-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			254 lines
		
	
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#ifndef ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
 | 
						|
#define ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <istream>
 | 
						|
#include <limits>
 | 
						|
#include <ostream>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "absl/random/internal/fastmath.h"
 | 
						|
#include "absl/random/internal/generate_real.h"
 | 
						|
#include "absl/random/internal/iostream_state_saver.h"
 | 
						|
#include "absl/random/internal/traits.h"
 | 
						|
#include "absl/random/uniform_int_distribution.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
// log_uniform_int_distribution:
 | 
						|
//
 | 
						|
// Returns a random variate R in range [min, max] such that
 | 
						|
// floor(log(R-min, base)) is uniformly distributed.
 | 
						|
// We ensure uniformity by discretization using the
 | 
						|
// boundary sets [0, 1, base, base * base, ... min(base*n, max)]
 | 
						|
//
 | 
						|
template <typename IntType = int>
 | 
						|
class log_uniform_int_distribution {
 | 
						|
 private:
 | 
						|
  using unsigned_type =
 | 
						|
      typename random_internal::make_unsigned_bits<IntType>::type;
 | 
						|
 | 
						|
 public:
 | 
						|
  using result_type = IntType;
 | 
						|
 | 
						|
  class param_type {
 | 
						|
   public:
 | 
						|
    using distribution_type = log_uniform_int_distribution;
 | 
						|
 | 
						|
    explicit param_type(
 | 
						|
        result_type min = 0,
 | 
						|
        result_type max = (std::numeric_limits<result_type>::max)(),
 | 
						|
        result_type base = 2)
 | 
						|
        : min_(min),
 | 
						|
          max_(max),
 | 
						|
          base_(base),
 | 
						|
          range_(static_cast<unsigned_type>(max_) -
 | 
						|
                 static_cast<unsigned_type>(min_)),
 | 
						|
          log_range_(0) {
 | 
						|
      assert(max_ >= min_);
 | 
						|
      assert(base_ > 1);
 | 
						|
 | 
						|
      if (base_ == 2) {
 | 
						|
        // Determine where the first set bit is on range(), giving a log2(range)
 | 
						|
        // value which can be used to construct bounds.
 | 
						|
        log_range_ = (std::min)(random_internal::LeadingSetBit(range()),
 | 
						|
                                std::numeric_limits<unsigned_type>::digits);
 | 
						|
      } else {
 | 
						|
        // NOTE: Computing the logN(x) introduces error from 2 sources:
 | 
						|
        // 1. Conversion of int to double loses precision for values >=
 | 
						|
        // 2^53, which may cause some log() computations to operate on
 | 
						|
        // different values.
 | 
						|
        // 2. The error introduced by the division will cause the result
 | 
						|
        // to differ from the expected value.
 | 
						|
        //
 | 
						|
        // Thus a result which should equal K may equal K +/- epsilon,
 | 
						|
        // which can eliminate some values depending on where the bounds fall.
 | 
						|
        const double inv_log_base = 1.0 / std::log(base_);
 | 
						|
        const double log_range = std::log(static_cast<double>(range()) + 0.5);
 | 
						|
        log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    result_type(min)() const { return min_; }
 | 
						|
    result_type(max)() const { return max_; }
 | 
						|
    result_type base() const { return base_; }
 | 
						|
 | 
						|
    friend bool operator==(const param_type& a, const param_type& b) {
 | 
						|
      return a.min_ == b.min_ && a.max_ == b.max_ && a.base_ == b.base_;
 | 
						|
    }
 | 
						|
 | 
						|
    friend bool operator!=(const param_type& a, const param_type& b) {
 | 
						|
      return !(a == b);
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    friend class log_uniform_int_distribution;
 | 
						|
 | 
						|
    int log_range() const { return log_range_; }
 | 
						|
    unsigned_type range() const { return range_; }
 | 
						|
 | 
						|
    result_type min_;
 | 
						|
    result_type max_;
 | 
						|
    result_type base_;
 | 
						|
    unsigned_type range_;  // max - min
 | 
						|
    int log_range_;        // ceil(logN(range_))
 | 
						|
 | 
						|
    static_assert(std::is_integral<IntType>::value,
 | 
						|
                  "Class-template absl::log_uniform_int_distribution<> must be "
 | 
						|
                  "parameterized using an integral type.");
 | 
						|
  };
 | 
						|
 | 
						|
  log_uniform_int_distribution() : log_uniform_int_distribution(0) {}
 | 
						|
 | 
						|
  explicit log_uniform_int_distribution(
 | 
						|
      result_type min,
 | 
						|
      result_type max = (std::numeric_limits<result_type>::max)(),
 | 
						|
      result_type base = 2)
 | 
						|
      : param_(min, max, base) {}
 | 
						|
 | 
						|
  explicit log_uniform_int_distribution(const param_type& p) : param_(p) {}
 | 
						|
 | 
						|
  void reset() {}
 | 
						|
 | 
						|
  // generating functions
 | 
						|
  template <typename URBG>
 | 
						|
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | 
						|
    return (*this)(g, param_);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename URBG>
 | 
						|
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | 
						|
                         const param_type& p) {
 | 
						|
    return (p.min)() + Generate(g, p);
 | 
						|
  }
 | 
						|
 | 
						|
  result_type(min)() const { return (param_.min)(); }
 | 
						|
  result_type(max)() const { return (param_.max)(); }
 | 
						|
  result_type base() const { return param_.base(); }
 | 
						|
 | 
						|
  param_type param() const { return param_; }
 | 
						|
  void param(const param_type& p) { param_ = p; }
 | 
						|
 | 
						|
  friend bool operator==(const log_uniform_int_distribution& a,
 | 
						|
                         const log_uniform_int_distribution& b) {
 | 
						|
    return a.param_ == b.param_;
 | 
						|
  }
 | 
						|
  friend bool operator!=(const log_uniform_int_distribution& a,
 | 
						|
                         const log_uniform_int_distribution& b) {
 | 
						|
    return a.param_ != b.param_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  // Returns a log-uniform variate in the range [0, p.range()]. The caller
 | 
						|
  // should add min() to shift the result to the correct range.
 | 
						|
  template <typename URNG>
 | 
						|
  unsigned_type Generate(URNG& g,  // NOLINT(runtime/references)
 | 
						|
                         const param_type& p);
 | 
						|
 | 
						|
  param_type param_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
template <typename URBG>
 | 
						|
typename log_uniform_int_distribution<IntType>::unsigned_type
 | 
						|
log_uniform_int_distribution<IntType>::Generate(
 | 
						|
    URBG& g,  // NOLINT(runtime/references)
 | 
						|
    const param_type& p) {
 | 
						|
  // sample e over [0, log_range]. Map the results of e to this:
 | 
						|
  // 0 => 0
 | 
						|
  // 1 => [1, b-1]
 | 
						|
  // 2 => [b, (b^2)-1]
 | 
						|
  // n => [b^(n-1)..(b^n)-1]
 | 
						|
  const int e = absl::uniform_int_distribution<int>(0, p.log_range())(g);
 | 
						|
  if (e == 0) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  const int d = e - 1;
 | 
						|
 | 
						|
  unsigned_type base_e, top_e;
 | 
						|
  if (p.base() == 2) {
 | 
						|
    base_e = static_cast<unsigned_type>(1) << d;
 | 
						|
 | 
						|
    top_e = (e >= std::numeric_limits<unsigned_type>::digits)
 | 
						|
                ? (std::numeric_limits<unsigned_type>::max)()
 | 
						|
                : (static_cast<unsigned_type>(1) << e) - 1;
 | 
						|
  } else {
 | 
						|
    const double r = std::pow(p.base(), d);
 | 
						|
    const double s = (r * p.base()) - 1.0;
 | 
						|
 | 
						|
    base_e =
 | 
						|
        (r > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))
 | 
						|
            ? (std::numeric_limits<unsigned_type>::max)()
 | 
						|
            : static_cast<unsigned_type>(r);
 | 
						|
 | 
						|
    top_e =
 | 
						|
        (s > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))
 | 
						|
            ? (std::numeric_limits<unsigned_type>::max)()
 | 
						|
            : static_cast<unsigned_type>(s);
 | 
						|
  }
 | 
						|
 | 
						|
  const unsigned_type lo = (base_e >= p.range()) ? p.range() : base_e;
 | 
						|
  const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e;
 | 
						|
 | 
						|
  // choose uniformly over [lo, hi]
 | 
						|
  return absl::uniform_int_distribution<result_type>(lo, hi)(g);
 | 
						|
}
 | 
						|
 | 
						|
template <typename CharT, typename Traits, typename IntType>
 | 
						|
std::basic_ostream<CharT, Traits>& operator<<(
 | 
						|
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | 
						|
    const log_uniform_int_distribution<IntType>& x) {
 | 
						|
  using stream_type =
 | 
						|
      typename random_internal::stream_format_type<IntType>::type;
 | 
						|
  auto saver = random_internal::make_ostream_state_saver(os);
 | 
						|
  os << static_cast<stream_type>((x.min)()) << os.fill()
 | 
						|
     << static_cast<stream_type>((x.max)()) << os.fill()
 | 
						|
     << static_cast<stream_type>(x.base());
 | 
						|
  return os;
 | 
						|
}
 | 
						|
 | 
						|
template <typename CharT, typename Traits, typename IntType>
 | 
						|
std::basic_istream<CharT, Traits>& operator>>(
 | 
						|
    std::basic_istream<CharT, Traits>& is,       // NOLINT(runtime/references)
 | 
						|
    log_uniform_int_distribution<IntType>& x) {  // NOLINT(runtime/references)
 | 
						|
  using param_type = typename log_uniform_int_distribution<IntType>::param_type;
 | 
						|
  using result_type =
 | 
						|
      typename log_uniform_int_distribution<IntType>::result_type;
 | 
						|
  using stream_type =
 | 
						|
      typename random_internal::stream_format_type<IntType>::type;
 | 
						|
 | 
						|
  stream_type min;
 | 
						|
  stream_type max;
 | 
						|
  stream_type base;
 | 
						|
 | 
						|
  auto saver = random_internal::make_istream_state_saver(is);
 | 
						|
  is >> min >> max >> base;
 | 
						|
  if (!is.fail()) {
 | 
						|
    x.param(param_type(static_cast<result_type>(min),
 | 
						|
                       static_cast<result_type>(max),
 | 
						|
                       static_cast<result_type>(base)));
 | 
						|
  }
 | 
						|
  return is;
 | 
						|
}
 | 
						|
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
 |