git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			423 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			423 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
 | |
| #define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdint>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| 
 | |
| #include "absl/base/config.h"
 | |
| #include "absl/strings/ascii.h"
 | |
| #include "absl/strings/internal/charconv_parse.h"
 | |
| #include "absl/strings/string_view.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace strings_internal {
 | |
| 
 | |
| // The largest power that 5 that can be raised to, and still fit in a uint32_t.
 | |
| constexpr int kMaxSmallPowerOfFive = 13;
 | |
| // The largest power that 10 that can be raised to, and still fit in a uint32_t.
 | |
| constexpr int kMaxSmallPowerOfTen = 9;
 | |
| 
 | |
| ABSL_DLL extern const uint32_t
 | |
|     kFiveToNth[kMaxSmallPowerOfFive + 1];
 | |
| ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];
 | |
| 
 | |
| // Large, fixed-width unsigned integer.
 | |
| //
 | |
| // Exact rounding for decimal-to-binary floating point conversion requires very
 | |
| // large integer math, but a design goal of absl::from_chars is to avoid
 | |
| // allocating memory.  The integer precision needed for decimal-to-binary
 | |
| // conversions is large but bounded, so a huge fixed-width integer class
 | |
| // suffices.
 | |
| //
 | |
| // This is an intentionally limited big integer class.  Only needed operations
 | |
| // are implemented.  All storage lives in an array data member, and all
 | |
| // arithmetic is done in-place, to avoid requiring separate storage for operand
 | |
| // and result.
 | |
| //
 | |
| // This is an internal class.  Some methods live in the .cc file, and are
 | |
| // instantiated only for the values of max_words we need.
 | |
| template <int max_words>
 | |
| class BigUnsigned {
 | |
|  public:
 | |
|   static_assert(max_words == 4 || max_words == 84,
 | |
|                 "unsupported max_words value");
 | |
| 
 | |
|   BigUnsigned() : size_(0), words_{} {}
 | |
|   explicit constexpr BigUnsigned(uint64_t v)
 | |
|       : size_((v >> 32) ? 2 : v ? 1 : 0),
 | |
|         words_{static_cast<uint32_t>(v & 0xffffffffu),
 | |
|                static_cast<uint32_t>(v >> 32)} {}
 | |
| 
 | |
|   // Constructs a BigUnsigned from the given string_view containing a decimal
 | |
|   // value.  If the input string is not a decimal integer, constructs a 0
 | |
|   // instead.
 | |
|   explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} {
 | |
|     // Check for valid input, returning a 0 otherwise.  This is reasonable
 | |
|     // behavior only because this constructor is for unit tests.
 | |
|     if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
 | |
|         sv.empty()) {
 | |
|       return;
 | |
|     }
 | |
|     int exponent_adjust =
 | |
|         ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
 | |
|     if (exponent_adjust > 0) {
 | |
|       MultiplyByTenToTheNth(exponent_adjust);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loads the mantissa value of a previously-parsed float.
 | |
|   //
 | |
|   // Returns the associated decimal exponent.  The value of the parsed float is
 | |
|   // exactly *this * 10**exponent.
 | |
|   int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);
 | |
| 
 | |
|   // Returns the number of decimal digits of precision this type provides.  All
 | |
|   // numbers with this many decimal digits or fewer are representable by this
 | |
|   // type.
 | |
|   //
 | |
|   // Analagous to std::numeric_limits<BigUnsigned>::digits10.
 | |
|   static constexpr int Digits10() {
 | |
|     // 9975007/1035508 is very slightly less than log10(2**32).
 | |
|     return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
 | |
|   }
 | |
| 
 | |
|   // Shifts left by the given number of bits.
 | |
|   void ShiftLeft(int count) {
 | |
|     if (count > 0) {
 | |
|       const int word_shift = count / 32;
 | |
|       if (word_shift >= max_words) {
 | |
|         SetToZero();
 | |
|         return;
 | |
|       }
 | |
|       size_ = (std::min)(size_ + word_shift, max_words);
 | |
|       count %= 32;
 | |
|       if (count == 0) {
 | |
|         std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
 | |
|       } else {
 | |
|         for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) {
 | |
|           words_[i] = (words_[i - word_shift] << count) |
 | |
|                       (words_[i - word_shift - 1] >> (32 - count));
 | |
|         }
 | |
|         words_[word_shift] = words_[0] << count;
 | |
|         // Grow size_ if necessary.
 | |
|         if (size_ < max_words && words_[size_]) {
 | |
|           ++size_;
 | |
|         }
 | |
|       }
 | |
|       std::fill(words_, words_ + word_shift, 0u);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Multiplies by v in-place.
 | |
|   void MultiplyBy(uint32_t v) {
 | |
|     if (size_ == 0 || v == 1) {
 | |
|       return;
 | |
|     }
 | |
|     if (v == 0) {
 | |
|       SetToZero();
 | |
|       return;
 | |
|     }
 | |
|     const uint64_t factor = v;
 | |
|     uint64_t window = 0;
 | |
|     for (int i = 0; i < size_; ++i) {
 | |
|       window += factor * words_[i];
 | |
|       words_[i] = window & 0xffffffff;
 | |
|       window >>= 32;
 | |
|     }
 | |
|     // If carry bits remain and there's space for them, grow size_.
 | |
|     if (window && size_ < max_words) {
 | |
|       words_[size_] = window & 0xffffffff;
 | |
|       ++size_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void MultiplyBy(uint64_t v) {
 | |
|     uint32_t words[2];
 | |
|     words[0] = static_cast<uint32_t>(v);
 | |
|     words[1] = static_cast<uint32_t>(v >> 32);
 | |
|     if (words[1] == 0) {
 | |
|       MultiplyBy(words[0]);
 | |
|     } else {
 | |
|       MultiplyBy(2, words);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Multiplies in place by 5 to the power of n.  n must be non-negative.
 | |
|   void MultiplyByFiveToTheNth(int n) {
 | |
|     while (n >= kMaxSmallPowerOfFive) {
 | |
|       MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
 | |
|       n -= kMaxSmallPowerOfFive;
 | |
|     }
 | |
|     if (n > 0) {
 | |
|       MultiplyBy(kFiveToNth[n]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Multiplies in place by 10 to the power of n.  n must be non-negative.
 | |
|   void MultiplyByTenToTheNth(int n) {
 | |
|     if (n > kMaxSmallPowerOfTen) {
 | |
|       // For large n, raise to a power of 5, then shift left by the same amount.
 | |
|       // (10**n == 5**n * 2**n.)  This requires fewer multiplications overall.
 | |
|       MultiplyByFiveToTheNth(n);
 | |
|       ShiftLeft(n);
 | |
|     } else if (n > 0) {
 | |
|       // We can do this more quickly for very small N by using a single
 | |
|       // multiplication.
 | |
|       MultiplyBy(kTenToNth[n]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns the value of 5**n, for non-negative n.  This implementation uses
 | |
|   // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling
 | |
|   // MultiplyByFiveToTheNth().
 | |
|   static BigUnsigned FiveToTheNth(int n);
 | |
| 
 | |
|   // Multiplies by another BigUnsigned, in-place.
 | |
|   template <int M>
 | |
|   void MultiplyBy(const BigUnsigned<M>& other) {
 | |
|     MultiplyBy(other.size(), other.words());
 | |
|   }
 | |
| 
 | |
|   void SetToZero() {
 | |
|     std::fill(words_, words_ + size_, 0u);
 | |
|     size_ = 0;
 | |
|   }
 | |
| 
 | |
|   // Returns the value of the nth word of this BigUnsigned.  This is
 | |
|   // range-checked, and returns 0 on out-of-bounds accesses.
 | |
|   uint32_t GetWord(int index) const {
 | |
|     if (index < 0 || index >= size_) {
 | |
|       return 0;
 | |
|     }
 | |
|     return words_[index];
 | |
|   }
 | |
| 
 | |
|   // Returns this integer as a decimal string.  This is not used in the decimal-
 | |
|   // to-binary conversion; it is intended to aid in testing.
 | |
|   std::string ToString() const;
 | |
| 
 | |
|   int size() const { return size_; }
 | |
|   const uint32_t* words() const { return words_; }
 | |
| 
 | |
|  private:
 | |
|   // Reads the number between [begin, end), possibly containing a decimal point,
 | |
|   // into this BigUnsigned.
 | |
|   //
 | |
|   // Callers are required to ensure [begin, end) contains a valid number, with
 | |
|   // one or more decimal digits and at most one decimal point.  This routine
 | |
|   // will behave unpredictably if these preconditions are not met.
 | |
|   //
 | |
|   // Only the first `significant_digits` digits are read.  Digits beyond this
 | |
|   // limit are "sticky": If the final significant digit is 0 or 5, and if any
 | |
|   // dropped digit is nonzero, then that final significant digit is adjusted up
 | |
|   // to 1 or 6.  This adjustment allows for precise rounding.
 | |
|   //
 | |
|   // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to
 | |
|   // account for the decimal point and for dropped significant digits.  After
 | |
|   // this function returns,
 | |
|   //   actual_value_of_parsed_string ~= *this * 10**exponent_adjustment.
 | |
|   int ReadDigits(const char* begin, const char* end, int significant_digits);
 | |
| 
 | |
|   // Performs a step of big integer multiplication.  This computes the full
 | |
|   // (64-bit-wide) values that should be added at the given index (step), and
 | |
|   // adds to that location in-place.
 | |
|   //
 | |
|   // Because our math all occurs in place, we must multiply starting from the
 | |
|   // highest word working downward.  (This is a bit more expensive due to the
 | |
|   // extra carries involved.)
 | |
|   //
 | |
|   // This must be called in steps, for each word to be calculated, starting from
 | |
|   // the high end and working down to 0.  The first value of `step` should be
 | |
|   //   `std::min(original_size + other.size_ - 2, max_words - 1)`.
 | |
|   // The reason for this expression is that multiplying the i'th word from one
 | |
|   // multiplicand and the j'th word of another multiplicand creates a
 | |
|   // two-word-wide value to be stored at the (i+j)'th element.  The highest
 | |
|   // word indices we will access are `original_size - 1` from this object, and
 | |
|   // `other.size_ - 1` from our operand.  Therefore,
 | |
|   // `original_size + other.size_ - 2` is the first step we should calculate,
 | |
|   // but limited on an upper bound by max_words.
 | |
| 
 | |
|   // Working from high-to-low ensures that we do not overwrite the portions of
 | |
|   // the initial value of *this which are still needed for later steps.
 | |
|   //
 | |
|   // Once called with step == 0, *this contains the result of the
 | |
|   // multiplication.
 | |
|   //
 | |
|   // `original_size` is the size_ of *this before the first call to
 | |
|   // MultiplyStep().  `other_words` and `other_size` are the contents of our
 | |
|   // operand.  `step` is the step to perform, as described above.
 | |
|   void MultiplyStep(int original_size, const uint32_t* other_words,
 | |
|                     int other_size, int step);
 | |
| 
 | |
|   void MultiplyBy(int other_size, const uint32_t* other_words) {
 | |
|     const int original_size = size_;
 | |
|     const int first_step =
 | |
|         (std::min)(original_size + other_size - 2, max_words - 1);
 | |
|     for (int step = first_step; step >= 0; --step) {
 | |
|       MultiplyStep(original_size, other_words, other_size, step);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Adds a 32-bit value to the index'th word, with carry.
 | |
|   void AddWithCarry(int index, uint32_t value) {
 | |
|     if (value) {
 | |
|       while (index < max_words && value > 0) {
 | |
|         words_[index] += value;
 | |
|         // carry if we overflowed in this word:
 | |
|         if (value > words_[index]) {
 | |
|           value = 1;
 | |
|           ++index;
 | |
|         } else {
 | |
|           value = 0;
 | |
|         }
 | |
|       }
 | |
|       size_ = (std::min)(max_words, (std::max)(index + 1, size_));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void AddWithCarry(int index, uint64_t value) {
 | |
|     if (value && index < max_words) {
 | |
|       uint32_t high = value >> 32;
 | |
|       uint32_t low = value & 0xffffffff;
 | |
|       words_[index] += low;
 | |
|       if (words_[index] < low) {
 | |
|         ++high;
 | |
|         if (high == 0) {
 | |
|           // Carry from the low word caused our high word to overflow.
 | |
|           // Short circuit here to do the right thing.
 | |
|           AddWithCarry(index + 2, static_cast<uint32_t>(1));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       if (high > 0) {
 | |
|         AddWithCarry(index + 1, high);
 | |
|       } else {
 | |
|         // Normally 32-bit AddWithCarry() sets size_, but since we don't call
 | |
|         // it when `high` is 0, do it ourselves here.
 | |
|         size_ = (std::min)(max_words, (std::max)(index + 1, size_));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Divide this in place by a constant divisor.  Returns the remainder of the
 | |
|   // division.
 | |
|   template <uint32_t divisor>
 | |
|   uint32_t DivMod() {
 | |
|     uint64_t accumulator = 0;
 | |
|     for (int i = size_ - 1; i >= 0; --i) {
 | |
|       accumulator <<= 32;
 | |
|       accumulator += words_[i];
 | |
|       // accumulator / divisor will never overflow an int32_t in this loop
 | |
|       words_[i] = static_cast<uint32_t>(accumulator / divisor);
 | |
|       accumulator = accumulator % divisor;
 | |
|     }
 | |
|     while (size_ > 0 && words_[size_ - 1] == 0) {
 | |
|       --size_;
 | |
|     }
 | |
|     return static_cast<uint32_t>(accumulator);
 | |
|   }
 | |
| 
 | |
|   // The number of elements in words_ that may carry significant values.
 | |
|   // All elements beyond this point are 0.
 | |
|   //
 | |
|   // When size_ is 0, this BigUnsigned stores the value 0.
 | |
|   // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is
 | |
|   // nonzero.  This can occur due to overflow truncation.
 | |
|   // In particular, x.size_ != y.size_ does *not* imply x != y.
 | |
|   int size_;
 | |
|   uint32_t words_[max_words];
 | |
| };
 | |
| 
 | |
| // Compares two big integer instances.
 | |
| //
 | |
| // Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs.
 | |
| template <int N, int M>
 | |
| int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   int limit = (std::max)(lhs.size(), rhs.size());
 | |
|   for (int i = limit - 1; i >= 0; --i) {
 | |
|     const uint32_t lhs_word = lhs.GetWord(i);
 | |
|     const uint32_t rhs_word = rhs.GetWord(i);
 | |
|     if (lhs_word < rhs_word) {
 | |
|       return -1;
 | |
|     } else if (lhs_word > rhs_word) {
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| template <int N, int M>
 | |
| bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   int limit = (std::max)(lhs.size(), rhs.size());
 | |
|   for (int i = 0; i < limit; ++i) {
 | |
|     if (lhs.GetWord(i) != rhs.GetWord(i)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <int N, int M>
 | |
| bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   return !(lhs == rhs);
 | |
| }
 | |
| 
 | |
| template <int N, int M>
 | |
| bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   return Compare(lhs, rhs) == -1;
 | |
| }
 | |
| 
 | |
| template <int N, int M>
 | |
| bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   return rhs < lhs;
 | |
| }
 | |
| template <int N, int M>
 | |
| bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   return !(rhs < lhs);
 | |
| }
 | |
| template <int N, int M>
 | |
| bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
 | |
|   return !(lhs < rhs);
 | |
| }
 | |
| 
 | |
| // Output operator for BigUnsigned, for testing purposes only.
 | |
| template <int N>
 | |
| std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
 | |
|   return os << num.ToString();
 | |
| }
 | |
| 
 | |
| // Explicit instantiation declarations for the sizes of BigUnsigned that we
 | |
| // are using.
 | |
| //
 | |
| // For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is
 | |
| // still bigger than an int128, and 84 is a large value we will want to use
 | |
| // in the from_chars implementation.
 | |
| //
 | |
| // Comments justifying the use of 84 belong in the from_chars implementation,
 | |
| // and will be added in a follow-up CL.
 | |
| extern template class BigUnsigned<4>;
 | |
| extern template class BigUnsigned<84>;
 | |
| 
 | |
| }  // namespace strings_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
 |