a3b3c3d3e3f"
 | |
|     "404142434445464748494a4b4c4d4e4f"
 | |
|     "505152535455565758595a5b5c5d5e5f"
 | |
|     "606162636465666768696a6b6c6d6e6f"
 | |
|     "707172737475767778797a7b7c7d7e7f"
 | |
|     "808182838485868788898a8b8c8d8e8f"
 | |
|     "909192939495969798999a9b9c9d9e9f"
 | |
|     "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"
 | |
|     "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"
 | |
|     "c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
 | |
|     "d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"
 | |
|     "e0e1e2e3e4e5e6e7e8e9eaebecedeeef"
 | |
|     "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
 | |
| 
 | |
| ABSL_CONST_INIT const char two_ASCII_digits[100][2] = {
 | |
|     {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
 | |
|     {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
 | |
|     {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
 | |
|     {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
 | |
|     {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
 | |
|     {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
 | |
|     {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
 | |
|     {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
 | |
|     {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
 | |
|     {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
 | |
|     {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
 | |
|     {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
 | |
|     {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
 | |
|     {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
 | |
|     {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
 | |
|     {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
 | |
|     {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
 | |
| 
 | |
| bool safe_strto32_base(absl::string_view text, int32_t* value, int base) {
 | |
|   return safe_int_internal<int32_t>(text, value, base);
 | |
| }
 | |
| 
 | |
| bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {
 | |
|   return safe_int_internal<int64_t>(text, value, base);
 | |
| }
 | |
| 
 | |
| bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {
 | |
|   return safe_uint_internal<uint32_t>(text, value, base);
 | |
| }
 | |
| 
 | |
| bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) {
 | |
|   return safe_uint_internal<uint64_t>(text, value, base);
 | |
| }
 | |
| 
 | |
| bool safe_strtou128_base(absl::string_view text, uint128* value, int base) {
 | |
|   return safe_uint_internal<absl::uint128>(text, value, base);
 | |
| }
 | |
| 
 | |
| }  // namespace numbers_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |