... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
		
			
				
	
	
		
			1084 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1084 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // mutex.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
 | |
| // most common type of synchronization primitive for facilitating locks on
 | |
| // shared resources. A mutex is used to prevent multiple threads from accessing
 | |
| // and/or writing to a shared resource concurrently.
 | |
| //
 | |
| // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
 | |
| // features:
 | |
| //   * Conditional predicates intrinsic to the `Mutex` object
 | |
| //   * Shared/reader locks, in addition to standard exclusive/writer locks
 | |
| //   * Deadlock detection and debug support.
 | |
| //
 | |
| // The following helper classes are also defined within this file:
 | |
| //
 | |
| //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
 | |
| //              write access within the current scope.
 | |
| //
 | |
| //  ReaderMutexLock
 | |
| //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
 | |
| //              access within the current scope.
 | |
| //
 | |
| //  WriterMutexLock
 | |
| //            - Effectively an alias for `MutexLock` above, designed for use in
 | |
| //              distinguishing reader and writer locks within code.
 | |
| //
 | |
| // In addition to simple mutex locks, this file also defines ways to perform
 | |
| // locking under certain conditions.
 | |
| //
 | |
| //  Condition - (Preferred) Used to wait for a particular predicate that
 | |
| //              depends on state protected by the `Mutex` to become true.
 | |
| //  CondVar   - A lower-level variant of `Condition` that relies on
 | |
| //              application code to explicitly signal the `CondVar` when
 | |
| //              a condition has been met.
 | |
| //
 | |
| // See below for more information on using `Condition` or `CondVar`.
 | |
| //
 | |
| // Mutexes and mutex behavior can be quite complicated. The information within
 | |
| // this header file is limited, as a result. Please consult the Mutex guide for
 | |
| // more complete information and examples.
 | |
| 
 | |
| #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
 | |
| #define ABSL_SYNCHRONIZATION_MUTEX_H_
 | |
| 
 | |
| #include <atomic>
 | |
| #include <cstdint>
 | |
| #include <string>
 | |
| 
 | |
| #include "absl/base/const_init.h"
 | |
| #include "absl/base/internal/identity.h"
 | |
| #include "absl/base/internal/low_level_alloc.h"
 | |
| #include "absl/base/internal/thread_identity.h"
 | |
| #include "absl/base/internal/tsan_mutex_interface.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/base/thread_annotations.h"
 | |
| #include "absl/synchronization/internal/kernel_timeout.h"
 | |
| #include "absl/synchronization/internal/per_thread_sem.h"
 | |
| #include "absl/time/time.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| class Condition;
 | |
| struct SynchWaitParams;
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Mutex
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
 | |
| // on some resource, typically a variable or data structure with associated
 | |
| // invariants. Proper usage of mutexes prevents concurrent access by different
 | |
| // threads to the same resource.
 | |
| //
 | |
| // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
 | |
| // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
 | |
| // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
 | |
| // Mutex. During the span of time between the Lock() and Unlock() operations,
 | |
| // a mutex is said to be *held*. By design all mutexes support exclusive/write
 | |
| // locks, as this is the most common way to use a mutex.
 | |
| //
 | |
| // The `Mutex` state machine for basic lock/unlock operations is quite simple:
 | |
| //
 | |
| // |                | Lock()     | Unlock() |
 | |
| // |----------------+------------+----------|
 | |
| // | Free           | Exclusive  | invalid  |
 | |
| // | Exclusive      | blocks     | Free     |
 | |
| //
 | |
| // Attempts to `Unlock()` must originate from the thread that performed the
 | |
| // corresponding `Lock()` operation.
 | |
| //
 | |
| // An "invalid" operation is disallowed by the API. The `Mutex` implementation
 | |
| // is allowed to do anything on an invalid call, including but not limited to
 | |
| // crashing with a useful error message, silently succeeding, or corrupting
 | |
| // data structures. In debug mode, the implementation attempts to crash with a
 | |
| // useful error message.
 | |
| //
 | |
| // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
 | |
| // is, however, approximately fair over long periods, and starvation-free for
 | |
| // threads at the same priority.
 | |
| //
 | |
| // The lock/unlock primitives are now annotated with lock annotations
 | |
| // defined in (base/thread_annotations.h). When writing multi-threaded code,
 | |
| // you should use lock annotations whenever possible to document your lock
 | |
| // synchronization policy. Besides acting as documentation, these annotations
 | |
| // also help compilers or static analysis tools to identify and warn about
 | |
| // issues that could potentially result in race conditions and deadlocks.
 | |
| //
 | |
| // For more information about the lock annotations, please see
 | |
| // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
 | |
| // in the Clang documentation.
 | |
| //
 | |
| // See also `MutexLock`, below, for scoped `Mutex` acquisition.
 | |
| 
 | |
| class ABSL_LOCKABLE Mutex {
 | |
|  public:
 | |
|   // Creates a `Mutex` that is not held by anyone. This constructor is
 | |
|   // typically used for Mutexes allocated on the heap or the stack.
 | |
|   //
 | |
|   // To create `Mutex` instances with static storage duration
 | |
|   // (e.g. a namespace-scoped or global variable), see
 | |
|   // `Mutex::Mutex(absl::kConstInit)` below instead.
 | |
|   Mutex();
 | |
| 
 | |
|   // Creates a mutex with static storage duration.  A global variable
 | |
|   // constructed this way avoids the lifetime issues that can occur on program
 | |
|   // startup and shutdown.  (See absl/base/const_init.h.)
 | |
|   //
 | |
|   // For Mutexes allocated on the heap and stack, instead use the default
 | |
|   // constructor, which can interact more fully with the thread sanitizer.
 | |
|   //
 | |
|   // Example usage:
 | |
|   //   namespace foo {
 | |
|   //   ABSL_CONST_INIT Mutex mu(absl::kConstInit);
 | |
|   //   }
 | |
|   explicit constexpr Mutex(absl::ConstInitType);
 | |
| 
 | |
|   ~Mutex();
 | |
| 
 | |
|   // Mutex::Lock()
 | |
|   //
 | |
|   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
 | |
|   // then acquires it exclusively. (This lock is also known as a "write lock.")
 | |
|   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
 | |
| 
 | |
|   // Mutex::Unlock()
 | |
|   //
 | |
|   // Releases this `Mutex` and returns it from the exclusive/write state to the
 | |
|   // free state. Caller must hold the `Mutex` exclusively.
 | |
|   void Unlock() ABSL_UNLOCK_FUNCTION();
 | |
| 
 | |
|   // Mutex::TryLock()
 | |
|   //
 | |
|   // If the mutex can be acquired without blocking, does so exclusively and
 | |
|   // returns `true`. Otherwise, returns `false`. Returns `true` with high
 | |
|   // probability if the `Mutex` was free.
 | |
|   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
 | |
| 
 | |
|   // Mutex::AssertHeld()
 | |
|   //
 | |
|   // Return immediately if this thread holds the `Mutex` exclusively (in write
 | |
|   // mode). Otherwise, may report an error (typically by crashing with a
 | |
|   // diagnostic), or may return immediately.
 | |
|   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // Reader-Writer Locking
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // A Mutex can also be used as a starvation-free reader-writer lock.
 | |
|   // Neither read-locks nor write-locks are reentrant/recursive to avoid
 | |
|   // potential client programming errors.
 | |
|   //
 | |
|   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
 | |
|   // `Unlock()` and `TryLock()` methods for use within applications mixing
 | |
|   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
 | |
|   // manner can make locking behavior clearer when mixing read and write modes.
 | |
|   //
 | |
|   // Introducing reader locks necessarily complicates the `Mutex` state
 | |
|   // machine somewhat. The table below illustrates the allowed state transitions
 | |
|   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
 | |
|   // is held in shared mode; this occurs when another thread is blocked on a
 | |
|   // call to WriterLock().
 | |
|   //
 | |
|   // ---------------------------------------------------------------------------
 | |
|   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // State
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // Free           Exclusive    invalid   Shared(1)              invalid
 | |
|   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
 | |
|   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
 | |
|   // Exclusive      blocks       Free      blocks                 invalid
 | |
|   // ---------------------------------------------------------------------------
 | |
|   //
 | |
|   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
 | |
| 
 | |
|   // Mutex::ReaderLock()
 | |
|   //
 | |
|   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
 | |
|   // or in shared mode, and then acquires a share of it. Note that
 | |
|   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
 | |
|   // on the mutex.
 | |
| 
 | |
|   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
 | |
| 
 | |
|   // Mutex::ReaderUnlock()
 | |
|   //
 | |
|   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
 | |
|   // the free state if this thread holds the last reader lock on the mutex. Note
 | |
|   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
 | |
|   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
 | |
| 
 | |
|   // Mutex::ReaderTryLock()
 | |
|   //
 | |
|   // If the mutex can be acquired without blocking, acquires this mutex for
 | |
|   // shared access and returns `true`. Otherwise, returns `false`. Returns
 | |
|   // `true` with high probability if the `Mutex` was free or shared.
 | |
|   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
 | |
| 
 | |
|   // Mutex::AssertReaderHeld()
 | |
|   //
 | |
|   // Returns immediately if this thread holds the `Mutex` in at least shared
 | |
|   // mode (read mode). Otherwise, may report an error (typically by
 | |
|   // crashing with a diagnostic), or may return immediately.
 | |
|   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
 | |
| 
 | |
|   // Mutex::WriterLock()
 | |
|   // Mutex::WriterUnlock()
 | |
|   // Mutex::WriterTryLock()
 | |
|   //
 | |
|   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
 | |
|   //
 | |
|   // These methods may be used (along with the complementary `Reader*()`
 | |
|   // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
 | |
|   // etc.) from reader/writer lock usage.
 | |
|   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
 | |
| 
 | |
|   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
 | |
| 
 | |
|   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
 | |
|     return this->TryLock();
 | |
|   }
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // Conditional Critical Regions
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
 | |
|   //
 | |
|   //   * Use of `Mutex` member functions with `Condition` objects.
 | |
|   //   * Use of the separate `CondVar` abstraction.
 | |
|   //
 | |
|   // In general, prefer use of `Condition` and the `Mutex` member functions
 | |
|   // listed below over `CondVar`. When there are multiple threads waiting on
 | |
|   // distinctly different conditions, however, a battery of `CondVar`s may be
 | |
|   // more efficient. This section discusses use of `Condition` objects.
 | |
|   //
 | |
|   // `Mutex` contains member functions for performing lock operations only under
 | |
|   // certain conditions, of class `Condition`. For correctness, the `Condition`
 | |
|   // must return a boolean that is a pure function, only of state protected by
 | |
|   // the `Mutex`. The condition must be invariant w.r.t. environmental state
 | |
|   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
 | |
|   // always be invoked with the mutex held in at least read mode, so you should
 | |
|   // not block it for long periods or sleep it on a timer.
 | |
|   //
 | |
|   // Since a condition must not depend directly on the current time, use
 | |
|   // `*WithTimeout()` member function variants to make your condition
 | |
|   // effectively true after a given duration, or `*WithDeadline()` variants to
 | |
|   // make your condition effectively true after a given time.
 | |
|   //
 | |
|   // The condition function should have no side-effects aside from debug
 | |
|   // logging; as a special exception, the function may acquire other mutexes
 | |
|   // provided it releases all those that it acquires.  (This exception was
 | |
|   // required to allow logging.)
 | |
| 
 | |
|   // Mutex::Await()
 | |
|   //
 | |
|   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
 | |
|   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
 | |
|   // same mode in which it was previously held. If the condition is initially
 | |
|   // `true`, `Await()` *may* skip the release/re-acquire step.
 | |
|   //
 | |
|   // `Await()` requires that this thread holds this `Mutex` in some mode.
 | |
|   void Await(const Condition &cond);
 | |
| 
 | |
|   // Mutex::LockWhen()
 | |
|   // Mutex::ReaderLockWhen()
 | |
|   // Mutex::WriterLockWhen()
 | |
|   //
 | |
|   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
 | |
|   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
 | |
|   // logically equivalent to `*Lock(); Await();` though they may have different
 | |
|   // performance characteristics.
 | |
|   void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
 | |
| 
 | |
|   void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
 | |
| 
 | |
|   void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
 | |
|     this->LockWhen(cond);
 | |
|   }
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // Mutex Variants with Timeouts/Deadlines
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // Mutex::AwaitWithTimeout()
 | |
|   // Mutex::AwaitWithDeadline()
 | |
|   //
 | |
|   // Unlocks this `Mutex` and blocks until simultaneously:
 | |
|   //   - either `cond` is true or the {timeout has expired, deadline has passed}
 | |
|   //     and
 | |
|   //   - this `Mutex` can be reacquired,
 | |
|   // then reacquire this `Mutex` in the same mode in which it was previously
 | |
|   // held, returning `true` iff `cond` is `true` on return.
 | |
|   //
 | |
|   // If the condition is initially `true`, the implementation *may* skip the
 | |
|   // release/re-acquire step and return immediately.
 | |
|   //
 | |
|   // Deadlines in the past are equivalent to an immediate deadline.
 | |
|   // Negative timeouts are equivalent to a zero timeout.
 | |
|   //
 | |
|   // This method requires that this thread holds this `Mutex` in some mode.
 | |
|   bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
 | |
| 
 | |
|   bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
 | |
| 
 | |
|   // Mutex::LockWhenWithTimeout()
 | |
|   // Mutex::ReaderLockWhenWithTimeout()
 | |
|   // Mutex::WriterLockWhenWithTimeout()
 | |
|   //
 | |
|   // Blocks until simultaneously both:
 | |
|   //   - either `cond` is `true` or the timeout has expired, and
 | |
|   //   - this `Mutex` can be acquired,
 | |
|   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
 | |
|   // `true` on return.
 | |
|   //
 | |
|   // Negative timeouts are equivalent to a zero timeout.
 | |
|   bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION();
 | |
|   bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
 | |
|       ABSL_SHARED_LOCK_FUNCTION();
 | |
|   bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
 | |
|     return this->LockWhenWithTimeout(cond, timeout);
 | |
|   }
 | |
| 
 | |
|   // Mutex::LockWhenWithDeadline()
 | |
|   // Mutex::ReaderLockWhenWithDeadline()
 | |
|   // Mutex::WriterLockWhenWithDeadline()
 | |
|   //
 | |
|   // Blocks until simultaneously both:
 | |
|   //   - either `cond` is `true` or the deadline has been passed, and
 | |
|   //   - this `Mutex` can be acquired,
 | |
|   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
 | |
|   // on return.
 | |
|   //
 | |
|   // Deadlines in the past are equivalent to an immediate deadline.
 | |
|   bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION();
 | |
|   bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
 | |
|       ABSL_SHARED_LOCK_FUNCTION();
 | |
|   bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
 | |
|     return this->LockWhenWithDeadline(cond, deadline);
 | |
|   }
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // Mutex::EnableInvariantDebugging()
 | |
|   //
 | |
|   // If `invariant`!=null and if invariant debugging has been enabled globally,
 | |
|   // cause `(*invariant)(arg)` to be called at moments when the invariant for
 | |
|   // this `Mutex` should hold (for example: just after acquire, just before
 | |
|   // release).
 | |
|   //
 | |
|   // The routine `invariant` should have no side-effects since it is not
 | |
|   // guaranteed how many times it will be called; it should check the invariant
 | |
|   // and crash if it does not hold. Enabling global invariant debugging may
 | |
|   // substantially reduce `Mutex` performance; it should be set only for
 | |
|   // non-production runs.  Optimization options may also disable invariant
 | |
|   // checks.
 | |
|   void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
 | |
| 
 | |
|   // Mutex::EnableDebugLog()
 | |
|   //
 | |
|   // Cause all subsequent uses of this `Mutex` to be logged via
 | |
|   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
 | |
|   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
 | |
|   //
 | |
|   // Note: This method substantially reduces `Mutex` performance.
 | |
|   void EnableDebugLog(const char *name);
 | |
| 
 | |
|   // Deadlock detection
 | |
| 
 | |
|   // Mutex::ForgetDeadlockInfo()
 | |
|   //
 | |
|   // Forget any deadlock-detection information previously gathered
 | |
|   // about this `Mutex`. Call this method in debug mode when the lock ordering
 | |
|   // of a `Mutex` changes.
 | |
|   void ForgetDeadlockInfo();
 | |
| 
 | |
|   // Mutex::AssertNotHeld()
 | |
|   //
 | |
|   // Return immediately if this thread does not hold this `Mutex` in any
 | |
|   // mode; otherwise, may report an error (typically by crashing with a
 | |
|   // diagnostic), or may return immediately.
 | |
|   //
 | |
|   // Currently this check is performed only if all of:
 | |
|   //    - in debug mode
 | |
|   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
 | |
|   //    - number of locks concurrently held by this thread is not large.
 | |
|   // are true.
 | |
|   void AssertNotHeld() const;
 | |
| 
 | |
|   // Special cases.
 | |
| 
 | |
|   // A `MuHow` is a constant that indicates how a lock should be acquired.
 | |
|   // Internal implementation detail.  Clients should ignore.
 | |
|   typedef const struct MuHowS *MuHow;
 | |
| 
 | |
|   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
 | |
|   //
 | |
|   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
 | |
|   // future use of `Mutex` within a fatal signal handler. This method is
 | |
|   // intended for use only for last-ditch attempts to log crash information.
 | |
|   // It does not guarantee that attempts to use Mutexes within the handler will
 | |
|   // not deadlock; it merely makes other faults less likely.
 | |
|   //
 | |
|   // WARNING:  This routine must be invoked from a signal handler, and the
 | |
|   // signal handler must either loop forever or terminate the process.
 | |
|   // Attempts to return from (or `longjmp` out of) the signal handler once this
 | |
|   // call has been made may cause arbitrary program behaviour including
 | |
|   // crashes and deadlocks.
 | |
|   static void InternalAttemptToUseMutexInFatalSignalHandler();
 | |
| 
 | |
|  private:
 | |
|   std::atomic<intptr_t> mu_;  // The Mutex state.
 | |
| 
 | |
|   // Post()/Wait() versus associated PerThreadSem; in class for required
 | |
|   // friendship with PerThreadSem.
 | |
|   static inline void IncrementSynchSem(Mutex *mu,
 | |
|                                        base_internal::PerThreadSynch *w);
 | |
|   static inline bool DecrementSynchSem(
 | |
|       Mutex *mu, base_internal::PerThreadSynch *w,
 | |
|       synchronization_internal::KernelTimeout t);
 | |
| 
 | |
|   // slow path acquire
 | |
|   void LockSlowLoop(SynchWaitParams *waitp, int flags);
 | |
|   // wrappers around LockSlowLoop()
 | |
|   bool LockSlowWithDeadline(MuHow how, const Condition *cond,
 | |
|                             synchronization_internal::KernelTimeout t,
 | |
|                             int flags);
 | |
|   void LockSlow(MuHow how, const Condition *cond,
 | |
|                 int flags) ABSL_ATTRIBUTE_COLD;
 | |
|   // slow path release
 | |
|   void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
 | |
|   // Common code between Await() and AwaitWithTimeout/Deadline()
 | |
|   bool AwaitCommon(const Condition &cond,
 | |
|                    synchronization_internal::KernelTimeout t);
 | |
|   // Attempt to remove thread s from queue.
 | |
|   void TryRemove(base_internal::PerThreadSynch *s);
 | |
|   // Block a thread on mutex.
 | |
|   void Block(base_internal::PerThreadSynch *s);
 | |
|   // Wake a thread; return successor.
 | |
|   base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
 | |
| 
 | |
|   friend class CondVar;   // for access to Trans()/Fer().
 | |
|   void Trans(MuHow how);  // used for CondVar->Mutex transfer
 | |
|   void Fer(
 | |
|       base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
 | |
| 
 | |
|   // Catch the error of writing Mutex when intending MutexLock.
 | |
|   Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
 | |
| 
 | |
|   Mutex(const Mutex&) = delete;
 | |
|   Mutex& operator=(const Mutex&) = delete;
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Mutex RAII Wrappers
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // MutexLock
 | |
| //
 | |
| // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
 | |
| // RAII.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| // Class Foo {
 | |
| //  public:
 | |
| //   Foo::Bar* Baz() {
 | |
| //     MutexLock lock(&mu_);
 | |
| //     ...
 | |
| //     return bar;
 | |
| //   }
 | |
| //
 | |
| // private:
 | |
| //   Mutex mu_;
 | |
| // };
 | |
| class ABSL_SCOPED_LOCKABLE MutexLock {
 | |
|  public:
 | |
|   // Constructors
 | |
| 
 | |
|   // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
 | |
|   // guaranteed to be locked when this object is constructed. Requires that
 | |
|   // `mu` be dereferenceable.
 | |
|   explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
 | |
|     this->mu_->Lock();
 | |
|   }
 | |
| 
 | |
|   // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
 | |
|   // the above, the condition given by `cond` is also guaranteed to hold when
 | |
|   // this object is constructed.
 | |
|   explicit MutexLock(Mutex *mu, const Condition &cond)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     this->mu_->LockWhen(cond);
 | |
|   }
 | |
| 
 | |
|   MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
 | |
|   MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
 | |
|   MutexLock& operator=(const MutexLock&) = delete;
 | |
|   MutexLock& operator=(MutexLock&&) = delete;
 | |
| 
 | |
|   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
 | |
| 
 | |
|  private:
 | |
|   Mutex *const mu_;
 | |
| };
 | |
| 
 | |
| // ReaderMutexLock
 | |
| //
 | |
| // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
 | |
| // releases a shared lock on a `Mutex` via RAII.
 | |
| class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
 | |
|  public:
 | |
|   explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
 | |
|     mu->ReaderLock();
 | |
|   }
 | |
| 
 | |
|   explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
 | |
|       ABSL_SHARED_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     mu->ReaderLockWhen(cond);
 | |
|   }
 | |
| 
 | |
|   ReaderMutexLock(const ReaderMutexLock&) = delete;
 | |
|   ReaderMutexLock(ReaderMutexLock&&) = delete;
 | |
|   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
 | |
|   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
 | |
| 
 | |
|   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
 | |
| 
 | |
|  private:
 | |
|   Mutex *const mu_;
 | |
| };
 | |
| 
 | |
| // WriterMutexLock
 | |
| //
 | |
| // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
 | |
| // releases a write (exclusive) lock on a `Mutex` via RAII.
 | |
| class ABSL_SCOPED_LOCKABLE WriterMutexLock {
 | |
|  public:
 | |
|   explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     mu->WriterLock();
 | |
|   }
 | |
| 
 | |
|   explicit WriterMutexLock(Mutex *mu, const Condition &cond)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     mu->WriterLockWhen(cond);
 | |
|   }
 | |
| 
 | |
|   WriterMutexLock(const WriterMutexLock&) = delete;
 | |
|   WriterMutexLock(WriterMutexLock&&) = delete;
 | |
|   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
 | |
|   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
 | |
| 
 | |
|   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
 | |
| 
 | |
|  private:
 | |
|   Mutex *const mu_;
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Condition
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // As noted above, `Mutex` contains a number of member functions which take a
 | |
| // `Condition` as an argument; clients can wait for conditions to become `true`
 | |
| // before attempting to acquire the mutex. These sections are known as
 | |
| // "condition critical" sections. To use a `Condition`, you simply need to
 | |
| // construct it, and use within an appropriate `Mutex` member function;
 | |
| // everything else in the `Condition` class is an implementation detail.
 | |
| //
 | |
| // A `Condition` is specified as a function pointer which returns a boolean.
 | |
| // `Condition` functions should be pure functions -- their results should depend
 | |
| // only on passed arguments, should not consult any external state (such as
 | |
| // clocks), and should have no side-effects, aside from debug logging. Any
 | |
| // objects that the function may access should be limited to those which are
 | |
| // constant while the mutex is blocked on the condition (e.g. a stack variable),
 | |
| // or objects of state protected explicitly by the mutex.
 | |
| //
 | |
| // No matter which construction is used for `Condition`, the underlying
 | |
| // function pointer / functor / callable must not throw any
 | |
| // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
 | |
| // the face of a throwing `Condition`. (When Abseil is allowed to depend
 | |
| // on C++17, these function pointers will be explicitly marked
 | |
| // `noexcept`; until then this requirement cannot be enforced in the
 | |
| // type system.)
 | |
| //
 | |
| // Note: to use a `Condition`, you need only construct it and pass it to a
 | |
| // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
 | |
| // constructor of one of the scope guard classes.
 | |
| //
 | |
| // Example using LockWhen/Unlock:
 | |
| //
 | |
| //   // assume count_ is not internal reference count
 | |
| //   int count_ ABSL_GUARDED_BY(mu_);
 | |
| //   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
 | |
| //
 | |
| //   mu_.LockWhen(count_is_zero);
 | |
| //   // ...
 | |
| //   mu_.Unlock();
 | |
| //
 | |
| // Example using a scope guard:
 | |
| //
 | |
| //   {
 | |
| //     MutexLock lock(&mu_, count_is_zero);
 | |
| //     // ...
 | |
| //   }
 | |
| //
 | |
| // When multiple threads are waiting on exactly the same condition, make sure
 | |
| // that they are constructed with the same parameters (same pointer to function
 | |
| // + arg, or same pointer to object + method), so that the mutex implementation
 | |
| // can avoid redundantly evaluating the same condition for each thread.
 | |
| class Condition {
 | |
|  public:
 | |
|   // A Condition that returns the result of "(*func)(arg)"
 | |
|   Condition(bool (*func)(void *), void *arg);
 | |
| 
 | |
|   // Templated version for people who are averse to casts.
 | |
|   //
 | |
|   // To use a lambda, prepend it with unary plus, which converts the lambda
 | |
|   // into a function pointer:
 | |
|   //     Condition(+[](T* t) { return ...; }, arg).
 | |
|   //
 | |
|   // Note: lambdas in this case must contain no bound variables.
 | |
|   //
 | |
|   // See class comment for performance advice.
 | |
|   template<typename T>
 | |
|   Condition(bool (*func)(T *), T *arg);
 | |
| 
 | |
|   // Templated version for invoking a method that returns a `bool`.
 | |
|   //
 | |
|   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
 | |
|   // `object->Method()`.
 | |
|   //
 | |
|   // Implementation Note: `absl::internal::identity` is used to allow methods to
 | |
|   // come from base classes. A simpler signature like
 | |
|   // `Condition(T*, bool (T::*)())` does not suffice.
 | |
|   template<typename T>
 | |
|   Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
 | |
| 
 | |
|   // Same as above, for const members
 | |
|   template<typename T>
 | |
|   Condition(const T *object,
 | |
|             bool (absl::internal::identity<T>::type::* method)() const);
 | |
| 
 | |
|   // A Condition that returns the value of `*cond`
 | |
|   explicit Condition(const bool *cond);
 | |
| 
 | |
|   // Templated version for invoking a functor that returns a `bool`.
 | |
|   // This approach accepts pointers to non-mutable lambdas, `std::function`,
 | |
|   // the result of` std::bind` and user-defined functors that define
 | |
|   // `bool F::operator()() const`.
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   //   auto reached = [this, current]() {
 | |
|   //     mu_.AssertReaderHeld();                // For annotalysis.
 | |
|   //     return processed_ >= current;
 | |
|   //   };
 | |
|   //   mu_.Await(Condition(&reached));
 | |
|   //
 | |
|   // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
 | |
|   // the lambda as it may be called when the mutex is being unlocked from a
 | |
|   // scope holding only a reader lock, which will make the assertion not
 | |
|   // fulfilled and crash the binary.
 | |
| 
 | |
|   // See class comment for performance advice. In particular, if there
 | |
|   // might be more than one waiter for the same condition, make sure
 | |
|   // that all waiters construct the condition with the same pointers.
 | |
| 
 | |
|   // Implementation note: The second template parameter ensures that this
 | |
|   // constructor doesn't participate in overload resolution if T doesn't have
 | |
|   // `bool operator() const`.
 | |
|   template <typename T, typename E = decltype(
 | |
|       static_cast<bool (T::*)() const>(&T::operator()))>
 | |
|   explicit Condition(const T *obj)
 | |
|       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
 | |
| 
 | |
|   // A Condition that always returns `true`.
 | |
|   static const Condition kTrue;
 | |
| 
 | |
|   // Evaluates the condition.
 | |
|   bool Eval() const;
 | |
| 
 | |
|   // Returns `true` if the two conditions are guaranteed to return the same
 | |
|   // value if evaluated at the same time, `false` if the evaluation *may* return
 | |
|   // different results.
 | |
|   //
 | |
|   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
 | |
|   // components are the same. A null pointer is equivalent to a `true`
 | |
|   // condition.
 | |
|   static bool GuaranteedEqual(const Condition *a, const Condition *b);
 | |
| 
 | |
|  private:
 | |
|   typedef bool (*InternalFunctionType)(void * arg);
 | |
|   typedef bool (Condition::*InternalMethodType)();
 | |
|   typedef bool (*InternalMethodCallerType)(void * arg,
 | |
|                                            InternalMethodType internal_method);
 | |
| 
 | |
|   bool (*eval_)(const Condition*);  // Actual evaluator
 | |
|   InternalFunctionType function_;   // function taking pointer returning bool
 | |
|   InternalMethodType method_;       // method returning bool
 | |
|   void *arg_;                       // arg of function_ or object of method_
 | |
| 
 | |
|   Condition();        // null constructor used only to create kTrue
 | |
| 
 | |
|   // Various functions eval_ can point to:
 | |
|   static bool CallVoidPtrFunction(const Condition*);
 | |
|   template <typename T> static bool CastAndCallFunction(const Condition* c);
 | |
|   template <typename T> static bool CastAndCallMethod(const Condition* c);
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // CondVar
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A condition variable, reflecting state evaluated separately outside of the
 | |
| // `Mutex` object, which can be signaled to wake callers.
 | |
| // This class is not normally needed; use `Mutex` member functions such as
 | |
| // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
 | |
| // with many threads and many conditions, `CondVar` may be faster.
 | |
| //
 | |
| // The implementation may deliver signals to any condition variable at
 | |
| // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
 | |
| // result, upon being awoken, you must check the logical condition you have
 | |
| // been waiting upon.
 | |
| //
 | |
| // Examples:
 | |
| //
 | |
| // Usage for a thread waiting for some condition C protected by mutex mu:
 | |
| //       mu.Lock();
 | |
| //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
 | |
| //       //  C holds; process data
 | |
| //       mu.Unlock();
 | |
| //
 | |
| // Usage to wake T is:
 | |
| //       mu.Lock();
 | |
| //      // process data, possibly establishing C
 | |
| //      if (C) { cv->Signal(); }
 | |
| //      mu.Unlock();
 | |
| //
 | |
| // If C may be useful to more than one waiter, use `SignalAll()` instead of
 | |
| // `Signal()`.
 | |
| //
 | |
| // With this implementation it is efficient to use `Signal()/SignalAll()` inside
 | |
| // the locked region; this usage can make reasoning about your program easier.
 | |
| //
 | |
| class CondVar {
 | |
|  public:
 | |
|   // A `CondVar` allocated on the heap or on the stack can use the this
 | |
|   // constructor.
 | |
|   CondVar();
 | |
|   ~CondVar();
 | |
| 
 | |
|   // CondVar::Wait()
 | |
|   //
 | |
|   // Atomically releases a `Mutex` and blocks on this condition variable.
 | |
|   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
 | |
|   // spurious wakeup), then reacquires the `Mutex` and returns.
 | |
|   //
 | |
|   // Requires and ensures that the current thread holds the `Mutex`.
 | |
|   void Wait(Mutex *mu);
 | |
| 
 | |
|   // CondVar::WaitWithTimeout()
 | |
|   //
 | |
|   // Atomically releases a `Mutex` and blocks on this condition variable.
 | |
|   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
 | |
|   // spurious wakeup), or until the timeout has expired, then reacquires
 | |
|   // the `Mutex` and returns.
 | |
|   //
 | |
|   // Returns true if the timeout has expired without this `CondVar`
 | |
|   // being signalled in any manner. If both the timeout has expired
 | |
|   // and this `CondVar` has been signalled, the implementation is free
 | |
|   // to return `true` or `false`.
 | |
|   //
 | |
|   // Requires and ensures that the current thread holds the `Mutex`.
 | |
|   bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
 | |
| 
 | |
|   // CondVar::WaitWithDeadline()
 | |
|   //
 | |
|   // Atomically releases a `Mutex` and blocks on this condition variable.
 | |
|   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
 | |
|   // spurious wakeup), or until the deadline has passed, then reacquires
 | |
|   // the `Mutex` and returns.
 | |
|   //
 | |
|   // Deadlines in the past are equivalent to an immediate deadline.
 | |
|   //
 | |
|   // Returns true if the deadline has passed without this `CondVar`
 | |
|   // being signalled in any manner. If both the deadline has passed
 | |
|   // and this `CondVar` has been signalled, the implementation is free
 | |
|   // to return `true` or `false`.
 | |
|   //
 | |
|   // Requires and ensures that the current thread holds the `Mutex`.
 | |
|   bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
 | |
| 
 | |
|   // CondVar::Signal()
 | |
|   //
 | |
|   // Signal this `CondVar`; wake at least one waiter if one exists.
 | |
|   void Signal();
 | |
| 
 | |
|   // CondVar::SignalAll()
 | |
|   //
 | |
|   // Signal this `CondVar`; wake all waiters.
 | |
|   void SignalAll();
 | |
| 
 | |
|   // CondVar::EnableDebugLog()
 | |
|   //
 | |
|   // Causes all subsequent uses of this `CondVar` to be logged via
 | |
|   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
 | |
|   // Note: this method substantially reduces `CondVar` performance.
 | |
|   void EnableDebugLog(const char *name);
 | |
| 
 | |
|  private:
 | |
|   bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
 | |
|   void Remove(base_internal::PerThreadSynch *s);
 | |
|   void Wakeup(base_internal::PerThreadSynch *w);
 | |
|   std::atomic<intptr_t> cv_;  // Condition variable state.
 | |
|   CondVar(const CondVar&) = delete;
 | |
|   CondVar& operator=(const CondVar&) = delete;
 | |
| };
 | |
| 
 | |
| 
 | |
| // Variants of MutexLock.
 | |
| //
 | |
| // If you find yourself using one of these, consider instead using
 | |
| // Mutex::Unlock() and/or if-statements for clarity.
 | |
| 
 | |
| // MutexLockMaybe
 | |
| //
 | |
| // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
 | |
| class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
 | |
|  public:
 | |
|   explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     if (this->mu_ != nullptr) {
 | |
|       this->mu_->Lock();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     if (this->mu_ != nullptr) {
 | |
|       this->mu_->LockWhen(cond);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
 | |
|     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Mutex *const mu_;
 | |
|   MutexLockMaybe(const MutexLockMaybe&) = delete;
 | |
|   MutexLockMaybe(MutexLockMaybe&&) = delete;
 | |
|   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
 | |
|   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
 | |
| };
 | |
| 
 | |
| // ReleasableMutexLock
 | |
| //
 | |
| // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
 | |
| // mutex before destruction. `Release()` may be called at most once.
 | |
| class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
 | |
|  public:
 | |
|   explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     this->mu_->Lock();
 | |
|   }
 | |
| 
 | |
|   explicit ReleasableMutexLock(Mutex *mu, const Condition &cond)
 | |
|       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
 | |
|       : mu_(mu) {
 | |
|     this->mu_->LockWhen(cond);
 | |
|   }
 | |
| 
 | |
|   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
 | |
|     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
 | |
|   }
 | |
| 
 | |
|   void Release() ABSL_UNLOCK_FUNCTION();
 | |
| 
 | |
|  private:
 | |
|   Mutex *mu_;
 | |
|   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
 | |
|   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
 | |
|   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
 | |
|   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
 | |
| };
 | |
| 
 | |
| inline Mutex::Mutex() : mu_(0) {
 | |
|   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
 | |
| }
 | |
| 
 | |
| inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
 | |
| 
 | |
| inline CondVar::CondVar() : cv_(0) {}
 | |
| 
 | |
| // static
 | |
| template <typename T>
 | |
| bool Condition::CastAndCallMethod(const Condition *c) {
 | |
|   typedef bool (T::*MemberType)();
 | |
|   MemberType rm = reinterpret_cast<MemberType>(c->method_);
 | |
|   T *x = static_cast<T *>(c->arg_);
 | |
|   return (x->*rm)();
 | |
| }
 | |
| 
 | |
| // static
 | |
| template <typename T>
 | |
| bool Condition::CastAndCallFunction(const Condition *c) {
 | |
|   typedef bool (*FuncType)(T *);
 | |
|   FuncType fn = reinterpret_cast<FuncType>(c->function_);
 | |
|   T *x = static_cast<T *>(c->arg_);
 | |
|   return (*fn)(x);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline Condition::Condition(bool (*func)(T *), T *arg)
 | |
|     : eval_(&CastAndCallFunction<T>),
 | |
|       function_(reinterpret_cast<InternalFunctionType>(func)),
 | |
|       method_(nullptr),
 | |
|       arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
 | |
| 
 | |
| template <typename T>
 | |
| inline Condition::Condition(T *object,
 | |
|                             bool (absl::internal::identity<T>::type::*method)())
 | |
|     : eval_(&CastAndCallMethod<T>),
 | |
|       function_(nullptr),
 | |
|       method_(reinterpret_cast<InternalMethodType>(method)),
 | |
|       arg_(object) {}
 | |
| 
 | |
| template <typename T>
 | |
| inline Condition::Condition(const T *object,
 | |
|                             bool (absl::internal::identity<T>::type::*method)()
 | |
|                                 const)
 | |
|     : eval_(&CastAndCallMethod<T>),
 | |
|       function_(nullptr),
 | |
|       method_(reinterpret_cast<InternalMethodType>(method)),
 | |
|       arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
 | |
| 
 | |
| // Register a hook for profiling support.
 | |
| //
 | |
| // The function pointer registered here will be called whenever a mutex is
 | |
| // contended.  The callback is given the absl/base/cycleclock.h timestamp when
 | |
| // waiting began.
 | |
| //
 | |
| // Calls to this function do not race or block, but there is no ordering
 | |
| // guaranteed between calls to this function and call to the provided hook.
 | |
| // In particular, the previously registered hook may still be called for some
 | |
| // time after this function returns.
 | |
| void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
 | |
| 
 | |
| // Register a hook for Mutex tracing.
 | |
| //
 | |
| // The function pointer registered here will be called whenever a mutex is
 | |
| // contended.  The callback is given an opaque handle to the contended mutex,
 | |
| // an event name, and the number of wait cycles (as measured by
 | |
| // //absl/base/internal/cycleclock.h, and which may not be real
 | |
| // "cycle" counts.)
 | |
| //
 | |
| // The only event name currently sent is "slow release".
 | |
| //
 | |
| // This has the same memory ordering concerns as RegisterMutexProfiler() above.
 | |
| void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
 | |
|                                     int64_t wait_cycles));
 | |
| 
 | |
| // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
 | |
| // into a single interface, since they are only ever called in pairs.
 | |
| 
 | |
| // Register a hook for CondVar tracing.
 | |
| //
 | |
| // The function pointer registered here will be called here on various CondVar
 | |
| // events.  The callback is given an opaque handle to the CondVar object and
 | |
| // a string identifying the event.  This is thread-safe, but only a single
 | |
| // tracer can be registered.
 | |
| //
 | |
| // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
 | |
| // "SignalAll wakeup".
 | |
| //
 | |
| // This has the same memory ordering concerns as RegisterMutexProfiler() above.
 | |
| void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
 | |
| 
 | |
| // Register a hook for symbolizing stack traces in deadlock detector reports.
 | |
| //
 | |
| // 'pc' is the program counter being symbolized, 'out' is the buffer to write
 | |
| // into, and 'out_size' is the size of the buffer.  This function can return
 | |
| // false if symbolizing failed, or true if a NUL-terminated symbol was written
 | |
| // to 'out.'
 | |
| //
 | |
| // This has the same memory ordering concerns as RegisterMutexProfiler() above.
 | |
| //
 | |
| // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
 | |
| // ability to register a different hook for symbolizing stack traces will be
 | |
| // removed on or after 2023-05-01.
 | |
| ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
 | |
|                 "on or after 2023-05-01")
 | |
| void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
 | |
| 
 | |
| // EnableMutexInvariantDebugging()
 | |
| //
 | |
| // Enable or disable global support for Mutex invariant debugging.  If enabled,
 | |
| // then invariant predicates can be registered per-Mutex for debug checking.
 | |
| // See Mutex::EnableInvariantDebugging().
 | |
| void EnableMutexInvariantDebugging(bool enabled);
 | |
| 
 | |
| // When in debug mode, and when the feature has been enabled globally, the
 | |
| // implementation will keep track of lock ordering and complain (or optionally
 | |
| // crash) if a cycle is detected in the acquired-before graph.
 | |
| 
 | |
| // Possible modes of operation for the deadlock detector in debug mode.
 | |
| enum class OnDeadlockCycle {
 | |
|   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
 | |
|   kReport,  // Report lock cycles to stderr when detected
 | |
|   kAbort,  // Report lock cycles to stderr when detected, then abort
 | |
| };
 | |
| 
 | |
| // SetMutexDeadlockDetectionMode()
 | |
| //
 | |
| // Enable or disable global support for detection of potential deadlocks
 | |
| // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
 | |
| // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
 | |
| // will be maintained internally, and detected cycles will be reported in
 | |
| // the manner chosen here.
 | |
| void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| // In some build configurations we pass --detect-odr-violations to the
 | |
| // gold linker.  This causes it to flag weak symbol overrides as ODR
 | |
| // violations.  Because ODR only applies to C++ and not C,
 | |
| // --detect-odr-violations ignores symbols not mangled with C++ names.
 | |
| // By changing our extension points to be extern "C", we dodge this
 | |
| // check.
 | |
| extern "C" {
 | |
| void AbslInternalMutexYield();
 | |
| }  // extern "C"
 | |
| 
 | |
| #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
 |