-- 6769c6ebe79804063d68d70a5623a1475d63aeff by Alex Strelnikov <strel@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 202500218 -- c65cc4af08b8c48ca65f0816c1d2f59c7de7b0a5 by Derek Mauro <dmauro@google.com>: Fix DirectMMap on s390x (GitHub #135). This is *untested* because no s390x system is available. PiperOrigin-RevId: 202484458 -- 0ae7b628d7859cb3af169d007c29efd7917bb3ea by Abseil Team <absl-team@google.com>: Changes the Holder's compile-type type decision making to a std::conditional for improved readability PiperOrigin-RevId: 202340646 GitOrigin-RevId: 6769c6ebe79804063d68d70a5623a1475d63aeff Change-Id: I8f9d049ee279b1b1e3381fdf7e6fe9a4ea228306
		
			
				
	
	
		
			483 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			483 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: fixed_array.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
 | |
| // the array can be determined at run-time. It is a good replacement for
 | |
| // non-standard and deprecated uses of `alloca()` and variable length arrays
 | |
| // within the GCC extension. (See
 | |
| // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
 | |
| //
 | |
| // `FixedArray` allocates small arrays inline, keeping performance fast by
 | |
| // avoiding heap operations. It also helps reduce the chances of
 | |
| // accidentally overflowing your stack if large input is passed to
 | |
| // your function.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
 | |
| #define ABSL_CONTAINER_FIXED_ARRAY_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <initializer_list>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <new>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/algorithm/algorithm.h"
 | |
| #include "absl/base/dynamic_annotations.h"
 | |
| #include "absl/base/internal/throw_delegate.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/base/optimization.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/memory/memory.h"
 | |
| 
 | |
| namespace absl {
 | |
| 
 | |
| constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // FixedArray
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A `FixedArray` provides a run-time fixed-size array, allocating small arrays
 | |
| // inline for efficiency and correctness.
 | |
| //
 | |
| // Most users should not specify an `inline_elements` argument and let
 | |
| // `FixedArray<>` automatically determine the number of elements
 | |
| // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
 | |
| // `FixedArray<>` implementation will inline arrays of
 | |
| // length <= `inline_elements`.
 | |
| //
 | |
| // Note that a `FixedArray` constructed with a `size_type` argument will
 | |
| // default-initialize its values by leaving trivially constructible types
 | |
| // uninitialized (e.g. int, int[4], double), and others default-constructed.
 | |
| // This matches the behavior of c-style arrays and `std::array`, but not
 | |
| // `std::vector`.
 | |
| //
 | |
| // Note that `FixedArray` does not provide a public allocator; if it requires a
 | |
| // heap allocation, it will do so with global `::operator new[]()` and
 | |
| // `::operator delete[]()`, even if T provides class-scope overrides for these
 | |
| // operators.
 | |
| template <typename T, size_t inlined = kFixedArrayUseDefault>
 | |
| class FixedArray {
 | |
|   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
 | |
|                 "Arrays with unknown bounds cannot be used with FixedArray.");
 | |
|   static constexpr size_t kInlineBytesDefault = 256;
 | |
| 
 | |
|   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
 | |
|   // but this seems to be mostly pedantic.
 | |
|   template <typename Iter>
 | |
|   using EnableIfForwardIterator = typename std::enable_if<
 | |
|       std::is_convertible<
 | |
|           typename std::iterator_traits<Iter>::iterator_category,
 | |
|           std::forward_iterator_tag>::value,
 | |
|       int>::type;
 | |
| 
 | |
|  public:
 | |
|   // For playing nicely with stl:
 | |
|   using value_type = T;
 | |
|   using iterator = T*;
 | |
|   using const_iterator = const T*;
 | |
|   using reverse_iterator = std::reverse_iterator<iterator>;
 | |
|   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | |
|   using reference = T&;
 | |
|   using const_reference = const T&;
 | |
|   using pointer = T*;
 | |
|   using const_pointer = const T*;
 | |
|   using difference_type = ptrdiff_t;
 | |
|   using size_type = size_t;
 | |
| 
 | |
|   static constexpr size_type inline_elements =
 | |
|       inlined == kFixedArrayUseDefault
 | |
|           ? kInlineBytesDefault / sizeof(value_type)
 | |
|           : inlined;
 | |
| 
 | |
|   FixedArray(const FixedArray& other)
 | |
|       : FixedArray(other.begin(), other.end()) {}
 | |
| 
 | |
|   FixedArray(FixedArray&& other) noexcept(
 | |
|   // clang-format off
 | |
|       absl::allocator_is_nothrow<std::allocator<value_type>>::value &&
 | |
|   // clang-format on
 | |
|           std::is_nothrow_move_constructible<value_type>::value)
 | |
|       : FixedArray(std::make_move_iterator(other.begin()),
 | |
|                    std::make_move_iterator(other.end())) {}
 | |
| 
 | |
|   // Creates an array object that can store `n` elements.
 | |
|   // Note that trivially constructible elements will be uninitialized.
 | |
|   explicit FixedArray(size_type n) : rep_(n) {
 | |
|     absl::memory_internal::uninitialized_default_construct_n(rep_.begin(),
 | |
|                                                              size());
 | |
|   }
 | |
| 
 | |
|   // Creates an array initialized with `n` copies of `val`.
 | |
|   FixedArray(size_type n, const value_type& val) : rep_(n) {
 | |
|     std::uninitialized_fill_n(data(), size(), val);
 | |
|   }
 | |
| 
 | |
|   // Creates an array initialized with the elements from the input
 | |
|   // range. The array's size will always be `std::distance(first, last)`.
 | |
|   // REQUIRES: Iter must be a forward_iterator or better.
 | |
|   template <typename Iter, EnableIfForwardIterator<Iter> = 0>
 | |
|   FixedArray(Iter first, Iter last) : rep_(std::distance(first, last)) {
 | |
|     std::uninitialized_copy(first, last, data());
 | |
|   }
 | |
| 
 | |
|   // Creates the array from an initializer_list.
 | |
|   FixedArray(std::initializer_list<T> init_list)
 | |
|       : FixedArray(init_list.begin(), init_list.end()) {}
 | |
| 
 | |
|   ~FixedArray() noexcept {
 | |
|     for (Holder* cur = rep_.begin(); cur != rep_.end(); ++cur) {
 | |
|       cur->~Holder();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assignments are deleted because they break the invariant that the size of a
 | |
|   // `FixedArray` never changes.
 | |
|   void operator=(FixedArray&&) = delete;
 | |
|   void operator=(const FixedArray&) = delete;
 | |
| 
 | |
|   // FixedArray::size()
 | |
|   //
 | |
|   // Returns the length of the fixed array.
 | |
|   size_type size() const { return rep_.size(); }
 | |
| 
 | |
|   // FixedArray::max_size()
 | |
|   //
 | |
|   // Returns the largest possible value of `std::distance(begin(), end())` for a
 | |
|   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
 | |
|   // over the number of bytes taken by T.
 | |
|   constexpr size_type max_size() const {
 | |
|     return std::numeric_limits<difference_type>::max() / sizeof(value_type);
 | |
|   }
 | |
| 
 | |
|   // FixedArray::empty()
 | |
|   //
 | |
|   // Returns whether or not the fixed array is empty.
 | |
|   bool empty() const { return size() == 0; }
 | |
| 
 | |
|   // FixedArray::memsize()
 | |
|   //
 | |
|   // Returns the memory size of the fixed array in bytes.
 | |
|   size_t memsize() const { return size() * sizeof(value_type); }
 | |
| 
 | |
|   // FixedArray::data()
 | |
|   //
 | |
|   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
 | |
|   // can be used to access (but not modify) the contained elements.
 | |
|   const_pointer data() const { return AsValue(rep_.begin()); }
 | |
| 
 | |
|   // Overload of FixedArray::data() to return a T* pointer to elements of the
 | |
|   // fixed array. This pointer can be used to access and modify the contained
 | |
|   // elements.
 | |
|   pointer data() { return AsValue(rep_.begin()); }
 | |
| 
 | |
|   // FixedArray::operator[]
 | |
|   //
 | |
|   // Returns a reference the ith element of the fixed array.
 | |
|   // REQUIRES: 0 <= i < size()
 | |
|   reference operator[](size_type i) {
 | |
|     assert(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of FixedArray::operator()[] to return a const reference to the
 | |
|   // ith element of the fixed array.
 | |
|   // REQUIRES: 0 <= i < size()
 | |
|   const_reference operator[](size_type i) const {
 | |
|     assert(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // FixedArray::at
 | |
|   //
 | |
|   // Bounds-checked access.  Returns a reference to the ith element of the
 | |
|   // fiexed array, or throws std::out_of_range
 | |
|   reference at(size_type i) {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of FixedArray::at() to return a const reference to the ith element
 | |
|   // of the fixed array.
 | |
|   const_reference at(size_type i) const {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // FixedArray::front()
 | |
|   //
 | |
|   // Returns a reference to the first element of the fixed array.
 | |
|   reference front() { return *begin(); }
 | |
| 
 | |
|   // Overload of FixedArray::front() to return a reference to the first element
 | |
|   // of a fixed array of const values.
 | |
|   const_reference front() const { return *begin(); }
 | |
| 
 | |
|   // FixedArray::back()
 | |
|   //
 | |
|   // Returns a reference to the last element of the fixed array.
 | |
|   reference back() { return *(end() - 1); }
 | |
| 
 | |
|   // Overload of FixedArray::back() to return a reference to the last element
 | |
|   // of a fixed array of const values.
 | |
|   const_reference back() const { return *(end() - 1); }
 | |
| 
 | |
|   // FixedArray::begin()
 | |
|   //
 | |
|   // Returns an iterator to the beginning of the fixed array.
 | |
|   iterator begin() { return data(); }
 | |
| 
 | |
|   // Overload of FixedArray::begin() to return a const iterator to the
 | |
|   // beginning of the fixed array.
 | |
|   const_iterator begin() const { return data(); }
 | |
| 
 | |
|   // FixedArray::cbegin()
 | |
|   //
 | |
|   // Returns a const iterator to the beginning of the fixed array.
 | |
|   const_iterator cbegin() const { return begin(); }
 | |
| 
 | |
|   // FixedArray::end()
 | |
|   //
 | |
|   // Returns an iterator to the end of the fixed array.
 | |
|   iterator end() { return data() + size(); }
 | |
| 
 | |
|   // Overload of FixedArray::end() to return a const iterator to the end of the
 | |
|   // fixed array.
 | |
|   const_iterator end() const { return data() + size(); }
 | |
| 
 | |
|   // FixedArray::cend()
 | |
|   //
 | |
|   // Returns a const iterator to the end of the fixed array.
 | |
|   const_iterator cend() const { return end(); }
 | |
| 
 | |
|   // FixedArray::rbegin()
 | |
|   //
 | |
|   // Returns a reverse iterator from the end of the fixed array.
 | |
|   reverse_iterator rbegin() { return reverse_iterator(end()); }
 | |
| 
 | |
|   // Overload of FixedArray::rbegin() to return a const reverse iterator from
 | |
|   // the end of the fixed array.
 | |
|   const_reverse_iterator rbegin() const {
 | |
|     return const_reverse_iterator(end());
 | |
|   }
 | |
| 
 | |
|   // FixedArray::crbegin()
 | |
|   //
 | |
|   // Returns a const reverse iterator from the end of the fixed array.
 | |
|   const_reverse_iterator crbegin() const { return rbegin(); }
 | |
| 
 | |
|   // FixedArray::rend()
 | |
|   //
 | |
|   // Returns a reverse iterator from the beginning of the fixed array.
 | |
|   reverse_iterator rend() { return reverse_iterator(begin()); }
 | |
| 
 | |
|   // Overload of FixedArray::rend() for returning a const reverse iterator
 | |
|   // from the beginning of the fixed array.
 | |
|   const_reverse_iterator rend() const {
 | |
|     return const_reverse_iterator(begin());
 | |
|   }
 | |
| 
 | |
|   // FixedArray::crend()
 | |
|   //
 | |
|   // Returns a reverse iterator from the beginning of the fixed array.
 | |
|   const_reverse_iterator crend() const { return rend(); }
 | |
| 
 | |
|   // FixedArray::fill()
 | |
|   //
 | |
|   // Assigns the given `value` to all elements in the fixed array.
 | |
|   void fill(const T& value) { std::fill(begin(), end(), value); }
 | |
| 
 | |
|   // Relational operators. Equality operators are elementwise using
 | |
|   // `operator==`, while order operators order FixedArrays lexicographically.
 | |
|   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
 | |
|   }
 | |
| 
 | |
|   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return !(lhs == rhs);
 | |
|   }
 | |
| 
 | |
|   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
 | |
|                                         rhs.end());
 | |
|   }
 | |
| 
 | |
|   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return rhs < lhs;
 | |
|   }
 | |
| 
 | |
|   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return !(rhs < lhs);
 | |
|   }
 | |
| 
 | |
|   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
 | |
|     return !(lhs < rhs);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Holder
 | |
|   //
 | |
|   // Wrapper for holding elements of type T for both the case where T is a
 | |
|   // C-style array type and the general case where it is not. This is needed for
 | |
|   // construction and destruction of the entire array regardless of how many
 | |
|   // dimensions it has.
 | |
|   //
 | |
|   // Maintainer's Note: The simpler solution would be to simply wrap T in a
 | |
|   // struct whether it's an array or not: 'struct Holder { T v; };', but
 | |
|   // that causes some paranoid diagnostics to misfire about uses of data(),
 | |
|   // believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single
 | |
|   // element, rather than the packed array that it really is.
 | |
|   // e.g.:
 | |
|   //
 | |
|   //     FixedArray<char> buf(1);
 | |
|   //     sprintf(buf.data(), "foo");
 | |
|   //
 | |
|   //     error: call to int __builtin___sprintf_chk(etc...)
 | |
|   //     will always overflow destination buffer [-Werror]
 | |
|   //
 | |
|   template <typename OuterT = value_type,
 | |
|             typename InnerT = absl::remove_extent_t<OuterT>,
 | |
|             size_t InnerN = std::extent<OuterT>::value>
 | |
|   struct ArrayHolder {
 | |
|     InnerT array[InnerN];
 | |
|   };
 | |
| 
 | |
|   using Holder = absl::conditional_t<std::is_array<value_type>::value,
 | |
|                                      ArrayHolder<value_type>, value_type>;
 | |
| 
 | |
|   static_assert(sizeof(Holder) == sizeof(value_type), "");
 | |
|   static_assert(alignof(Holder) == alignof(value_type), "");
 | |
| 
 | |
|   static pointer AsValue(pointer ptr) { return ptr; }
 | |
|   static pointer AsValue(ArrayHolder<value_type>* ptr) {
 | |
|     return std::addressof(ptr->array);
 | |
|   }
 | |
| 
 | |
|   // InlineSpace
 | |
|   //
 | |
|   // Allocate some space, not an array of elements of type T, so that we can
 | |
|   // skip calling the T constructors and destructors for space we never use.
 | |
|   // How many elements should we store inline?
 | |
|   //   a. If not specified, use a default of kInlineBytesDefault bytes (This is
 | |
|   //   currently 256 bytes, which seems small enough to not cause stack overflow
 | |
|   //   or unnecessary stack pollution, while still allowing stack allocation for
 | |
|   //   reasonably long character arrays).
 | |
|   //   b. Never use 0 length arrays (not ISO C++)
 | |
|   //
 | |
|   template <size_type N, typename = void>
 | |
|   class InlineSpace {
 | |
|    public:
 | |
|     Holder* data() { return reinterpret_cast<Holder*>(space_.data()); }
 | |
|     void AnnotateConstruct(size_t n) const { Annotate(n, true); }
 | |
|     void AnnotateDestruct(size_t n) const { Annotate(n, false); }
 | |
| 
 | |
|    private:
 | |
| #ifndef ADDRESS_SANITIZER
 | |
|     void Annotate(size_t, bool) const { }
 | |
| #else
 | |
|     void Annotate(size_t n, bool creating) const {
 | |
|       if (!n) return;
 | |
|       const void* bot = &left_redzone_;
 | |
|       const void* beg = space_.data();
 | |
|       const void* end = space_.data() + n;
 | |
|       const void* top = &right_redzone_ + 1;
 | |
|       // args: (beg, end, old_mid, new_mid)
 | |
|       if (creating) {
 | |
|         ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end);
 | |
|         ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot);
 | |
|       } else {
 | |
|         ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top);
 | |
|         ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg);
 | |
|       }
 | |
|     }
 | |
| #endif  // ADDRESS_SANITIZER
 | |
| 
 | |
|     using Buffer =
 | |
|         typename std::aligned_storage<sizeof(Holder), alignof(Holder)>::type;
 | |
| 
 | |
|     ADDRESS_SANITIZER_REDZONE(left_redzone_);
 | |
|     std::array<Buffer, N> space_;
 | |
|     ADDRESS_SANITIZER_REDZONE(right_redzone_);
 | |
|   };
 | |
| 
 | |
|   // specialization when N = 0.
 | |
|   template <typename U>
 | |
|   class InlineSpace<0, U> {
 | |
|    public:
 | |
|     Holder* data() { return nullptr; }
 | |
|     void AnnotateConstruct(size_t) const {}
 | |
|     void AnnotateDestruct(size_t) const {}
 | |
|   };
 | |
| 
 | |
|   // Rep
 | |
|   //
 | |
|   // An instance of Rep manages the inline and out-of-line memory for FixedArray
 | |
|   //
 | |
|   class Rep : public InlineSpace<inline_elements> {
 | |
|    public:
 | |
|     explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) {}
 | |
| 
 | |
|     ~Rep() noexcept {
 | |
|       if (IsAllocated(size())) {
 | |
|         std::allocator<Holder>().deallocate(p_, n_);
 | |
|       } else {
 | |
|         this->AnnotateDestruct(size());
 | |
|       }
 | |
|     }
 | |
|     Holder* begin() const { return p_; }
 | |
|     Holder* end() const { return p_ + n_; }
 | |
|     size_type size() const { return n_; }
 | |
| 
 | |
|    private:
 | |
|     Holder* MakeHolder(size_type n) {
 | |
|       if (IsAllocated(n)) {
 | |
|         return std::allocator<Holder>().allocate(n);
 | |
|       } else {
 | |
|         this->AnnotateConstruct(n);
 | |
|         return this->data();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool IsAllocated(size_type n) const { return n > inline_elements; }
 | |
| 
 | |
|     const size_type n_;
 | |
|     Holder* const p_;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // Data members
 | |
|   Rep rep_;
 | |
| };
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| constexpr size_t FixedArray<T, N>::inline_elements;
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| constexpr size_t FixedArray<T, N>::kInlineBytesDefault;
 | |
| 
 | |
| }  // namespace absl
 | |
| #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
 |