207 lines
		
	
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			207 lines
		
	
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Based on: Jonker, R., & Volgenant, A. (1987). <i>A shortest augmenting path
 | |
|  * algorithm for dense and sparse linear assignment problems</i>. Computing,
 | |
|  * 38(4), 325-340.
 | |
|  */
 | |
| #include "cache.h"
 | |
| #include "linear-assignment.h"
 | |
| 
 | |
| #define COST(column, row) cost[(column) + column_count * (row)]
 | |
| 
 | |
| /*
 | |
|  * The parameter `cost` is the cost matrix: the cost to assign column j to row
 | |
|  * i is `cost[j + column_count * i].
 | |
|  */
 | |
| void compute_assignment(int column_count, int row_count, int *cost,
 | |
| 			int *column2row, int *row2column)
 | |
| {
 | |
| 	int *v, *d;
 | |
| 	int *free_row, free_count = 0, saved_free_count, *pred, *col;
 | |
| 	int i, j, phase;
 | |
| 
 | |
| 	if (column_count < 2) {
 | |
| 		memset(column2row, 0, sizeof(int) * column_count);
 | |
| 		memset(row2column, 0, sizeof(int) * row_count);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memset(column2row, -1, sizeof(int) * column_count);
 | |
| 	memset(row2column, -1, sizeof(int) * row_count);
 | |
| 	ALLOC_ARRAY(v, column_count);
 | |
| 
 | |
| 	/* column reduction */
 | |
| 	for (j = column_count - 1; j >= 0; j--) {
 | |
| 		int i1 = 0;
 | |
| 
 | |
| 		for (i = 1; i < row_count; i++)
 | |
| 			if (COST(j, i1) > COST(j, i))
 | |
| 				i1 = i;
 | |
| 		v[j] = COST(j, i1);
 | |
| 		if (row2column[i1] == -1) {
 | |
| 			/* row i1 unassigned */
 | |
| 			row2column[i1] = j;
 | |
| 			column2row[j] = i1;
 | |
| 		} else {
 | |
| 			if (row2column[i1] >= 0)
 | |
| 				row2column[i1] = -2 - row2column[i1];
 | |
| 			column2row[j] = -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* reduction transfer */
 | |
| 	ALLOC_ARRAY(free_row, row_count);
 | |
| 	for (i = 0; i < row_count; i++) {
 | |
| 		int j1 = row2column[i];
 | |
| 		if (j1 == -1)
 | |
| 			free_row[free_count++] = i;
 | |
| 		else if (j1 < -1)
 | |
| 			row2column[i] = -2 - j1;
 | |
| 		else {
 | |
| 			int min = COST(!j1, i) - v[!j1];
 | |
| 			for (j = 1; j < column_count; j++)
 | |
| 				if (j != j1 && min > COST(j, i) - v[j])
 | |
| 					min = COST(j, i) - v[j];
 | |
| 			v[j1] -= min;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (free_count ==
 | |
| 	    (column_count < row_count ? row_count - column_count : 0)) {
 | |
| 		free(v);
 | |
| 		free(free_row);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* augmenting row reduction */
 | |
| 	for (phase = 0; phase < 2; phase++) {
 | |
| 		int k = 0;
 | |
| 
 | |
| 		saved_free_count = free_count;
 | |
| 		free_count = 0;
 | |
| 		while (k < saved_free_count) {
 | |
| 			int u1, u2;
 | |
| 			int j1 = 0, j2, i0;
 | |
| 
 | |
| 			i = free_row[k++];
 | |
| 			u1 = COST(j1, i) - v[j1];
 | |
| 			j2 = -1;
 | |
| 			u2 = INT_MAX;
 | |
| 			for (j = 1; j < column_count; j++) {
 | |
| 				int c = COST(j, i) - v[j];
 | |
| 				if (u2 > c) {
 | |
| 					if (u1 < c) {
 | |
| 						u2 = c;
 | |
| 						j2 = j;
 | |
| 					} else {
 | |
| 						u2 = u1;
 | |
| 						u1 = c;
 | |
| 						j2 = j1;
 | |
| 						j1 = j;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if (j2 < 0) {
 | |
| 				j2 = j1;
 | |
| 				u2 = u1;
 | |
| 			}
 | |
| 
 | |
| 			i0 = column2row[j1];
 | |
| 			if (u1 < u2)
 | |
| 				v[j1] -= u2 - u1;
 | |
| 			else if (i0 >= 0) {
 | |
| 				j1 = j2;
 | |
| 				i0 = column2row[j1];
 | |
| 			}
 | |
| 
 | |
| 			if (i0 >= 0) {
 | |
| 				if (u1 < u2)
 | |
| 					free_row[--k] = i0;
 | |
| 				else
 | |
| 					free_row[free_count++] = i0;
 | |
| 			}
 | |
| 			row2column[i] = j1;
 | |
| 			column2row[j1] = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* augmentation */
 | |
| 	saved_free_count = free_count;
 | |
| 	ALLOC_ARRAY(d, column_count);
 | |
| 	ALLOC_ARRAY(pred, column_count);
 | |
| 	ALLOC_ARRAY(col, column_count);
 | |
| 	for (free_count = 0; free_count < saved_free_count; free_count++) {
 | |
| 		int i1 = free_row[free_count], low = 0, up = 0, last, k;
 | |
| 		int min, c, u1;
 | |
| 
 | |
| 		for (j = 0; j < column_count; j++) {
 | |
| 			d[j] = COST(j, i1) - v[j];
 | |
| 			pred[j] = i1;
 | |
| 			col[j] = j;
 | |
| 		}
 | |
| 
 | |
| 		j = -1;
 | |
| 		do {
 | |
| 			last = low;
 | |
| 			min = d[col[up++]];
 | |
| 			for (k = up; k < column_count; k++) {
 | |
| 				j = col[k];
 | |
| 				c = d[j];
 | |
| 				if (c <= min) {
 | |
| 					if (c < min) {
 | |
| 						up = low;
 | |
| 						min = c;
 | |
| 					}
 | |
| 					col[k] = col[up];
 | |
| 					col[up++] = j;
 | |
| 				}
 | |
| 			}
 | |
| 			for (k = low; k < up; k++)
 | |
| 				if (column2row[col[k]] == -1)
 | |
| 					goto update;
 | |
| 
 | |
| 			/* scan a row */
 | |
| 			do {
 | |
| 				int j1 = col[low++];
 | |
| 
 | |
| 				i = column2row[j1];
 | |
| 				u1 = COST(j1, i) - v[j1] - min;
 | |
| 				for (k = up; k < column_count; k++) {
 | |
| 					j = col[k];
 | |
| 					c = COST(j, i) - v[j] - u1;
 | |
| 					if (c < d[j]) {
 | |
| 						d[j] = c;
 | |
| 						pred[j] = i;
 | |
| 						if (c == min) {
 | |
| 							if (column2row[j] == -1)
 | |
| 								goto update;
 | |
| 							col[k] = col[up];
 | |
| 							col[up++] = j;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			} while (low != up);
 | |
| 		} while (low == up);
 | |
| 
 | |
| update:
 | |
| 		/* updating of the column pieces */
 | |
| 		for (k = 0; k < last; k++) {
 | |
| 			int j1 = col[k];
 | |
| 			v[j1] += d[j1] - min;
 | |
| 		}
 | |
| 
 | |
| 		/* augmentation */
 | |
| 		do {
 | |
| 			if (j < 0)
 | |
| 				BUG("negative j: %d", j);
 | |
| 			i = pred[j];
 | |
| 			column2row[j] = i;
 | |
| 			SWAP(j, row2column[i]);
 | |
| 		} while (i1 != i);
 | |
| 	}
 | |
| 
 | |
| 	free(col);
 | |
| 	free(pred);
 | |
| 	free(d);
 | |
| 	free(v);
 | |
| 	free(free_row);
 | |
| }
 |