This is required because Go 1.18 is actually being deleted. I've applied the formatting breakage that it introduces (such as breaking comment formatting), because I can't be bothered to try and work around broken Go stuff. Change-Id: Ica7cee0d01228845d6a766079fef36df99a3da96 Reviewed-on: https://cl.tvl.fyi/c/depot/+/9832 Autosubmit: tazjin <tazjin@tvl.su> Reviewed-by: flokli <flokli@flokli.de> Tested-by: BuildkiteCI
		
			
				
	
	
		
			354 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			354 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2022 The TVL Contributors
 | 
						|
// SPDX-License-Identifier: Apache-2.0
 | 
						|
 | 
						|
// This package reads an export reference graph (i.e. a graph representing the
 | 
						|
// runtime dependencies of a set of derivations) created by Nix and groups it in
 | 
						|
// a way that is likely to match the grouping for other derivation sets with
 | 
						|
// overlapping dependencies.
 | 
						|
//
 | 
						|
// This is used to determine which derivations to include in which layers of a
 | 
						|
// container image.
 | 
						|
//
 | 
						|
// # Inputs
 | 
						|
//
 | 
						|
//   - a graph of Nix runtime dependencies, generated via exportReferenceGraph
 | 
						|
//   - popularity values of each package in the Nix package set (in the form of a
 | 
						|
//     direct reference count)
 | 
						|
//   - a maximum number of layers to allocate for the image (the "layer budget")
 | 
						|
//
 | 
						|
// # Algorithm
 | 
						|
//
 | 
						|
// It works by first creating a (directed) dependency tree:
 | 
						|
//
 | 
						|
// img (root node)
 | 
						|
// │
 | 
						|
// ├───> A ─────┐
 | 
						|
// │            v
 | 
						|
// ├───> B ───> E
 | 
						|
// │            ^
 | 
						|
// ├───> C ─────┘
 | 
						|
// │     │
 | 
						|
// │     v
 | 
						|
// └───> D ───> F
 | 
						|
//
 | 
						|
//	│
 | 
						|
//	└────> G
 | 
						|
//
 | 
						|
// Each node (i.e. package) is then visited to determine how important
 | 
						|
// it is to separate this node into its own layer, specifically:
 | 
						|
//
 | 
						|
//  1. Is the node within a certain threshold percentile of absolute
 | 
						|
//     popularity within all of nixpkgs? (e.g. `glibc`, `openssl`)
 | 
						|
//
 | 
						|
// 2. Is the node's runtime closure above a threshold size? (e.g. 100MB)
 | 
						|
//
 | 
						|
// In either case, a bit is flipped for this node representing each
 | 
						|
// condition and an edge to it is inserted directly from the image
 | 
						|
// root, if it does not already exist.
 | 
						|
//
 | 
						|
// For the rest of the example we assume 'G' is above the threshold
 | 
						|
// size and 'E' is popular.
 | 
						|
//
 | 
						|
// This tree is then transformed into a dominator tree:
 | 
						|
//
 | 
						|
// img
 | 
						|
// │
 | 
						|
// ├───> A
 | 
						|
// ├───> B
 | 
						|
// ├───> C
 | 
						|
// ├───> E
 | 
						|
// ├───> D ───> F
 | 
						|
// └───> G
 | 
						|
//
 | 
						|
// Specifically this means that the paths to A, B, C, E, G, and D
 | 
						|
// always pass through the root (i.e. are dominated by it), whilst F
 | 
						|
// is dominated by D (all paths go through it).
 | 
						|
//
 | 
						|
// The top-level subtrees are considered as the initially selected
 | 
						|
// layers.
 | 
						|
//
 | 
						|
// If the list of layers fits within the layer budget, it is returned.
 | 
						|
//
 | 
						|
// Otherwise, a merge rating is calculated for each layer. This is the
 | 
						|
// product of the layer's total size and its root node's popularity.
 | 
						|
//
 | 
						|
// Layers are then merged in ascending order of merge ratings until
 | 
						|
// they fit into the layer budget.
 | 
						|
//
 | 
						|
// # Threshold values
 | 
						|
//
 | 
						|
// Threshold values for the partitioning conditions mentioned above
 | 
						|
// have not yet been determined, but we will make a good first guess
 | 
						|
// based on gut feeling and proceed to measure their impact on cache
 | 
						|
// hits/misses.
 | 
						|
//
 | 
						|
// # Example
 | 
						|
//
 | 
						|
// Using the logic described above as well as the example presented in
 | 
						|
// the introduction, this program would create the following layer
 | 
						|
// groupings (assuming no additional partitioning):
 | 
						|
//
 | 
						|
// Layer budget: 1
 | 
						|
// Layers: { A, B, C, D, E, F, G }
 | 
						|
//
 | 
						|
// Layer budget: 2
 | 
						|
// Layers: { G }, { A, B, C, D, E, F }
 | 
						|
//
 | 
						|
// Layer budget: 3
 | 
						|
// Layers: { G }, { E }, { A, B, C, D, F }
 | 
						|
//
 | 
						|
// Layer budget: 4
 | 
						|
// Layers: { G }, { E }, { D, F }, { A, B, C }
 | 
						|
//
 | 
						|
// ...
 | 
						|
//
 | 
						|
// Layer budget: 10
 | 
						|
// Layers: { E }, { D, F }, { A }, { B }, { C }
 | 
						|
package layers
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/sha1"
 | 
						|
	"fmt"
 | 
						|
	"regexp"
 | 
						|
	"sort"
 | 
						|
	"strings"
 | 
						|
 | 
						|
	log "github.com/sirupsen/logrus"
 | 
						|
	"gonum.org/v1/gonum/graph/flow"
 | 
						|
	"gonum.org/v1/gonum/graph/simple"
 | 
						|
)
 | 
						|
 | 
						|
// runtimeGraph represents structured information from Nix about the runtime
 | 
						|
// dependencies of a derivation.
 | 
						|
//
 | 
						|
// This is generated in Nix by using the exportReferencesGraph feature.
 | 
						|
type RuntimeGraph struct {
 | 
						|
	References struct {
 | 
						|
		Graph []string `json:"graph"`
 | 
						|
	} `json:"exportReferencesGraph"`
 | 
						|
 | 
						|
	Graph []struct {
 | 
						|
		Size uint64   `json:"closureSize"`
 | 
						|
		Path string   `json:"path"`
 | 
						|
		Refs []string `json:"references"`
 | 
						|
	} `json:"graph"`
 | 
						|
}
 | 
						|
 | 
						|
// Popularity data for each Nix package that was calculated in advance.
 | 
						|
//
 | 
						|
// Popularity is a number from 1-100 that represents the
 | 
						|
// popularity percentile in which this package resides inside
 | 
						|
// of the nixpkgs tree.
 | 
						|
type Popularity = map[string]int
 | 
						|
 | 
						|
// Layer represents the data returned for each layer that Nix should
 | 
						|
// build for the container image.
 | 
						|
type Layer struct {
 | 
						|
	Contents    []string `json:"contents"`
 | 
						|
	MergeRating uint64
 | 
						|
}
 | 
						|
 | 
						|
// Hash the contents of a layer to create a deterministic identifier that can be
 | 
						|
// used for caching.
 | 
						|
func (l *Layer) Hash() string {
 | 
						|
	sum := sha1.Sum([]byte(strings.Join(l.Contents, ":")))
 | 
						|
	return fmt.Sprintf("%x", sum)
 | 
						|
}
 | 
						|
 | 
						|
func (a Layer) merge(b Layer) Layer {
 | 
						|
	a.Contents = append(a.Contents, b.Contents...)
 | 
						|
	a.MergeRating += b.MergeRating
 | 
						|
	return a
 | 
						|
}
 | 
						|
 | 
						|
// closure as pointed to by the graph nodes.
 | 
						|
type closure struct {
 | 
						|
	GraphID    int64
 | 
						|
	Path       string
 | 
						|
	Size       uint64
 | 
						|
	Refs       []string
 | 
						|
	Popularity int
 | 
						|
}
 | 
						|
 | 
						|
func (c *closure) ID() int64 {
 | 
						|
	return c.GraphID
 | 
						|
}
 | 
						|
 | 
						|
var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`)
 | 
						|
 | 
						|
// PackageFromPath returns the name of a Nix package based on its
 | 
						|
// output store path.
 | 
						|
func PackageFromPath(path string) string {
 | 
						|
	return nixRegexp.ReplaceAllString(path, "")
 | 
						|
}
 | 
						|
 | 
						|
// DOTID provides a human-readable package name. The name stems from
 | 
						|
// the dot format used by GraphViz, into which the dependency graph
 | 
						|
// can be rendered.
 | 
						|
func (c *closure) DOTID() string {
 | 
						|
	return PackageFromPath(c.Path)
 | 
						|
}
 | 
						|
 | 
						|
// bigOrPopular checks whether this closure should be considered for
 | 
						|
// separation into its own layer, even if it would otherwise only
 | 
						|
// appear in a subtree of the dominator tree.
 | 
						|
func (c *closure) bigOrPopular() bool {
 | 
						|
	const sizeThreshold = 100 * 1000000 // 100MB
 | 
						|
 | 
						|
	if c.Size > sizeThreshold {
 | 
						|
		return true
 | 
						|
	}
 | 
						|
 | 
						|
	// Threshold value is picked arbitrarily right now. The reason
 | 
						|
	// for this is that some packages (such as `cacert`) have very
 | 
						|
	// few direct dependencies, but are required by pretty much
 | 
						|
	// everything.
 | 
						|
	if c.Popularity >= 100 {
 | 
						|
		return true
 | 
						|
	}
 | 
						|
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) {
 | 
						|
	// Big or popular nodes get a separate edge from the top to
 | 
						|
	// flag them for their own layer.
 | 
						|
	if node.bigOrPopular() && !graph.HasEdgeFromTo(0, node.ID()) {
 | 
						|
		edge := graph.NewEdge(graph.Node(0), node)
 | 
						|
		graph.SetEdge(edge)
 | 
						|
	}
 | 
						|
 | 
						|
	for _, c := range node.Refs {
 | 
						|
		// Nix adds a self reference to each node, which
 | 
						|
		// should not be inserted.
 | 
						|
		if c != node.Path {
 | 
						|
			edge := graph.NewEdge(node, (*cmap)[c])
 | 
						|
			graph.SetEdge(edge)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Create a graph structure from the references supplied by Nix.
 | 
						|
func buildGraph(refs *RuntimeGraph, pop *Popularity) *simple.DirectedGraph {
 | 
						|
	cmap := make(map[string]*closure)
 | 
						|
	graph := simple.NewDirectedGraph()
 | 
						|
 | 
						|
	// Insert all closures into the graph, as well as a fake root
 | 
						|
	// closure which serves as the top of the tree.
 | 
						|
	//
 | 
						|
	// A map from store paths to IDs is kept to actually insert
 | 
						|
	// edges below.
 | 
						|
	root := &closure{
 | 
						|
		GraphID: 0,
 | 
						|
		Path:    "image_root",
 | 
						|
	}
 | 
						|
	graph.AddNode(root)
 | 
						|
 | 
						|
	for idx, c := range refs.Graph {
 | 
						|
		node := &closure{
 | 
						|
			GraphID: int64(idx + 1), // inc because of root node
 | 
						|
			Path:    c.Path,
 | 
						|
			Size:    c.Size,
 | 
						|
			Refs:    c.Refs,
 | 
						|
		}
 | 
						|
 | 
						|
		// The packages `nss-cacert` and `iana-etc` are added
 | 
						|
		// by Nixery to *every single image* and should have a
 | 
						|
		// very high popularity.
 | 
						|
		//
 | 
						|
		// Other popularity values are populated from the data
 | 
						|
		// set assembled by Nixery's popcount.
 | 
						|
		id := node.DOTID()
 | 
						|
		if strings.HasPrefix(id, "nss-cacert") || strings.HasPrefix(id, "iana-etc") {
 | 
						|
			// glibc has ~300k references, these packages need *more*
 | 
						|
			node.Popularity = 500000
 | 
						|
		} else if p, ok := (*pop)[id]; ok {
 | 
						|
			node.Popularity = p
 | 
						|
		} else {
 | 
						|
			node.Popularity = 1
 | 
						|
		}
 | 
						|
 | 
						|
		graph.AddNode(node)
 | 
						|
		cmap[c.Path] = node
 | 
						|
	}
 | 
						|
 | 
						|
	// Insert the top-level closures with edges from the root
 | 
						|
	// node, then insert all edges for each closure.
 | 
						|
	for _, p := range refs.References.Graph {
 | 
						|
		edge := graph.NewEdge(root, cmap[p])
 | 
						|
		graph.SetEdge(edge)
 | 
						|
	}
 | 
						|
 | 
						|
	for _, c := range cmap {
 | 
						|
		insertEdges(graph, &cmap, c)
 | 
						|
	}
 | 
						|
 | 
						|
	return graph
 | 
						|
}
 | 
						|
 | 
						|
// Extracts a subgraph starting at the specified root from the
 | 
						|
// dominator tree. The subgraph is converted into a flat list of
 | 
						|
// layers, each containing the store paths and merge rating.
 | 
						|
func groupLayer(dt *flow.DominatorTree, root *closure) Layer {
 | 
						|
	size := root.Size
 | 
						|
	contents := []string{root.Path}
 | 
						|
	children := dt.DominatedBy(root.ID())
 | 
						|
 | 
						|
	// This iteration does not use 'range' because the list being
 | 
						|
	// iterated is modified during the iteration (yes, I'm sorry).
 | 
						|
	for i := 0; i < len(children); i++ {
 | 
						|
		child := children[i].(*closure)
 | 
						|
		size += child.Size
 | 
						|
		contents = append(contents, child.Path)
 | 
						|
		children = append(children, dt.DominatedBy(child.ID())...)
 | 
						|
	}
 | 
						|
 | 
						|
	// Contents are sorted to ensure that hashing is consistent
 | 
						|
	sort.Strings(contents)
 | 
						|
 | 
						|
	return Layer{
 | 
						|
		Contents:    contents,
 | 
						|
		MergeRating: uint64(root.Popularity) * size,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the dominator tree of the entire package set and group
 | 
						|
// each top-level subtree into a layer.
 | 
						|
//
 | 
						|
// Layers are merged together until they fit into the layer budget,
 | 
						|
// based on their merge rating.
 | 
						|
func dominate(budget int, graph *simple.DirectedGraph) []Layer {
 | 
						|
	dt := flow.Dominators(graph.Node(0), graph)
 | 
						|
 | 
						|
	var layers []Layer
 | 
						|
	for _, n := range dt.DominatedBy(dt.Root().ID()) {
 | 
						|
		layers = append(layers, groupLayer(&dt, n.(*closure)))
 | 
						|
	}
 | 
						|
 | 
						|
	sort.Slice(layers, func(i, j int) bool {
 | 
						|
		return layers[i].MergeRating < layers[j].MergeRating
 | 
						|
	})
 | 
						|
 | 
						|
	if len(layers) > budget {
 | 
						|
		log.WithFields(log.Fields{
 | 
						|
			"layers": len(layers),
 | 
						|
			"budget": budget,
 | 
						|
		}).Info("ideal image exceeds layer budget")
 | 
						|
	}
 | 
						|
 | 
						|
	for len(layers) > budget {
 | 
						|
		merged := layers[0].merge(layers[1])
 | 
						|
		layers[1] = merged
 | 
						|
		layers = layers[1:]
 | 
						|
	}
 | 
						|
 | 
						|
	return layers
 | 
						|
}
 | 
						|
 | 
						|
// groupLayers applies the algorithm described above the its input and returns a
 | 
						|
// list of layers, each consisting of a list of Nix store paths that it should
 | 
						|
// contain.
 | 
						|
func GroupLayers(refs *RuntimeGraph, pop *Popularity, budget int) []Layer {
 | 
						|
	graph := buildGraph(refs, pop)
 | 
						|
	return dominate(budget, graph)
 | 
						|
}
 |