282 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdint>
 | 
						|
#include <limits>
 | 
						|
#include <random>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "benchmark/benchmark.h"
 | 
						|
#include "absl/base/config.h"
 | 
						|
#include "absl/numeric/int128.h"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
constexpr size_t kSampleSize = 1000000;
 | 
						|
 | 
						|
std::mt19937 MakeRandomEngine() {
 | 
						|
  std::random_device r;
 | 
						|
  std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()});
 | 
						|
  return std::mt19937(seed);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T,
 | 
						|
          typename H = typename std::conditional<
 | 
						|
              std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
 | 
						|
std::vector<std::pair<T, T>> GetRandomClass128SampleUniformDivisor() {
 | 
						|
  std::vector<std::pair<T, T>> values;
 | 
						|
  std::mt19937 random = MakeRandomEngine();
 | 
						|
  std::uniform_int_distribution<H> uniform_h;
 | 
						|
  values.reserve(kSampleSize);
 | 
						|
  for (size_t i = 0; i < kSampleSize; ++i) {
 | 
						|
    T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
 | 
						|
    T b{absl::MakeUint128(uniform_h(random), uniform_h(random))};
 | 
						|
    values.emplace_back(std::max(a, b), std::max(T(2), std::min(a, b)));
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_DivideClass128UniformDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomClass128SampleUniformDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first / pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::uint128);
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::int128);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_RemainderClass128UniformDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomClass128SampleUniformDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first % pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::uint128);
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::int128);
 | 
						|
 | 
						|
template <typename T,
 | 
						|
          typename H = typename std::conditional<
 | 
						|
              std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
 | 
						|
std::vector<std::pair<T, H>> GetRandomClass128SampleSmallDivisor() {
 | 
						|
  std::vector<std::pair<T, H>> values;
 | 
						|
  std::mt19937 random = MakeRandomEngine();
 | 
						|
  std::uniform_int_distribution<H> uniform_h;
 | 
						|
  values.reserve(kSampleSize);
 | 
						|
  for (size_t i = 0; i < kSampleSize; ++i) {
 | 
						|
    T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
 | 
						|
    H b{std::max(H{2}, uniform_h(random))};
 | 
						|
    values.emplace_back(std::max(a, T(b)), b);
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_DivideClass128SmallDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomClass128SampleSmallDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first / pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::uint128);
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::int128);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_RemainderClass128SmallDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomClass128SampleSmallDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first % pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::uint128);
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::int128);
 | 
						|
 | 
						|
std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() {
 | 
						|
  std::vector<std::pair<absl::uint128, absl::uint128>> values;
 | 
						|
  std::mt19937 random = MakeRandomEngine();
 | 
						|
  std::uniform_int_distribution<uint64_t> uniform_uint64;
 | 
						|
  values.reserve(kSampleSize);
 | 
						|
  for (size_t i = 0; i < kSampleSize; ++i) {
 | 
						|
    values.emplace_back(
 | 
						|
        absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)),
 | 
						|
        absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)));
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
void BM_MultiplyClass128(benchmark::State& state) {
 | 
						|
  auto values = GetRandomClass128Sample();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first * pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_MultiplyClass128);
 | 
						|
 | 
						|
void BM_AddClass128(benchmark::State& state) {
 | 
						|
  auto values = GetRandomClass128Sample();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first + pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_AddClass128);
 | 
						|
 | 
						|
#ifdef ABSL_HAVE_INTRINSIC_INT128
 | 
						|
 | 
						|
// Some implementations of <random> do not support __int128 when it is
 | 
						|
// available, so we make our own uniform_int_distribution-like type.
 | 
						|
template <typename T,
 | 
						|
          typename H = typename std::conditional<
 | 
						|
              std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
 | 
						|
class UniformIntDistribution128 {
 | 
						|
 public:
 | 
						|
  // NOLINTNEXTLINE: mimicking std::uniform_int_distribution API
 | 
						|
  T operator()(std::mt19937& generator) {
 | 
						|
    return (static_cast<T>(dist64_(generator)) << 64) | dist64_(generator);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  std::uniform_int_distribution<H> dist64_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T,
 | 
						|
          typename H = typename std::conditional<
 | 
						|
              std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
 | 
						|
std::vector<std::pair<T, T>> GetRandomIntrinsic128SampleUniformDivisor() {
 | 
						|
  std::vector<std::pair<T, T>> values;
 | 
						|
  std::mt19937 random = MakeRandomEngine();
 | 
						|
  UniformIntDistribution128<T> uniform_128;
 | 
						|
  values.reserve(kSampleSize);
 | 
						|
  for (size_t i = 0; i < kSampleSize; ++i) {
 | 
						|
    T a = uniform_128(random);
 | 
						|
    T b = uniform_128(random);
 | 
						|
    values.emplace_back(std::max(a, b),
 | 
						|
                        std::max(static_cast<T>(2), std::min(a, b)));
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first / pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, unsigned __int128);
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, __int128);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_RemainderIntrinsic128UniformDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first % pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, unsigned __int128);
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, __int128);
 | 
						|
 | 
						|
template <typename T,
 | 
						|
          typename H = typename std::conditional<
 | 
						|
              std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
 | 
						|
std::vector<std::pair<T, H>> GetRandomIntrinsic128SampleSmallDivisor() {
 | 
						|
  std::vector<std::pair<T, H>> values;
 | 
						|
  std::mt19937 random = MakeRandomEngine();
 | 
						|
  UniformIntDistribution128<T> uniform_int128;
 | 
						|
  std::uniform_int_distribution<H> uniform_int64;
 | 
						|
  values.reserve(kSampleSize);
 | 
						|
  for (size_t i = 0; i < kSampleSize; ++i) {
 | 
						|
    T a = uniform_int128(random);
 | 
						|
    H b = std::max(H{2}, uniform_int64(random));
 | 
						|
    values.emplace_back(std::max(a, static_cast<T>(b)), b);
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first / pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, unsigned __int128);
 | 
						|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, __int128);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void BM_RemainderIntrinsic128SmallDivisor(benchmark::State& state) {
 | 
						|
  auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first % pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, unsigned __int128);
 | 
						|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, __int128);
 | 
						|
 | 
						|
std::vector<std::pair<unsigned __int128, unsigned __int128>>
 | 
						|
      GetRandomIntrinsic128Sample() {
 | 
						|
  std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
 | 
						|
  std::mt19937 random = MakeRandomEngine();
 | 
						|
  UniformIntDistribution128<unsigned __int128> uniform_uint128;
 | 
						|
  values.reserve(kSampleSize);
 | 
						|
  for (size_t i = 0; i < kSampleSize; ++i) {
 | 
						|
    values.emplace_back(uniform_uint128(random), uniform_uint128(random));
 | 
						|
  }
 | 
						|
  return values;
 | 
						|
}
 | 
						|
 | 
						|
void BM_MultiplyIntrinsic128(benchmark::State& state) {
 | 
						|
  auto values = GetRandomIntrinsic128Sample();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first * pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_MultiplyIntrinsic128);
 | 
						|
 | 
						|
void BM_AddIntrinsic128(benchmark::State& state) {
 | 
						|
  auto values = GetRandomIntrinsic128Sample();
 | 
						|
  while (state.KeepRunningBatch(values.size())) {
 | 
						|
    for (const auto& pair : values) {
 | 
						|
      benchmark::DoNotOptimize(pair.first + pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_AddIntrinsic128);
 | 
						|
 | 
						|
#endif  // ABSL_HAVE_INTRINSIC_INT128
 | 
						|
 | 
						|
}  // namespace
 |