-- 034c30a00c64d93b9fcbc9d99a0a33801544d741 by Gennadiy Rozental <rogeeff@google.com>: Split private handle interfaces accessor into a separate target with private visibility. PiperOrigin-RevId: 310391488 -- 6f6ca869309b17900b90849e08488ce7f7b0193a by Derek Mauro <dmauro@google.com>: Remove __CLANG_SUPPORT_DYN_ANNOTATION__, which is a symbol defined by us to be true in all builds PiperOrigin-RevId: 310385325 -- ed5c1880c86973c000e826a3006b38e53ab3ed52 by Samuel Benzaquen <sbenza@google.com>: Add tests to exercise extreme width and precision, and fix the overflows from it. PiperOrigin-RevId: 310224957 GitOrigin-RevId: 034c30a00c64d93b9fcbc9d99a0a33801544d741 Change-Id: I6c89a3c89ae92fa617c696044148ce9a79bcdda8
		
			
				
	
	
		
			1144 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1144 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "absl/strings/internal/str_format/float_conversion.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| #include <string>
 | |
| 
 | |
| #include "absl/base/attributes.h"
 | |
| #include "absl/base/config.h"
 | |
| #include "absl/base/internal/bits.h"
 | |
| #include "absl/base/optimization.h"
 | |
| #include "absl/functional/function_ref.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/numeric/int128.h"
 | |
| #include "absl/types/optional.h"
 | |
| #include "absl/types/span.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace str_format_internal {
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // The code below wants to avoid heap allocations.
 | |
| // To do so it needs to allocate memory on the stack.
 | |
| // `StackArray` will allocate memory on the stack in the form of a uint32_t
 | |
| // array and call the provided callback with said memory.
 | |
| // It will allocate memory in increments of 512 bytes. We could allocate the
 | |
| // largest needed unconditionally, but that is more than we need in most of
 | |
| // cases. This way we use less stack in the common cases.
 | |
| class StackArray {
 | |
|   using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>;
 | |
|   static constexpr size_t kStep = 512 / sizeof(uint32_t);
 | |
|   // 5 steps is 2560 bytes, which is enough to hold a long double with the
 | |
|   // largest/smallest exponents.
 | |
|   // The operations below will static_assert their particular maximum.
 | |
|   static constexpr size_t kNumSteps = 5;
 | |
| 
 | |
|   // We do not want this function to be inlined.
 | |
|   // Otherwise the caller will allocate the stack space unnecessarily for all
 | |
|   // the variants even though it only calls one.
 | |
|   template <size_t steps>
 | |
|   ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) {
 | |
|     uint32_t values[steps * kStep]{};
 | |
|     f(absl::MakeSpan(values));
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   static constexpr size_t kMaxCapacity = kStep * kNumSteps;
 | |
| 
 | |
|   static void RunWithCapacity(size_t capacity, Func f) {
 | |
|     assert(capacity <= kMaxCapacity);
 | |
|     const size_t step = (capacity + kStep - 1) / kStep;
 | |
|     assert(step <= kNumSteps);
 | |
|     switch (step) {
 | |
|       case 1:
 | |
|         return RunWithCapacityImpl<1>(f);
 | |
|       case 2:
 | |
|         return RunWithCapacityImpl<2>(f);
 | |
|       case 3:
 | |
|         return RunWithCapacityImpl<3>(f);
 | |
|       case 4:
 | |
|         return RunWithCapacityImpl<4>(f);
 | |
|       case 5:
 | |
|         return RunWithCapacityImpl<5>(f);
 | |
|     }
 | |
| 
 | |
|     assert(false && "Invalid capacity");
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
 | |
| // the carry.
 | |
| template <typename Int>
 | |
| inline Int MultiplyBy10WithCarry(Int *v, Int carry) {
 | |
|   using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
 | |
|   BiggerInt tmp = 10 * static_cast<BiggerInt>(*v) + carry;
 | |
|   *v = static_cast<Int>(tmp);
 | |
|   return static_cast<Int>(tmp >> (sizeof(Int) * 8));
 | |
| }
 | |
| 
 | |
| // Calculates `(2^64 * carry + *v) / 10`.
 | |
| // Stores the quotient in `*v` and returns the remainder.
 | |
| // Requires: `0 <= carry <= 9`
 | |
| inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) {
 | |
|   constexpr uint64_t divisor = 10;
 | |
|   // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor
 | |
|   constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2);
 | |
|   constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor;
 | |
| 
 | |
|   const uint64_t mod = *v % divisor;
 | |
|   const uint64_t next_carry = chunk_remainder * carry + mod;
 | |
|   *v = *v / divisor + carry * chunk_quotient + next_carry / divisor;
 | |
|   return next_carry % divisor;
 | |
| }
 | |
| 
 | |
| // Generates the decimal representation for an integer of the form `v * 2^exp`,
 | |
| // where `v` and `exp` are both positive integers.
 | |
| // It generates the digits from the left (ie the most significant digit first)
 | |
| // to allow for direct printing into the sink.
 | |
| //
 | |
| // Requires `0 <= exp` and `exp <= numeric_limits<long double>::max_exponent`.
 | |
| class BinaryToDecimal {
 | |
|   static constexpr int ChunksNeeded(int exp) {
 | |
|     // We will left shift a uint128 by `exp` bits, so we need `128+exp` total
 | |
|     // bits. Round up to 32.
 | |
|     // See constructor for details about adding `10%` to the value.
 | |
|     return (128 + exp + 31) / 32 * 11 / 10;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`.
 | |
|   // This function will allocate enough stack space to perform the conversion.
 | |
|   static void RunConversion(uint128 v, int exp,
 | |
|                             absl::FunctionRef<void(BinaryToDecimal)> f) {
 | |
|     assert(exp > 0);
 | |
|     assert(exp <= std::numeric_limits<long double>::max_exponent);
 | |
|     static_assert(
 | |
|         StackArray::kMaxCapacity >=
 | |
|             ChunksNeeded(std::numeric_limits<long double>::max_exponent),
 | |
|         "");
 | |
| 
 | |
|     StackArray::RunWithCapacity(
 | |
|         ChunksNeeded(exp),
 | |
|         [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); });
 | |
|   }
 | |
| 
 | |
|   int TotalDigits() const {
 | |
|     return static_cast<int>((decimal_end_ - decimal_start_) * kDigitsPerChunk +
 | |
|                             CurrentDigits().size());
 | |
|   }
 | |
| 
 | |
|   // See the current block of digits.
 | |
|   absl::string_view CurrentDigits() const {
 | |
|     return absl::string_view(digits_ + kDigitsPerChunk - size_, size_);
 | |
|   }
 | |
| 
 | |
|   // Advance the current view of digits.
 | |
|   // Returns `false` when no more digits are available.
 | |
|   bool AdvanceDigits() {
 | |
|     if (decimal_start_ >= decimal_end_) return false;
 | |
| 
 | |
|     uint32_t w = data_[decimal_start_++];
 | |
|     for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) {
 | |
|       digits_[kDigitsPerChunk - ++size_] = w % 10 + '0';
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) {
 | |
|     // We need to print the digits directly into the sink object without
 | |
|     // buffering them all first. To do this we need two things:
 | |
|     // - to know the total number of digits to do padding when necessary
 | |
|     // - to generate the decimal digits from the left.
 | |
|     //
 | |
|     // In order to do this, we do a two pass conversion.
 | |
|     // On the first pass we convert the binary representation of the value into
 | |
|     // a decimal representation in which each uint32_t chunk holds up to 9
 | |
|     // decimal digits.  In the second pass we take each decimal-holding-uint32_t
 | |
|     // value and generate the ascii decimal digits into `digits_`.
 | |
|     //
 | |
|     // The binary and decimal representations actually share the same memory
 | |
|     // region. As we go converting the chunks from binary to decimal we free
 | |
|     // them up and reuse them for the decimal representation. One caveat is that
 | |
|     // the decimal representation is around 7% less efficient in space than the
 | |
|     // binary one. We allocate an extra 10% memory to account for this. See
 | |
|     // ChunksNeeded for this calculation.
 | |
|     int chunk_index = exp / 32;
 | |
|     decimal_start_ = decimal_end_ = ChunksNeeded(exp);
 | |
|     const int offset = exp % 32;
 | |
|     // Left shift v by exp bits.
 | |
|     data_[chunk_index] = static_cast<uint32_t>(v << offset);
 | |
|     for (v >>= (32 - offset); v; v >>= 32)
 | |
|       data_[++chunk_index] = static_cast<uint32_t>(v);
 | |
| 
 | |
|     while (chunk_index >= 0) {
 | |
|       // While we have more than one chunk available, go in steps of 1e9.
 | |
|       // `data_[chunk_index]` holds the highest non-zero binary chunk, so keep
 | |
|       // the variable updated.
 | |
|       uint32_t carry = 0;
 | |
|       for (int i = chunk_index; i >= 0; --i) {
 | |
|         uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32);
 | |
|         data_[i] = static_cast<uint32_t>(tmp / uint64_t{1000000000});
 | |
|         carry = static_cast<uint32_t>(tmp % uint64_t{1000000000});
 | |
|       }
 | |
| 
 | |
|       // If the highest chunk is now empty, remove it from view.
 | |
|       if (data_[chunk_index] == 0) --chunk_index;
 | |
| 
 | |
|       --decimal_start_;
 | |
|       assert(decimal_start_ != chunk_index);
 | |
|       data_[decimal_start_] = carry;
 | |
|     }
 | |
| 
 | |
|     // Fill the first set of digits. The first chunk might not be complete, so
 | |
|     // handle differently.
 | |
|     for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) {
 | |
|       digits_[kDigitsPerChunk - ++size_] = first % 10 + '0';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static constexpr size_t kDigitsPerChunk = 9;
 | |
| 
 | |
|   int decimal_start_;
 | |
|   int decimal_end_;
 | |
| 
 | |
|   char digits_[kDigitsPerChunk];
 | |
|   int size_ = 0;
 | |
| 
 | |
|   absl::Span<uint32_t> data_;
 | |
| };
 | |
| 
 | |
| // Converts a value of the form `x * 2^-exp` into a sequence of decimal digits.
 | |
| // Requires `-exp < 0` and
 | |
| // `-exp >= limits<long double>::min_exponent - limits<long double>::digits`.
 | |
| class FractionalDigitGenerator {
 | |
|  public:
 | |
|   // Run the conversion for `v * 2^exp` and call `f(generator)`.
 | |
|   // This function will allocate enough stack space to perform the conversion.
 | |
|   static void RunConversion(
 | |
|       uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) {
 | |
|     assert(-exp < 0);
 | |
|     assert(-exp >= std::numeric_limits<long double>::min_exponent - 128);
 | |
|     static_assert(
 | |
|         StackArray::kMaxCapacity >=
 | |
|             (128 - std::numeric_limits<long double>::min_exponent + 31) / 32,
 | |
|         "");
 | |
|     StackArray::RunWithCapacity((exp + 31) / 32,
 | |
|                                 [=](absl::Span<uint32_t> input) {
 | |
|                                   f(FractionalDigitGenerator(input, v, exp));
 | |
|                                 });
 | |
|   }
 | |
| 
 | |
|   // Returns true if there are any more non-zero digits left.
 | |
|   bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; }
 | |
| 
 | |
|   // Returns true if the remainder digits are greater than 5000...
 | |
|   bool IsGreaterThanHalf() const {
 | |
|     return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0);
 | |
|   }
 | |
|   // Returns true if the remainder digits are exactly 5000...
 | |
|   bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; }
 | |
| 
 | |
|   struct Digits {
 | |
|     int digit_before_nine;
 | |
|     int num_nines;
 | |
|   };
 | |
| 
 | |
|   // Get the next set of digits.
 | |
|   // They are composed by a non-9 digit followed by a runs of zero or more 9s.
 | |
|   Digits GetDigits() {
 | |
|     Digits digits{next_digit_, 0};
 | |
| 
 | |
|     next_digit_ = GetOneDigit();
 | |
|     while (next_digit_ == 9) {
 | |
|       ++digits.num_nines;
 | |
|       next_digit_ = GetOneDigit();
 | |
|     }
 | |
| 
 | |
|     return digits;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Return the next digit.
 | |
|   int GetOneDigit() {
 | |
|     if (chunk_index_ < 0) return 0;
 | |
| 
 | |
|     uint32_t carry = 0;
 | |
|     for (int i = chunk_index_; i >= 0; --i) {
 | |
|       carry = MultiplyBy10WithCarry(&data_[i], carry);
 | |
|     }
 | |
|     // If the lowest chunk is now empty, remove it from view.
 | |
|     if (data_[chunk_index_] == 0) --chunk_index_;
 | |
|     return carry;
 | |
|   }
 | |
| 
 | |
|   FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp)
 | |
|       : chunk_index_(exp / 32), data_(data) {
 | |
|     const int offset = exp % 32;
 | |
|     // Right shift `v` by `exp` bits.
 | |
|     data_[chunk_index_] = static_cast<uint32_t>(v << (32 - offset));
 | |
|     v >>= offset;
 | |
|     // Make sure we don't overflow the data. We already calculated that
 | |
|     // non-zero bits fit, so we might not have space for leading zero bits.
 | |
|     for (int pos = chunk_index_; v; v >>= 32)
 | |
|       data_[--pos] = static_cast<uint32_t>(v);
 | |
| 
 | |
|     // Fill next_digit_, as GetDigits expects it to be populated always.
 | |
|     next_digit_ = GetOneDigit();
 | |
|   }
 | |
| 
 | |
|   int next_digit_;
 | |
|   int chunk_index_;
 | |
|   absl::Span<uint32_t> data_;
 | |
| };
 | |
| 
 | |
| // Count the number of leading zero bits.
 | |
| int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); }
 | |
| int LeadingZeros(uint128 v) {
 | |
|   auto high = static_cast<uint64_t>(v >> 64);
 | |
|   auto low = static_cast<uint64_t>(v);
 | |
|   return high != 0 ? base_internal::CountLeadingZeros64(high)
 | |
|                    : 64 + base_internal::CountLeadingZeros64(low);
 | |
| }
 | |
| 
 | |
| // Round up the text digits starting at `p`.
 | |
| // The buffer must have an extra digit that is known to not need rounding.
 | |
| // This is done below by having an extra '0' digit on the left.
 | |
| void RoundUp(char *p) {
 | |
|   while (*p == '9' || *p == '.') {
 | |
|     if (*p == '9') *p = '0';
 | |
|     --p;
 | |
|   }
 | |
|   ++*p;
 | |
| }
 | |
| 
 | |
| // Check the previous digit and round up or down to follow the round-to-even
 | |
| // policy.
 | |
| void RoundToEven(char *p) {
 | |
|   if (*p == '.') --p;
 | |
|   if (*p % 2 == 1) RoundUp(p);
 | |
| }
 | |
| 
 | |
| // Simple integral decimal digit printing for values that fit in 64-bits.
 | |
| // Returns the pointer to the last written digit.
 | |
| char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) {
 | |
|   do {
 | |
|     *--p = DivideBy10WithCarry(&v, 0) + '0';
 | |
|   } while (v != 0);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| // Simple integral decimal digit printing for values that fit in 128-bits.
 | |
| // Returns the pointer to the last written digit.
 | |
| char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) {
 | |
|   auto high = static_cast<uint64_t>(v >> 64);
 | |
|   auto low = static_cast<uint64_t>(v);
 | |
| 
 | |
|   while (high != 0) {
 | |
|     uint64_t carry = DivideBy10WithCarry(&high, 0);
 | |
|     carry = DivideBy10WithCarry(&low, carry);
 | |
|     *--p = carry + '0';
 | |
|   }
 | |
|   return PrintIntegralDigitsFromRightFast(low, p);
 | |
| }
 | |
| 
 | |
| // Simple fractional decimal digit printing for values that fir in 64-bits after
 | |
| // shifting.
 | |
| // Performs rounding if necessary to fit within `precision`.
 | |
| // Returns the pointer to one after the last character written.
 | |
| char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp,
 | |
|                                 int precision) {
 | |
|   char *p = start;
 | |
|   v <<= (64 - exp);
 | |
|   while (precision > 0) {
 | |
|     if (!v) return p;
 | |
|     *p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0';
 | |
|     --precision;
 | |
|   }
 | |
| 
 | |
|   // We need to round.
 | |
|   if (v < 0x8000000000000000) {
 | |
|     // We round down, so nothing to do.
 | |
|   } else if (v > 0x8000000000000000) {
 | |
|     // We round up.
 | |
|     RoundUp(p - 1);
 | |
|   } else {
 | |
|     RoundToEven(p - 1);
 | |
|   }
 | |
| 
 | |
|   assert(precision == 0);
 | |
|   // Precision can only be zero here.
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| // Simple fractional decimal digit printing for values that fir in 128-bits
 | |
| // after shifting.
 | |
| // Performs rounding if necessary to fit within `precision`.
 | |
| // Returns the pointer to one after the last character written.
 | |
| char *PrintFractionalDigitsFast(uint128 v, char *start, int exp,
 | |
|                                 int precision) {
 | |
|   char *p = start;
 | |
|   v <<= (128 - exp);
 | |
|   auto high = static_cast<uint64_t>(v >> 64);
 | |
|   auto low = static_cast<uint64_t>(v);
 | |
| 
 | |
|   // While we have digits to print and `low` is not empty, do the long
 | |
|   // multiplication.
 | |
|   while (precision > 0 && low != 0) {
 | |
|     uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0});
 | |
|     carry = MultiplyBy10WithCarry(&high, carry);
 | |
| 
 | |
|     *p++ = carry + '0';
 | |
|     --precision;
 | |
|   }
 | |
| 
 | |
|   // Now `low` is empty, so use a faster approach for the rest of the digits.
 | |
|   // This block is pretty much the same as the main loop for the 64-bit case
 | |
|   // above.
 | |
|   while (precision > 0) {
 | |
|     if (!high) return p;
 | |
|     *p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0';
 | |
|     --precision;
 | |
|   }
 | |
| 
 | |
|   // We need to round.
 | |
|   if (high < 0x8000000000000000) {
 | |
|     // We round down, so nothing to do.
 | |
|   } else if (high > 0x8000000000000000 || low != 0) {
 | |
|     // We round up.
 | |
|     RoundUp(p - 1);
 | |
|   } else {
 | |
|     RoundToEven(p - 1);
 | |
|   }
 | |
| 
 | |
|   assert(precision == 0);
 | |
|   // Precision can only be zero here.
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| struct FormatState {
 | |
|   char sign_char;
 | |
|   int precision;
 | |
|   const FormatConversionSpecImpl &conv;
 | |
|   FormatSinkImpl *sink;
 | |
| 
 | |
|   // In `alt` mode (flag #) we keep the `.` even if there are no fractional
 | |
|   // digits. In non-alt mode, we strip it.
 | |
|   bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); }
 | |
| };
 | |
| 
 | |
| struct Padding {
 | |
|   int left_spaces;
 | |
|   int zeros;
 | |
|   int right_spaces;
 | |
| };
 | |
| 
 | |
| Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
 | |
|   if (state.conv.width() < 0 || state.conv.width() <= total_size)
 | |
|     return {0, 0, 0};
 | |
|   int missing_chars = state.conv.width() - total_size;
 | |
|   if (state.conv.has_left_flag()) {
 | |
|     return {0, 0, missing_chars};
 | |
|   } else if (state.conv.has_zero_flag()) {
 | |
|     return {0, missing_chars, 0};
 | |
|   } else {
 | |
|     return {missing_chars, 0, 0};
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FinalPrint(absl::string_view data, int trailing_zeros,
 | |
|                 const FormatState &state) {
 | |
|   if (state.conv.width() < 0) {
 | |
|     // No width specified. Fast-path.
 | |
|     if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
 | |
|     state.sink->Append(data);
 | |
|     state.sink->Append(trailing_zeros, '0');
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto padding =
 | |
|       ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() +
 | |
|                               static_cast<size_t>(trailing_zeros),
 | |
|                           state);
 | |
| 
 | |
|   state.sink->Append(padding.left_spaces, ' ');
 | |
|   if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
 | |
|   state.sink->Append(padding.zeros, '0');
 | |
|   state.sink->Append(data);
 | |
|   state.sink->Append(trailing_zeros, '0');
 | |
|   state.sink->Append(padding.right_spaces, ' ');
 | |
| }
 | |
| 
 | |
| // Fastpath %f formatter for when the shifted value fits in a simple integral
 | |
| // type.
 | |
| // Prints `v*2^exp` with the options from `state`.
 | |
| template <typename Int>
 | |
| void FormatFFast(Int v, int exp, const FormatState &state) {
 | |
|   constexpr int input_bits = sizeof(Int) * 8;
 | |
| 
 | |
|   static constexpr size_t integral_size =
 | |
|       /* in case we need to round up an extra digit */ 1 +
 | |
|       /* decimal digits for uint128 */ 40 + 1;
 | |
|   char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128];
 | |
|   buffer[integral_size] = '.';
 | |
|   char *const integral_digits_end = buffer + integral_size;
 | |
|   char *integral_digits_start;
 | |
|   char *const fractional_digits_start = buffer + integral_size + 1;
 | |
|   char *fractional_digits_end = fractional_digits_start;
 | |
| 
 | |
|   if (exp >= 0) {
 | |
|     const int total_bits = input_bits - LeadingZeros(v) + exp;
 | |
|     integral_digits_start =
 | |
|         total_bits <= 64
 | |
|             ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp,
 | |
|                                                integral_digits_end)
 | |
|             : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp,
 | |
|                                                integral_digits_end);
 | |
|   } else {
 | |
|     exp = -exp;
 | |
| 
 | |
|     integral_digits_start = PrintIntegralDigitsFromRightFast(
 | |
|         exp < input_bits ? v >> exp : 0, integral_digits_end);
 | |
|     // PrintFractionalDigits may pull a carried 1 all the way up through the
 | |
|     // integral portion.
 | |
|     integral_digits_start[-1] = '0';
 | |
| 
 | |
|     fractional_digits_end =
 | |
|         exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp,
 | |
|                                               state.precision)
 | |
|                   : PrintFractionalDigitsFast(static_cast<uint128>(v),
 | |
|                                               fractional_digits_start, exp,
 | |
|                                               state.precision);
 | |
|     // There was a carry, so include the first digit too.
 | |
|     if (integral_digits_start[-1] != '0') --integral_digits_start;
 | |
|   }
 | |
| 
 | |
|   size_t size = fractional_digits_end - integral_digits_start;
 | |
| 
 | |
|   // In `alt` mode (flag #) we keep the `.` even if there are no fractional
 | |
|   // digits. In non-alt mode, we strip it.
 | |
|   if (!state.ShouldPrintDot()) --size;
 | |
|   FinalPrint(absl::string_view(integral_digits_start, size),
 | |
|              static_cast<int>(state.precision - (fractional_digits_end -
 | |
|                                                  fractional_digits_start)),
 | |
|              state);
 | |
| }
 | |
| 
 | |
| // Slow %f formatter for when the shifted value does not fit in a uint128, and
 | |
| // `exp > 0`.
 | |
| // Prints `v*2^exp` with the options from `state`.
 | |
| // This one is guaranteed to not have fractional digits, so we don't have to
 | |
| // worry about anything after the `.`.
 | |
| void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) {
 | |
|   BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) {
 | |
|     const size_t total_digits =
 | |
|         btd.TotalDigits() +
 | |
|         (state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0);
 | |
| 
 | |
|     const auto padding = ExtraWidthToPadding(
 | |
|         total_digits + (state.sign_char != '\0' ? 1 : 0), state);
 | |
| 
 | |
|     state.sink->Append(padding.left_spaces, ' ');
 | |
|     if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
 | |
|     state.sink->Append(padding.zeros, '0');
 | |
| 
 | |
|     do {
 | |
|       state.sink->Append(btd.CurrentDigits());
 | |
|     } while (btd.AdvanceDigits());
 | |
| 
 | |
|     if (state.ShouldPrintDot()) state.sink->Append(1, '.');
 | |
|     state.sink->Append(state.precision, '0');
 | |
|     state.sink->Append(padding.right_spaces, ' ');
 | |
|   });
 | |
| }
 | |
| 
 | |
| // Slow %f formatter for when the shifted value does not fit in a uint128, and
 | |
| // `exp < 0`.
 | |
| // Prints `v*2^exp` with the options from `state`.
 | |
| // This one is guaranteed to be < 1.0, so we don't have to worry about integral
 | |
| // digits.
 | |
| void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) {
 | |
|   const size_t total_digits =
 | |
|       /* 0 */ 1 +
 | |
|       (state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0);
 | |
|   auto padding =
 | |
|       ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state);
 | |
|   padding.zeros += 1;
 | |
|   state.sink->Append(padding.left_spaces, ' ');
 | |
|   if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
 | |
|   state.sink->Append(padding.zeros, '0');
 | |
| 
 | |
|   if (state.ShouldPrintDot()) state.sink->Append(1, '.');
 | |
| 
 | |
|   // Print digits
 | |
|   int digits_to_go = state.precision;
 | |
| 
 | |
|   FractionalDigitGenerator::RunConversion(
 | |
|       v, exp, [&](FractionalDigitGenerator digit_gen) {
 | |
|         // There are no digits to print here.
 | |
|         if (state.precision == 0) return;
 | |
| 
 | |
|         // We go one digit at a time, while keeping track of runs of nines.
 | |
|         // The runs of nines are used to perform rounding when necessary.
 | |
| 
 | |
|         while (digits_to_go > 0 && digit_gen.HasMoreDigits()) {
 | |
|           auto digits = digit_gen.GetDigits();
 | |
| 
 | |
|           // Now we have a digit and a run of nines.
 | |
|           // See if we can print them all.
 | |
|           if (digits.num_nines + 1 < digits_to_go) {
 | |
|             // We don't have to round yet, so print them.
 | |
|             state.sink->Append(1, digits.digit_before_nine + '0');
 | |
|             state.sink->Append(digits.num_nines, '9');
 | |
|             digits_to_go -= digits.num_nines + 1;
 | |
| 
 | |
|           } else {
 | |
|             // We can't print all the nines, see where we have to truncate.
 | |
| 
 | |
|             bool round_up = false;
 | |
|             if (digits.num_nines + 1 > digits_to_go) {
 | |
|               // We round up at a nine. No need to print them.
 | |
|               round_up = true;
 | |
|             } else {
 | |
|               // We can fit all the nines, but truncate just after it.
 | |
|               if (digit_gen.IsGreaterThanHalf()) {
 | |
|                 round_up = true;
 | |
|               } else if (digit_gen.IsExactlyHalf()) {
 | |
|                 // Round to even
 | |
|                 round_up =
 | |
|                     digits.num_nines != 0 || digits.digit_before_nine % 2 == 1;
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             if (round_up) {
 | |
|               state.sink->Append(1, digits.digit_before_nine + '1');
 | |
|               --digits_to_go;
 | |
|               // The rest will be zeros.
 | |
|             } else {
 | |
|               state.sink->Append(1, digits.digit_before_nine + '0');
 | |
|               state.sink->Append(digits_to_go - 1, '9');
 | |
|               digits_to_go = 0;
 | |
|             }
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       });
 | |
| 
 | |
|   state.sink->Append(digits_to_go, '0');
 | |
|   state.sink->Append(padding.right_spaces, ' ');
 | |
| }
 | |
| 
 | |
| template <typename Int>
 | |
| void FormatF(Int mantissa, int exp, const FormatState &state) {
 | |
|   if (exp >= 0) {
 | |
|     const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp;
 | |
| 
 | |
|     // Fallback to the slow stack-based approach if we can't do it in a 64 or
 | |
|     // 128 bit state.
 | |
|     if (ABSL_PREDICT_FALSE(total_bits > 128)) {
 | |
|       return FormatFPositiveExpSlow(mantissa, exp, state);
 | |
|     }
 | |
|   } else {
 | |
|     // Fallback to the slow stack-based approach if we can't do it in a 64 or
 | |
|     // 128 bit state.
 | |
|     if (ABSL_PREDICT_FALSE(exp < -128)) {
 | |
|       return FormatFNegativeExpSlow(mantissa, -exp, state);
 | |
|     }
 | |
|   }
 | |
|   return FormatFFast(mantissa, exp, state);
 | |
| }
 | |
| 
 | |
| char *CopyStringTo(absl::string_view v, char *out) {
 | |
|   std::memcpy(out, v.data(), v.size());
 | |
|   return out + v.size();
 | |
| }
 | |
| 
 | |
| template <typename Float>
 | |
| bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv,
 | |
|                         FormatSinkImpl *sink) {
 | |
|   int w = conv.width() >= 0 ? conv.width() : 0;
 | |
|   int p = conv.precision() >= 0 ? conv.precision() : -1;
 | |
|   char fmt[32];
 | |
|   {
 | |
|     char *fp = fmt;
 | |
|     *fp++ = '%';
 | |
|     fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp);
 | |
|     fp = CopyStringTo("*.*", fp);
 | |
|     if (std::is_same<long double, Float>()) {
 | |
|       *fp++ = 'L';
 | |
|     }
 | |
|     *fp++ = FormatConversionCharToChar(conv.conversion_char());
 | |
|     *fp = 0;
 | |
|     assert(fp < fmt + sizeof(fmt));
 | |
|   }
 | |
|   std::string space(512, '\0');
 | |
|   absl::string_view result;
 | |
|   while (true) {
 | |
|     int n = snprintf(&space[0], space.size(), fmt, w, p, v);
 | |
|     if (n < 0) return false;
 | |
|     if (static_cast<size_t>(n) < space.size()) {
 | |
|       result = absl::string_view(space.data(), n);
 | |
|       break;
 | |
|     }
 | |
|     space.resize(n + 1);
 | |
|   }
 | |
|   sink->Append(result);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // 128-bits in decimal: ceil(128*log(2)/log(10))
 | |
| //   or std::numeric_limits<__uint128_t>::digits10
 | |
| constexpr int kMaxFixedPrecision = 39;
 | |
| 
 | |
| constexpr int kBufferLength = /*sign*/ 1 +
 | |
|                               /*integer*/ kMaxFixedPrecision +
 | |
|                               /*point*/ 1 +
 | |
|                               /*fraction*/ kMaxFixedPrecision +
 | |
|                               /*exponent e+123*/ 5;
 | |
| 
 | |
| struct Buffer {
 | |
|   void push_front(char c) {
 | |
|     assert(begin > data);
 | |
|     *--begin = c;
 | |
|   }
 | |
|   void push_back(char c) {
 | |
|     assert(end < data + sizeof(data));
 | |
|     *end++ = c;
 | |
|   }
 | |
|   void pop_back() {
 | |
|     assert(begin < end);
 | |
|     --end;
 | |
|   }
 | |
| 
 | |
|   char &back() {
 | |
|     assert(begin < end);
 | |
|     return end[-1];
 | |
|   }
 | |
| 
 | |
|   char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
 | |
| 
 | |
|   int size() const { return static_cast<int>(end - begin); }
 | |
| 
 | |
|   char data[kBufferLength];
 | |
|   char *begin;
 | |
|   char *end;
 | |
| };
 | |
| 
 | |
| enum class FormatStyle { Fixed, Precision };
 | |
| 
 | |
| // If the value is Inf or Nan, print it and return true.
 | |
| // Otherwise, return false.
 | |
| template <typename Float>
 | |
| bool ConvertNonNumericFloats(char sign_char, Float v,
 | |
|                              const FormatConversionSpecImpl &conv,
 | |
|                              FormatSinkImpl *sink) {
 | |
|   char text[4], *ptr = text;
 | |
|   if (sign_char != '\0') *ptr++ = sign_char;
 | |
|   if (std::isnan(v)) {
 | |
|     ptr = std::copy_n(
 | |
|         FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3,
 | |
|         ptr);
 | |
|   } else if (std::isinf(v)) {
 | |
|     ptr = std::copy_n(
 | |
|         FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3,
 | |
|         ptr);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
 | |
|                                conv.has_left_flag());
 | |
| }
 | |
| 
 | |
| // Round up the last digit of the value.
 | |
| // It will carry over and potentially overflow. 'exp' will be adjusted in that
 | |
| // case.
 | |
| template <FormatStyle mode>
 | |
| void RoundUp(Buffer *buffer, int *exp) {
 | |
|   char *p = &buffer->back();
 | |
|   while (p >= buffer->begin && (*p == '9' || *p == '.')) {
 | |
|     if (*p == '9') *p = '0';
 | |
|     --p;
 | |
|   }
 | |
| 
 | |
|   if (p < buffer->begin) {
 | |
|     *p = '1';
 | |
|     buffer->begin = p;
 | |
|     if (mode == FormatStyle::Precision) {
 | |
|       std::swap(p[1], p[2]);  // move the .
 | |
|       ++*exp;
 | |
|       buffer->pop_back();
 | |
|     }
 | |
|   } else {
 | |
|     ++*p;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PrintExponent(int exp, char e, Buffer *out) {
 | |
|   out->push_back(e);
 | |
|   if (exp < 0) {
 | |
|     out->push_back('-');
 | |
|     exp = -exp;
 | |
|   } else {
 | |
|     out->push_back('+');
 | |
|   }
 | |
|   // Exponent digits.
 | |
|   if (exp > 99) {
 | |
|     out->push_back(exp / 100 + '0');
 | |
|     out->push_back(exp / 10 % 10 + '0');
 | |
|     out->push_back(exp % 10 + '0');
 | |
|   } else {
 | |
|     out->push_back(exp / 10 + '0');
 | |
|     out->push_back(exp % 10 + '0');
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Float, typename Int>
 | |
| constexpr bool CanFitMantissa() {
 | |
|   return
 | |
| #if defined(__clang__) && !defined(__SSE3__)
 | |
|       // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
 | |
|       // Casting from long double to uint64_t is miscompiled and drops bits.
 | |
|       (!std::is_same<Float, long double>::value ||
 | |
|        !std::is_same<Int, uint64_t>::value) &&
 | |
| #endif
 | |
|       std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
 | |
| }
 | |
| 
 | |
| template <typename Float>
 | |
| struct Decomposed {
 | |
|   using MantissaType =
 | |
|       absl::conditional_t<std::is_same<long double, Float>::value, uint128,
 | |
|                           uint64_t>;
 | |
|   static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
 | |
|                 "");
 | |
|   MantissaType mantissa;
 | |
|   int exponent;
 | |
| };
 | |
| 
 | |
| // Decompose the double into an integer mantissa and an exponent.
 | |
| template <typename Float>
 | |
| Decomposed<Float> Decompose(Float v) {
 | |
|   int exp;
 | |
|   Float m = std::frexp(v, &exp);
 | |
|   m = std::ldexp(m, std::numeric_limits<Float>::digits);
 | |
|   exp -= std::numeric_limits<Float>::digits;
 | |
| 
 | |
|   return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
 | |
| }
 | |
| 
 | |
| // Print 'digits' as decimal.
 | |
| // In Fixed mode, we add a '.' at the end.
 | |
| // In Precision mode, we add a '.' after the first digit.
 | |
| template <FormatStyle mode, typename Int>
 | |
| int PrintIntegralDigits(Int digits, Buffer *out) {
 | |
|   int printed = 0;
 | |
|   if (digits) {
 | |
|     for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
 | |
|     printed = out->size();
 | |
|     if (mode == FormatStyle::Precision) {
 | |
|       out->push_front(*out->begin);
 | |
|       out->begin[1] = '.';
 | |
|     } else {
 | |
|       out->push_back('.');
 | |
|     }
 | |
|   } else if (mode == FormatStyle::Fixed) {
 | |
|     out->push_front('0');
 | |
|     out->push_back('.');
 | |
|     printed = 1;
 | |
|   }
 | |
|   return printed;
 | |
| }
 | |
| 
 | |
| // Back out 'extra_digits' digits and round up if necessary.
 | |
| bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
 | |
|                           Buffer *out, int *exp_out) {
 | |
|   if (extra_digits <= 0) return false;
 | |
| 
 | |
|   // Back out the extra digits
 | |
|   out->end -= extra_digits;
 | |
| 
 | |
|   bool needs_to_round_up = [&] {
 | |
|     // We look at the digit just past the end.
 | |
|     // There must be 'extra_digits' extra valid digits after end.
 | |
|     if (*out->end > '5') return true;
 | |
|     if (*out->end < '5') return false;
 | |
|     if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
 | |
|                                           [](char c) { return c != '0'; }))
 | |
|       return true;
 | |
| 
 | |
|     // Ends in ...50*, round to even.
 | |
|     return out->last_digit() % 2 == 1;
 | |
|   }();
 | |
| 
 | |
|   if (needs_to_round_up) {
 | |
|     RoundUp<FormatStyle::Precision>(out, exp_out);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Print the value into the buffer.
 | |
| // This will not include the exponent, which will be returned in 'exp_out' for
 | |
| // Precision mode.
 | |
| template <typename Int, typename Float, FormatStyle mode>
 | |
| bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
 | |
|                        int *exp_out) {
 | |
|   assert((CanFitMantissa<Float, Int>()));
 | |
| 
 | |
|   const int int_bits = std::numeric_limits<Int>::digits;
 | |
| 
 | |
|   // In precision mode, we start printing one char to the right because it will
 | |
|   // also include the '.'
 | |
|   // In fixed mode we put the dot afterwards on the right.
 | |
|   out->begin = out->end =
 | |
|       out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
 | |
| 
 | |
|   if (exp >= 0) {
 | |
|     if (std::numeric_limits<Float>::digits + exp > int_bits) {
 | |
|       // The value will overflow the Int
 | |
|       return false;
 | |
|     }
 | |
|     int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
 | |
|     int digits_to_zero_pad = precision;
 | |
|     if (mode == FormatStyle::Precision) {
 | |
|       *exp_out = digits_printed - 1;
 | |
|       digits_to_zero_pad -= digits_printed - 1;
 | |
|       if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     for (; digits_to_zero_pad-- > 0;) out->push_back('0');
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   exp = -exp;
 | |
|   // We need at least 4 empty bits for the next decimal digit.
 | |
|   // We will multiply by 10.
 | |
|   if (exp > int_bits - 4) return false;
 | |
| 
 | |
|   const Int mask = (Int{1} << exp) - 1;
 | |
| 
 | |
|   // Print the integral part first.
 | |
|   int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
 | |
|   int_mantissa &= mask;
 | |
| 
 | |
|   int fractional_count = precision;
 | |
|   if (mode == FormatStyle::Precision) {
 | |
|     if (digits_printed == 0) {
 | |
|       // Find the first non-zero digit, when in Precision mode.
 | |
|       *exp_out = 0;
 | |
|       if (int_mantissa) {
 | |
|         while (int_mantissa <= mask) {
 | |
|           int_mantissa *= 10;
 | |
|           --*exp_out;
 | |
|         }
 | |
|       }
 | |
|       out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
 | |
|       out->push_back('.');
 | |
|       int_mantissa &= mask;
 | |
|     } else {
 | |
|       // We already have a digit, and a '.'
 | |
|       *exp_out = digits_printed - 1;
 | |
|       fractional_count -= *exp_out;
 | |
|       if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
 | |
|                                exp_out)) {
 | |
|         // If we had enough digits, return right away.
 | |
|         // The code below will try to round again otherwise.
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto get_next_digit = [&] {
 | |
|     int_mantissa *= 10;
 | |
|     int digit = static_cast<int>(int_mantissa >> exp);
 | |
|     int_mantissa &= mask;
 | |
|     return digit;
 | |
|   };
 | |
| 
 | |
|   // Print fractional_count more digits, if available.
 | |
|   for (; fractional_count > 0; --fractional_count) {
 | |
|     out->push_back(get_next_digit() + '0');
 | |
|   }
 | |
| 
 | |
|   int next_digit = get_next_digit();
 | |
|   if (next_digit > 5 ||
 | |
|       (next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
 | |
|     RoundUp<mode>(out, exp_out);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <FormatStyle mode, typename Float>
 | |
| bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
 | |
|                    int *exp) {
 | |
|   if (precision > kMaxFixedPrecision) return false;
 | |
| 
 | |
|   // Try with uint64_t.
 | |
|   if (CanFitMantissa<Float, std::uint64_t>() &&
 | |
|       FloatToBufferImpl<std::uint64_t, Float, mode>(
 | |
|           static_cast<std::uint64_t>(decomposed.mantissa),
 | |
|           static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
 | |
|     return true;
 | |
| 
 | |
| #if defined(ABSL_HAVE_INTRINSIC_INT128)
 | |
|   // If that is not enough, try with __uint128_t.
 | |
|   return CanFitMantissa<Float, __uint128_t>() &&
 | |
|          FloatToBufferImpl<__uint128_t, Float, mode>(
 | |
|              static_cast<__uint128_t>(decomposed.mantissa),
 | |
|              static_cast<__uint128_t>(decomposed.exponent), precision, out,
 | |
|              exp);
 | |
| #endif
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void WriteBufferToSink(char sign_char, absl::string_view str,
 | |
|                        const FormatConversionSpecImpl &conv,
 | |
|                        FormatSinkImpl *sink) {
 | |
|   int left_spaces = 0, zeros = 0, right_spaces = 0;
 | |
|   int missing_chars =
 | |
|       conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
 | |
|                                        static_cast<int>(sign_char != 0),
 | |
|                                    0)
 | |
|                         : 0;
 | |
|   if (conv.has_left_flag()) {
 | |
|     right_spaces = missing_chars;
 | |
|   } else if (conv.has_zero_flag()) {
 | |
|     zeros = missing_chars;
 | |
|   } else {
 | |
|     left_spaces = missing_chars;
 | |
|   }
 | |
| 
 | |
|   sink->Append(left_spaces, ' ');
 | |
|   if (sign_char != '\0') sink->Append(1, sign_char);
 | |
|   sink->Append(zeros, '0');
 | |
|   sink->Append(str);
 | |
|   sink->Append(right_spaces, ' ');
 | |
| }
 | |
| 
 | |
| template <typename Float>
 | |
| bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
 | |
|                  FormatSinkImpl *sink) {
 | |
|   // Print the sign or the sign column.
 | |
|   Float abs_v = v;
 | |
|   char sign_char = 0;
 | |
|   if (std::signbit(abs_v)) {
 | |
|     sign_char = '-';
 | |
|     abs_v = -abs_v;
 | |
|   } else if (conv.has_show_pos_flag()) {
 | |
|     sign_char = '+';
 | |
|   } else if (conv.has_sign_col_flag()) {
 | |
|     sign_char = ' ';
 | |
|   }
 | |
| 
 | |
|   // Print nan/inf.
 | |
|   if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int precision = conv.precision() < 0 ? 6 : conv.precision();
 | |
| 
 | |
|   int exp = 0;
 | |
| 
 | |
|   auto decomposed = Decompose(abs_v);
 | |
| 
 | |
|   Buffer buffer;
 | |
| 
 | |
|   FormatConversionChar c = conv.conversion_char();
 | |
| 
 | |
|   if (c == FormatConversionCharInternal::f ||
 | |
|       c == FormatConversionCharInternal::F) {
 | |
|     FormatF(decomposed.mantissa, decomposed.exponent,
 | |
|             {sign_char, precision, conv, sink});
 | |
|     return true;
 | |
|   } else if (c == FormatConversionCharInternal::e ||
 | |
|              c == FormatConversionCharInternal::E) {
 | |
|     if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
 | |
|                                                &exp)) {
 | |
|       return FallbackToSnprintf(v, conv, sink);
 | |
|     }
 | |
|     if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back();
 | |
|     PrintExponent(
 | |
|         exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
 | |
|         &buffer);
 | |
|   } else if (c == FormatConversionCharInternal::g ||
 | |
|              c == FormatConversionCharInternal::G) {
 | |
|     precision = std::max(0, precision - 1);
 | |
|     if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
 | |
|                                                &exp)) {
 | |
|       return FallbackToSnprintf(v, conv, sink);
 | |
|     }
 | |
|     if (precision + 1 > exp && exp >= -4) {
 | |
|       if (exp < 0) {
 | |
|         // Have 1.23456, needs 0.00123456
 | |
|         // Move the first digit
 | |
|         buffer.begin[1] = *buffer.begin;
 | |
|         // Add some zeros
 | |
|         for (; exp < -1; ++exp) *buffer.begin-- = '0';
 | |
|         *buffer.begin-- = '.';
 | |
|         *buffer.begin = '0';
 | |
|       } else if (exp > 0) {
 | |
|         // Have 1.23456, needs 1234.56
 | |
|         // Move the '.' exp positions to the right.
 | |
|         std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2);
 | |
|       }
 | |
|       exp = 0;
 | |
|     }
 | |
|     if (!conv.has_alt_flag()) {
 | |
|       while (buffer.back() == '0') buffer.pop_back();
 | |
|       if (buffer.back() == '.') buffer.pop_back();
 | |
|     }
 | |
|     if (exp) {
 | |
|       PrintExponent(
 | |
|           exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
 | |
|           &buffer);
 | |
|     }
 | |
|   } else if (c == FormatConversionCharInternal::a ||
 | |
|              c == FormatConversionCharInternal::A) {
 | |
|     return FallbackToSnprintf(v, conv, sink);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   WriteBufferToSink(sign_char,
 | |
|                     absl::string_view(buffer.begin, buffer.end - buffer.begin),
 | |
|                     conv, sink);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
 | |
|                       FormatSinkImpl *sink) {
 | |
|   if (std::numeric_limits<long double>::digits ==
 | |
|       2 * std::numeric_limits<double>::digits) {
 | |
|     // This is the `double-double` representation of `long double`.
 | |
|     // We do not handle it natively. Fallback to snprintf.
 | |
|     return FallbackToSnprintf(v, conv, sink);
 | |
|   }
 | |
| 
 | |
|   return FloatToSink(v, conv, sink);
 | |
| }
 | |
| 
 | |
| bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
 | |
|                       FormatSinkImpl *sink) {
 | |
|   return FloatToSink(v, conv, sink);
 | |
| }
 | |
| 
 | |
| bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
 | |
|                       FormatSinkImpl *sink) {
 | |
|   return FloatToSink(v, conv, sink);
 | |
| }
 | |
| 
 | |
| }  // namespace str_format_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |