git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			250 lines
		
	
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/discrete_distribution.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/random/internal/chi_square.h"
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| #include "absl/random/internal/pcg_engine.h"
 | |
| #include "absl/random/internal/sequence_urbg.h"
 | |
| #include "absl/random/random.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| #include "absl/strings/strip.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| template <typename IntType>
 | |
| class DiscreteDistributionTypeTest : public ::testing::Test {};
 | |
| 
 | |
| using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
 | |
|                                   uint32_t, int64_t, uint64_t>;
 | |
| TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);
 | |
| 
 | |
| TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
 | |
|   using param_type =
 | |
|       typename absl::discrete_distribution<TypeParam>::param_type;
 | |
| 
 | |
|   absl::discrete_distribution<TypeParam> empty;
 | |
|   EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));
 | |
| 
 | |
|   absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});
 | |
| 
 | |
|   // Validate that the probabilities sum to 1.0. We picked values which
 | |
|   // can be represented exactly to avoid floating-point roundoff error.
 | |
|   double s = 0;
 | |
|   for (const auto& x : before.probabilities()) {
 | |
|     s += x;
 | |
|   }
 | |
|   EXPECT_EQ(s, 1.0);
 | |
|   EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));
 | |
| 
 | |
|   // Validate the same data via an initializer list.
 | |
|   {
 | |
|     std::vector<double> data({1.0, 2.0, 1.0});
 | |
| 
 | |
|     absl::discrete_distribution<TypeParam> via_param{
 | |
|         param_type(std::begin(data), std::end(data))};
 | |
| 
 | |
|     EXPECT_EQ(via_param, before);
 | |
|   }
 | |
| 
 | |
|   std::stringstream ss;
 | |
|   ss << before;
 | |
|   absl::discrete_distribution<TypeParam> after;
 | |
| 
 | |
|   EXPECT_NE(before, after);
 | |
| 
 | |
|   ss >> after;
 | |
| 
 | |
|   EXPECT_EQ(before, after);
 | |
| }
 | |
| 
 | |
| TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
 | |
|   auto fn = [](double x) { return x; };
 | |
|   {
 | |
|     absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
 | |
|     EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
 | |
|     // => fn(1.0 + 0 * 4 + 2) => 3
 | |
|     // => fn(1.0 + 1 * 4 + 2) => 7
 | |
|     EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
 | |
|   using testing::Pair;
 | |
| 
 | |
|   {
 | |
|     std::vector<double> p({1.0, 2.0, 3.0});
 | |
|     std::vector<std::pair<double, size_t>> q =
 | |
|         absl::random_internal::InitDiscreteDistribution(&p);
 | |
| 
 | |
|     EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));
 | |
| 
 | |
|     // Each bucket is p=1/3, so bucket 0 will send half it's traffic
 | |
|     // to bucket 2, while the rest will retain all of their traffic.
 | |
|     EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2),  //
 | |
|                                         Pair(1.0, 1),  //
 | |
|                                         Pair(1.0, 2)));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});
 | |
| 
 | |
|     std::vector<std::pair<double, size_t>> q =
 | |
|         absl::random_internal::InitDiscreteDistribution(&p);
 | |
| 
 | |
|     EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
 | |
|                                         2 / 13.0));
 | |
| 
 | |
|     // A more complex bucketing solution: Each bucket has p=0.2
 | |
|     // So buckets 0, 1, 4 will send their alternate traffic elsewhere, which
 | |
|     // happens to be bucket 3.
 | |
|     // However, summing up that alternate traffic gives bucket 3 too much
 | |
|     // traffic, so it will send some traffic to bucket 2.
 | |
|     constexpr double b0 = 1.0 / 13.0 / 0.2;
 | |
|     constexpr double b1 = 2.0 / 13.0 / 0.2;
 | |
|     constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
 | |
| 
 | |
|     EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3),   //
 | |
|                                         Pair(b1, 3),   //
 | |
|                                         Pair(1.0, 2),  //
 | |
|                                         Pair(b3, 2),   //
 | |
|                                         Pair(b1, 3)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(DiscreteDistributionTest, ChiSquaredTest50) {
 | |
|   using absl::random_internal::kChiSquared;
 | |
| 
 | |
|   constexpr size_t kTrials = 10000;
 | |
|   constexpr int kBuckets = 50;  // inclusive, so actally +1
 | |
| 
 | |
|   // 1-in-100000 threshold, but remember, there are about 8 tests
 | |
|   // in this file. And the test could fail for other reasons.
 | |
|   // Empirically validated with --runs_per_test=10000.
 | |
|   const int kThreshold =
 | |
|       absl::random_internal::ChiSquareValue(kBuckets, 0.99999);
 | |
| 
 | |
|   std::vector<double> weights(kBuckets, 0);
 | |
|   std::iota(std::begin(weights), std::end(weights), 1);
 | |
|   absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));
 | |
| 
 | |
|   // We use a fixed bit generator for distribution accuracy tests.  This allows
 | |
|   // these tests to be deterministic, while still testing the qualify of the
 | |
|   // implementation.
 | |
|   absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
 | |
| 
 | |
|   std::vector<int32_t> counts(kBuckets, 0);
 | |
|   for (size_t i = 0; i < kTrials; i++) {
 | |
|     auto x = dist(rng);
 | |
|     counts[x]++;
 | |
|   }
 | |
| 
 | |
|   // Scale weights.
 | |
|   double sum = 0;
 | |
|   for (double x : weights) {
 | |
|     sum += x;
 | |
|   }
 | |
|   for (double& x : weights) {
 | |
|     x = kTrials * (x / sum);
 | |
|   }
 | |
| 
 | |
|   double chi_square =
 | |
|       absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
 | |
|                                        std::begin(weights), std::end(weights));
 | |
| 
 | |
|   if (chi_square > kThreshold) {
 | |
|     double p_value =
 | |
|         absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
 | |
| 
 | |
|     // Chi-squared test failed. Output does not appear to be uniform.
 | |
|     std::string msg;
 | |
|     for (size_t i = 0; i < counts.size(); i++) {
 | |
|       absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
 | |
|     }
 | |
|     absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
 | |
|     absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
 | |
|                     kThreshold);
 | |
|     ABSL_RAW_LOG(INFO, "%s", msg.c_str());
 | |
|     FAIL() << msg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(DiscreteDistributionTest, StabilityTest) {
 | |
|   // absl::discrete_distribution stabilitiy relies on
 | |
|   // absl::uniform_int_distribution and absl::bernoulli_distribution.
 | |
|   absl::random_internal::sequence_urbg urbg(
 | |
|       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 | |
| 
 | |
|   std::vector<int> output(6);
 | |
| 
 | |
|   {
 | |
|     absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
 | |
|     EXPECT_EQ(0, dist.min());
 | |
|     EXPECT_EQ(4, dist.max());
 | |
|     for (auto& v : output) {
 | |
|       v = dist(urbg);
 | |
|     }
 | |
|     EXPECT_EQ(12, urbg.invocations());
 | |
|   }
 | |
| 
 | |
|   // With 12 calls to urbg, each call into discrete_distribution consumes
 | |
|   // precisely 2 values: one for the uniform call, and a second for the
 | |
|   // bernoulli.
 | |
|   //
 | |
|   // Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can
 | |
|   //
 | |
|   // uniform:      443210143131
 | |
|   // bernoulli: b0 000011100101
 | |
|   // bernoulli: b1 001111101101
 | |
|   // bernoulli: b2 111111111111
 | |
|   // bernoulli: b3 001111101111
 | |
|   // bernoulli: b4 001111101101
 | |
|   // ...
 | |
|   EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));
 | |
| 
 | |
|   {
 | |
|     urbg.reset();
 | |
|     absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
 | |
|     EXPECT_EQ(0, dist.min());
 | |
|     EXPECT_EQ(4, dist.max());
 | |
|     for (auto& v : output) {
 | |
|       v = dist(urbg);
 | |
|     }
 | |
|     EXPECT_EQ(12, urbg.invocations());
 | |
|   }
 | |
|   EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
 | |
| }
 | |
| 
 | |
| }  // namespace
 |