Previously, the tokens that could poison a scope (`true`, `false`,
`null`) had individual fields in the scope to track whether or not
they were poisoned.
This commit sets up new machinery that instead tracks scope poisoning
dynamically using a HashMap, and which makes it possible to introduce
additional tokens to the top-level ("global") scope that are directly
resolved by the compiler by passing a map of runtime values to be
used.
With this solution, the compiler now contains all machinery required
for wiring up builtins resolution.
The set of builtins to be exposed at runtime must, however, be
constructed *outside* of the compiler and passed in. Everything is
prepared for this, but it is not yet wired up (so the only existing
builtins are the ones we already had before).
Note that this technically opens up an optimisation potential when
compiling selection operations, where the attribute set being selected
from is `builtins`. The compiler could directly resolve the builtins
and place the right values on the stack.
Change-Id: Ia7dad3c2a98703e7ea0c6ace1a722d57cc70a65c
Reviewed-on: https://cl.tvl.fyi/c/depot/+/6253
Tested-by: BuildkiteCI
Reviewed-by: sterni <sternenseemann@systemli.org>
1065 lines
38 KiB
Rust
1065 lines
38 KiB
Rust
//! This module implements a compiler for compiling the rnix AST
|
|
//! representation to Tvix bytecode.
|
|
//!
|
|
//! A note on `unwrap()`: This module contains a lot of calls to
|
|
//! `unwrap()` or `expect(...)` on data structures returned by `rnix`.
|
|
//! The reason for this is that rnix uses the same data structures to
|
|
//! represent broken and correct ASTs, so all typed AST variants have
|
|
//! the ability to represent an incorrect node.
|
|
//!
|
|
//! However, at the time that the AST is passed to the compiler we
|
|
//! have verified that `rnix` considers the code to be correct, so all
|
|
//! variants are fulfilled. In cases where the invariant is guaranteed
|
|
//! by the code in this module, `debug_assert!` has been used to catch
|
|
//! mistakes early during development.
|
|
|
|
use path_clean::PathClean;
|
|
use rnix::ast::{self, AstToken, HasEntry};
|
|
use rowan::ast::AstNode;
|
|
use std::collections::{hash_map, HashMap};
|
|
use std::path::{Path, PathBuf};
|
|
use std::rc::Rc;
|
|
|
|
use crate::chunk::Chunk;
|
|
use crate::errors::{Error, ErrorKind, EvalResult};
|
|
use crate::opcode::{CodeIdx, OpCode};
|
|
use crate::value::{Lambda, Value};
|
|
use crate::warnings::{EvalWarning, WarningKind};
|
|
|
|
/// Represents the result of compiling a piece of Nix code. If
|
|
/// compilation was successful, the resulting bytecode can be passed
|
|
/// to the VM.
|
|
pub struct CompilationResult {
|
|
pub lambda: Lambda,
|
|
pub warnings: Vec<EvalWarning>,
|
|
pub errors: Vec<Error>,
|
|
}
|
|
|
|
/// Represents a single local already known to the compiler.
|
|
struct Local {
|
|
// Definition name, which can be different kinds of tokens (plain
|
|
// string or identifier). Nix does not allow dynamic names inside
|
|
// of `let`-expressions.
|
|
name: String,
|
|
|
|
// Syntax node at which this local was declared.
|
|
node: Option<rnix::SyntaxNode>,
|
|
|
|
// Scope depth of this local.
|
|
depth: usize,
|
|
|
|
// Phantom locals are not actually accessible by users (e.g.
|
|
// intermediate values used for `with`).
|
|
phantom: bool,
|
|
|
|
// Is this local known to have been used at all?
|
|
used: bool,
|
|
}
|
|
|
|
/// Represents a stack offset containing keys which are currently
|
|
/// in-scope through a with expression.
|
|
#[derive(Debug)]
|
|
struct With {
|
|
depth: usize,
|
|
}
|
|
|
|
/// Represents a scope known during compilation, which can be resolved
|
|
/// directly to stack indices.
|
|
///
|
|
/// TODO(tazjin): `with`-stack
|
|
/// TODO(tazjin): flag "specials" (e.g. note depth if builtins are
|
|
/// overridden)
|
|
#[derive(Default)]
|
|
struct Scope {
|
|
locals: Vec<Local>,
|
|
|
|
// How many scopes "deep" are these locals?
|
|
scope_depth: usize,
|
|
|
|
// Stack indices of attribute sets currently in scope through
|
|
// `with`.
|
|
with_stack: Vec<With>,
|
|
|
|
// Users are allowed to override globally defined symbols like
|
|
// `true`, `false` or `null` in scopes. We call this "scope
|
|
// poisoning", as it requires runtime resolution of those tokens.
|
|
//
|
|
// To support this efficiently, the depth at which a poisoning
|
|
// occured is tracked here.
|
|
poisoned_tokens: HashMap<&'static str, usize>,
|
|
}
|
|
|
|
impl Scope {
|
|
/// Mark a globally defined token as poisoned.
|
|
fn poison(&mut self, name: &'static str, depth: usize) {
|
|
match self.poisoned_tokens.entry(name) {
|
|
hash_map::Entry::Occupied(_) => {
|
|
/* do nothing, as the token is already poisoned at a
|
|
* lower scope depth */
|
|
}
|
|
hash_map::Entry::Vacant(entry) => {
|
|
entry.insert(depth);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check whether a given token is poisoned.
|
|
fn is_poisoned(&self, name: &str) -> bool {
|
|
self.poisoned_tokens.contains_key(name)
|
|
}
|
|
|
|
/// "Unpoison" tokens that were poisoned at a given depth. Used
|
|
/// when scopes are closed.
|
|
fn unpoison(&mut self, depth: usize) {
|
|
self.poisoned_tokens
|
|
.retain(|_, poisoned_at| *poisoned_at != depth);
|
|
}
|
|
}
|
|
|
|
/// Represents the lambda currently being compiled.
|
|
struct LambdaCtx {
|
|
lambda: Lambda,
|
|
scope: Scope,
|
|
}
|
|
|
|
impl LambdaCtx {
|
|
fn new() -> Self {
|
|
LambdaCtx {
|
|
lambda: Lambda::new_anonymous(),
|
|
scope: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
type GlobalsMap = HashMap<&'static str, Rc<dyn Fn(&mut Compiler)>>;
|
|
|
|
struct Compiler {
|
|
contexts: Vec<LambdaCtx>,
|
|
warnings: Vec<EvalWarning>,
|
|
errors: Vec<Error>,
|
|
root_dir: PathBuf,
|
|
|
|
/// Carries all known global tokens; the full set of which is
|
|
/// created when the compiler is invoked.
|
|
///
|
|
/// Each global has an associated token, which when encountered as
|
|
/// an identifier is resolved against the scope poisoning logic,
|
|
/// and a function that should emit code for the token.
|
|
globals: GlobalsMap,
|
|
}
|
|
|
|
// Helper functions for emitting code and metadata to the internal
|
|
// structures of the compiler.
|
|
impl Compiler {
|
|
fn context(&self) -> &LambdaCtx {
|
|
&self.contexts[self.contexts.len() - 1]
|
|
}
|
|
|
|
fn context_mut(&mut self) -> &mut LambdaCtx {
|
|
let idx = self.contexts.len() - 1;
|
|
&mut self.contexts[idx]
|
|
}
|
|
|
|
fn chunk(&mut self) -> &mut Chunk {
|
|
Rc::<Chunk>::get_mut(self.context_mut().lambda.chunk())
|
|
.expect("compiler flaw: long-lived chunk reference")
|
|
}
|
|
|
|
fn scope(&self) -> &Scope {
|
|
&self.context().scope
|
|
}
|
|
|
|
fn scope_mut(&mut self) -> &mut Scope {
|
|
&mut self.context_mut().scope
|
|
}
|
|
|
|
fn emit_constant(&mut self, value: Value) {
|
|
let idx = self.chunk().push_constant(value);
|
|
self.chunk().push_op(OpCode::OpConstant(idx));
|
|
}
|
|
}
|
|
|
|
// Actual code-emitting AST traversal methods.
|
|
impl Compiler {
|
|
fn compile(&mut self, expr: ast::Expr) {
|
|
match expr {
|
|
ast::Expr::Literal(literal) => self.compile_literal(literal),
|
|
ast::Expr::Path(path) => self.compile_path(path),
|
|
ast::Expr::Str(s) => self.compile_str(s),
|
|
ast::Expr::UnaryOp(op) => self.compile_unary_op(op),
|
|
ast::Expr::BinOp(op) => self.compile_binop(op),
|
|
ast::Expr::HasAttr(has_attr) => self.compile_has_attr(has_attr),
|
|
ast::Expr::List(list) => self.compile_list(list),
|
|
ast::Expr::AttrSet(attrs) => self.compile_attr_set(attrs),
|
|
ast::Expr::Select(select) => self.compile_select(select),
|
|
ast::Expr::Assert(assert) => self.compile_assert(assert),
|
|
ast::Expr::IfElse(if_else) => self.compile_if_else(if_else),
|
|
ast::Expr::LetIn(let_in) => self.compile_let_in(let_in),
|
|
ast::Expr::Ident(ident) => self.compile_ident(ident),
|
|
ast::Expr::With(with) => self.compile_with(with),
|
|
ast::Expr::Lambda(lambda) => self.compile_lambda(lambda),
|
|
ast::Expr::Apply(apply) => self.compile_apply(apply),
|
|
|
|
// Parenthesized expressions are simply unwrapped, leaving
|
|
// their value on the stack.
|
|
ast::Expr::Paren(paren) => self.compile(paren.expr().unwrap()),
|
|
|
|
ast::Expr::LegacyLet(_) => todo!("legacy let"),
|
|
|
|
ast::Expr::Root(_) => unreachable!("there cannot be more than one root"),
|
|
ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"),
|
|
}
|
|
}
|
|
|
|
fn compile_literal(&mut self, node: ast::Literal) {
|
|
match node.kind() {
|
|
ast::LiteralKind::Float(f) => {
|
|
self.emit_constant(Value::Float(f.value().unwrap()));
|
|
}
|
|
|
|
ast::LiteralKind::Integer(i) => {
|
|
self.emit_constant(Value::Integer(i.value().unwrap()));
|
|
}
|
|
ast::LiteralKind::Uri(u) => {
|
|
self.emit_warning(node.syntax().clone(), WarningKind::DeprecatedLiteralURL);
|
|
self.emit_constant(Value::String(u.syntax().text().into()));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn compile_path(&mut self, node: ast::Path) {
|
|
// TODO(tazjin): placeholder implementation while waiting for
|
|
// https://github.com/nix-community/rnix-parser/pull/96
|
|
|
|
let raw_path = node.to_string();
|
|
let path = if raw_path.starts_with('/') {
|
|
Path::new(&raw_path).to_owned()
|
|
} else if raw_path.starts_with('~') {
|
|
let mut buf = match dirs::home_dir() {
|
|
Some(buf) => buf,
|
|
None => {
|
|
self.emit_error(
|
|
node.syntax().clone(),
|
|
ErrorKind::PathResolution("failed to determine home directory".into()),
|
|
);
|
|
return;
|
|
}
|
|
};
|
|
|
|
buf.push(&raw_path);
|
|
buf
|
|
} else if raw_path.starts_with('.') {
|
|
let mut buf = self.root_dir.clone();
|
|
buf.push(&raw_path);
|
|
buf
|
|
} else {
|
|
// TODO: decide what to do with findFile
|
|
todo!("other path types (e.g. <...> lookups) not yet implemented")
|
|
};
|
|
|
|
// TODO: Use https://github.com/rust-lang/rfcs/issues/2208
|
|
// once it is available
|
|
let value = Value::Path(path.clean());
|
|
self.emit_constant(value);
|
|
}
|
|
|
|
fn compile_str(&mut self, node: ast::Str) {
|
|
let mut count = 0;
|
|
|
|
// The string parts are produced in literal order, however
|
|
// they need to be reversed on the stack in order to
|
|
// efficiently create the real string in case of
|
|
// interpolation.
|
|
for part in node.normalized_parts().into_iter().rev() {
|
|
count += 1;
|
|
|
|
match part {
|
|
// Interpolated expressions are compiled as normal and
|
|
// dealt with by the VM before being assembled into
|
|
// the final string.
|
|
ast::InterpolPart::Interpolation(node) => self.compile(node.expr().unwrap()),
|
|
|
|
ast::InterpolPart::Literal(lit) => {
|
|
self.emit_constant(Value::String(lit.into()));
|
|
}
|
|
}
|
|
}
|
|
|
|
if count != 1 {
|
|
self.chunk().push_op(OpCode::OpInterpolate(count));
|
|
}
|
|
}
|
|
|
|
fn compile_unary_op(&mut self, op: ast::UnaryOp) {
|
|
self.compile(op.expr().unwrap());
|
|
|
|
let opcode = match op.operator().unwrap() {
|
|
ast::UnaryOpKind::Invert => OpCode::OpInvert,
|
|
ast::UnaryOpKind::Negate => OpCode::OpNegate,
|
|
};
|
|
|
|
self.chunk().push_op(opcode);
|
|
}
|
|
|
|
fn compile_binop(&mut self, op: ast::BinOp) {
|
|
use ast::BinOpKind;
|
|
|
|
// Short-circuiting and other strange operators, which are
|
|
// under the same node type as NODE_BIN_OP, but need to be
|
|
// handled separately (i.e. before compiling the expressions
|
|
// used for standard binary operators).
|
|
|
|
match op.operator().unwrap() {
|
|
BinOpKind::And => return self.compile_and(op),
|
|
BinOpKind::Or => return self.compile_or(op),
|
|
BinOpKind::Implication => return self.compile_implication(op),
|
|
_ => {}
|
|
};
|
|
|
|
// For all other operators, the two values need to be left on
|
|
// the stack in the correct order before pushing the
|
|
// instruction for the operation itself.
|
|
self.compile(op.lhs().unwrap());
|
|
self.compile(op.rhs().unwrap());
|
|
|
|
match op.operator().unwrap() {
|
|
BinOpKind::Add => self.chunk().push_op(OpCode::OpAdd),
|
|
BinOpKind::Sub => self.chunk().push_op(OpCode::OpSub),
|
|
BinOpKind::Mul => self.chunk().push_op(OpCode::OpMul),
|
|
BinOpKind::Div => self.chunk().push_op(OpCode::OpDiv),
|
|
BinOpKind::Update => self.chunk().push_op(OpCode::OpAttrsUpdate),
|
|
BinOpKind::Equal => self.chunk().push_op(OpCode::OpEqual),
|
|
BinOpKind::Less => self.chunk().push_op(OpCode::OpLess),
|
|
BinOpKind::LessOrEq => self.chunk().push_op(OpCode::OpLessOrEq),
|
|
BinOpKind::More => self.chunk().push_op(OpCode::OpMore),
|
|
BinOpKind::MoreOrEq => self.chunk().push_op(OpCode::OpMoreOrEq),
|
|
BinOpKind::Concat => self.chunk().push_op(OpCode::OpConcat),
|
|
|
|
BinOpKind::NotEqual => {
|
|
self.chunk().push_op(OpCode::OpEqual);
|
|
self.chunk().push_op(OpCode::OpInvert)
|
|
}
|
|
|
|
// Handled by separate branch above.
|
|
BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => {
|
|
unreachable!()
|
|
}
|
|
};
|
|
}
|
|
|
|
fn compile_and(&mut self, node: ast::BinOp) {
|
|
debug_assert!(
|
|
matches!(node.operator(), Some(ast::BinOpKind::And)),
|
|
"compile_and called with wrong operator kind: {:?}",
|
|
node.operator(),
|
|
);
|
|
|
|
// Leave left-hand side value on the stack.
|
|
self.compile(node.lhs().unwrap());
|
|
|
|
// If this value is false, jump over the right-hand side - the
|
|
// whole expression is false.
|
|
let end_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(0));
|
|
|
|
// Otherwise, remove the previous value and leave the
|
|
// right-hand side on the stack. Its result is now the value
|
|
// of the whole expression.
|
|
self.chunk().push_op(OpCode::OpPop);
|
|
self.compile(node.rhs().unwrap());
|
|
|
|
self.patch_jump(end_idx);
|
|
self.chunk().push_op(OpCode::OpAssertBool);
|
|
}
|
|
|
|
fn compile_or(&mut self, node: ast::BinOp) {
|
|
debug_assert!(
|
|
matches!(node.operator(), Some(ast::BinOpKind::Or)),
|
|
"compile_or called with wrong operator kind: {:?}",
|
|
node.operator(),
|
|
);
|
|
|
|
// Leave left-hand side value on the stack
|
|
self.compile(node.lhs().unwrap());
|
|
|
|
// Opposite of above: If this value is **true**, we can
|
|
// short-circuit the right-hand side.
|
|
let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(0));
|
|
self.chunk().push_op(OpCode::OpPop);
|
|
self.compile(node.rhs().unwrap());
|
|
self.patch_jump(end_idx);
|
|
self.chunk().push_op(OpCode::OpAssertBool);
|
|
}
|
|
|
|
fn compile_implication(&mut self, node: ast::BinOp) {
|
|
debug_assert!(
|
|
matches!(node.operator(), Some(ast::BinOpKind::Implication)),
|
|
"compile_implication called with wrong operator kind: {:?}",
|
|
node.operator(),
|
|
);
|
|
|
|
// Leave left-hand side value on the stack and invert it.
|
|
self.compile(node.lhs().unwrap());
|
|
self.chunk().push_op(OpCode::OpInvert);
|
|
|
|
// Exactly as `||` (because `a -> b` = `!a || b`).
|
|
let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(0));
|
|
self.chunk().push_op(OpCode::OpPop);
|
|
self.compile(node.rhs().unwrap());
|
|
self.patch_jump(end_idx);
|
|
self.chunk().push_op(OpCode::OpAssertBool);
|
|
}
|
|
|
|
fn compile_has_attr(&mut self, node: ast::HasAttr) {
|
|
// Put the attribute set on the stack.
|
|
self.compile(node.expr().unwrap());
|
|
let mut count = 0;
|
|
|
|
// Push all path fragments with an operation for fetching the
|
|
// next nested element, for all fragments except the last one.
|
|
for fragment in node.attrpath().unwrap().attrs() {
|
|
if count > 0 {
|
|
self.chunk().push_op(OpCode::OpAttrOrNotFound);
|
|
}
|
|
count += 1;
|
|
self.compile_attr(fragment);
|
|
}
|
|
|
|
// After the last fragment, emit the actual instruction that
|
|
// leaves a boolean on the stack.
|
|
self.chunk().push_op(OpCode::OpAttrsIsSet);
|
|
}
|
|
|
|
fn compile_attr(&mut self, node: ast::Attr) {
|
|
match node {
|
|
ast::Attr::Dynamic(dynamic) => self.compile(dynamic.expr().unwrap()),
|
|
ast::Attr::Str(s) => self.compile_str(s),
|
|
ast::Attr::Ident(ident) => self.emit_literal_ident(&ident),
|
|
}
|
|
}
|
|
|
|
// Compile list literals into equivalent bytecode. List
|
|
// construction is fairly simple, consisting of pushing code for
|
|
// each literal element and an instruction with the element count.
|
|
//
|
|
// The VM, after evaluating the code for each element, simply
|
|
// constructs the list from the given number of elements.
|
|
fn compile_list(&mut self, node: ast::List) {
|
|
let mut count = 0;
|
|
|
|
for item in node.items() {
|
|
count += 1;
|
|
self.compile(item);
|
|
}
|
|
|
|
self.chunk().push_op(OpCode::OpList(count));
|
|
}
|
|
|
|
// Compile attribute set literals into equivalent bytecode.
|
|
//
|
|
// This is complicated by a number of features specific to Nix
|
|
// attribute sets, most importantly:
|
|
//
|
|
// 1. Keys can be dynamically constructed through interpolation.
|
|
// 2. Keys can refer to nested attribute sets.
|
|
// 3. Attribute sets can (optionally) be recursive.
|
|
fn compile_attr_set(&mut self, node: ast::AttrSet) {
|
|
if node.rec_token().is_some() {
|
|
todo!("recursive attribute sets are not yet implemented")
|
|
}
|
|
|
|
let mut count = 0;
|
|
|
|
// Inherits have to be evaluated before entering the scope of
|
|
// a potentially recursive attribute sets (i.e. we always
|
|
// inherit "from the outside").
|
|
for inherit in node.inherits() {
|
|
match inherit.from() {
|
|
Some(from) => {
|
|
for ident in inherit.idents() {
|
|
count += 1;
|
|
|
|
// First emit the identifier itself
|
|
self.emit_literal_ident(&ident);
|
|
|
|
// Then emit the node that we're inheriting
|
|
// from.
|
|
//
|
|
// TODO: Likely significant optimisation
|
|
// potential in having a multi-select
|
|
// instruction followed by a merge, rather
|
|
// than pushing/popping the same attrs
|
|
// potentially a lot of times.
|
|
self.compile(from.expr().unwrap());
|
|
self.emit_literal_ident(&ident);
|
|
self.chunk().push_op(OpCode::OpAttrsSelect);
|
|
}
|
|
}
|
|
|
|
None => {
|
|
for ident in inherit.idents() {
|
|
count += 1;
|
|
self.emit_literal_ident(&ident);
|
|
|
|
match self.resolve_local(ident.ident_token().unwrap().text()) {
|
|
Some(idx) => self.chunk().push_op(OpCode::OpGetLocal(idx)),
|
|
None => {
|
|
self.emit_error(
|
|
ident.syntax().clone(),
|
|
ErrorKind::UnknownStaticVariable,
|
|
);
|
|
continue;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for kv in node.attrpath_values() {
|
|
count += 1;
|
|
|
|
// Because attribute set literals can contain nested keys,
|
|
// there is potentially more than one key fragment. If
|
|
// this is the case, a special operation to construct a
|
|
// runtime value representing the attribute path is
|
|
// emitted.
|
|
let mut key_count = 0;
|
|
for fragment in kv.attrpath().unwrap().attrs() {
|
|
key_count += 1;
|
|
self.compile_attr(fragment);
|
|
}
|
|
|
|
// We're done with the key if there was only one fragment,
|
|
// otherwise we need to emit an instruction to construct
|
|
// the attribute path.
|
|
if key_count > 1 {
|
|
self.chunk().push_op(OpCode::OpAttrPath(key_count));
|
|
}
|
|
|
|
// The value is just compiled as normal so that its
|
|
// resulting value is on the stack when the attribute set
|
|
// is constructed at runtime.
|
|
self.compile(kv.value().unwrap());
|
|
}
|
|
|
|
self.chunk().push_op(OpCode::OpAttrs(count));
|
|
}
|
|
|
|
fn compile_select(&mut self, node: ast::Select) {
|
|
let set = node.expr().unwrap();
|
|
let path = node.attrpath().unwrap();
|
|
|
|
if node.or_token().is_some() {
|
|
self.compile_select_or(set, path, node.default_expr().unwrap());
|
|
return;
|
|
}
|
|
|
|
// Push the set onto the stack
|
|
self.compile(set);
|
|
|
|
// Compile each key fragment and emit access instructions.
|
|
//
|
|
// TODO: multi-select instruction to avoid re-pushing attrs on
|
|
// nested selects.
|
|
for fragment in path.attrs() {
|
|
self.compile_attr(fragment);
|
|
self.chunk().push_op(OpCode::OpAttrsSelect);
|
|
}
|
|
}
|
|
|
|
/// Compile an `or` expression into a chunk of conditional jumps.
|
|
///
|
|
/// If at any point during attribute set traversal a key is
|
|
/// missing, the `OpAttrOrNotFound` instruction will leave a
|
|
/// special sentinel value on the stack.
|
|
///
|
|
/// After each access, a conditional jump evaluates the top of the
|
|
/// stack and short-circuits to the default value if it sees the
|
|
/// sentinel.
|
|
///
|
|
/// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
|
|
/// runtime stack:
|
|
///
|
|
/// ```notrust
|
|
/// Bytecode Runtime stack
|
|
/// ┌────────────────────────────┐ ┌─────────────────────────┐
|
|
/// │ ... │ │ ... │
|
|
/// │ 5 OP_ATTRS(1) │ → │ 5 [ { a.b = 1; } ] │
|
|
/// │ 6 OP_CONSTANT("a") │ → │ 6 [ { a.b = 1; } "a" ] │
|
|
/// │ 7 OP_ATTR_OR_NOT_FOUND │ → │ 7 [ { b = 1; } ] │
|
|
/// │ 8 JUMP_IF_NOT_FOUND(13) │ → │ 8 [ { b = 1; } ] │
|
|
/// │ 9 OP_CONSTANT("C") │ → │ 9 [ { b = 1; } "c" ] │
|
|
/// │ 10 OP_ATTR_OR_NOT_FOUND │ → │ 10 [ NOT_FOUND ] │
|
|
/// │ 11 JUMP_IF_NOT_FOUND(13) │ → │ 11 [ ] │
|
|
/// │ 12 JUMP(14) │ │ .. jumped over │
|
|
/// │ 13 CONSTANT(42) │ → │ 12 [ 42 ] │
|
|
/// │ 14 ... │ │ .. .... │
|
|
/// └────────────────────────────┘ └─────────────────────────┘
|
|
/// ```
|
|
fn compile_select_or(&mut self, set: ast::Expr, path: ast::Attrpath, default: ast::Expr) {
|
|
self.compile(set);
|
|
let mut jumps = vec![];
|
|
|
|
for fragment in path.attrs() {
|
|
self.compile_attr(fragment);
|
|
self.chunk().push_op(OpCode::OpAttrOrNotFound);
|
|
jumps.push(self.chunk().push_op(OpCode::OpJumpIfNotFound(0)));
|
|
}
|
|
|
|
let final_jump = self.chunk().push_op(OpCode::OpJump(0));
|
|
|
|
for jump in jumps {
|
|
self.patch_jump(jump);
|
|
}
|
|
|
|
// Compile the default value expression and patch the final
|
|
// jump to point *beyond* it.
|
|
self.compile(default);
|
|
self.patch_jump(final_jump);
|
|
}
|
|
|
|
fn compile_assert(&mut self, node: ast::Assert) {
|
|
// Compile the assertion condition to leave its value on the stack.
|
|
self.compile(node.condition().unwrap());
|
|
self.chunk().push_op(OpCode::OpAssert);
|
|
|
|
// The runtime will abort evaluation at this point if the
|
|
// assertion failed, if not the body simply continues on like
|
|
// normal.
|
|
self.compile(node.body().unwrap());
|
|
}
|
|
|
|
// Compile conditional expressions using jumping instructions in the VM.
|
|
//
|
|
// ┌────────────────────┐
|
|
// │ 0 [ conditional ] │
|
|
// │ 1 JUMP_IF_FALSE →┼─┐
|
|
// │ 2 [ main body ] │ │ Jump to else body if
|
|
// ┌┼─3─← JUMP │ │ condition is false.
|
|
// Jump over else body ││ 4 [ else body ]←┼─┘
|
|
// if condition is true.└┼─5─→ ... │
|
|
// └────────────────────┘
|
|
fn compile_if_else(&mut self, node: ast::IfElse) {
|
|
self.compile(node.condition().unwrap());
|
|
|
|
let then_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(0));
|
|
|
|
self.chunk().push_op(OpCode::OpPop); // discard condition value
|
|
self.compile(node.body().unwrap());
|
|
|
|
let else_idx = self.chunk().push_op(OpCode::OpJump(0));
|
|
|
|
self.patch_jump(then_idx); // patch jump *to* else_body
|
|
self.chunk().push_op(OpCode::OpPop); // discard condition value
|
|
self.compile(node.else_body().unwrap());
|
|
|
|
self.patch_jump(else_idx); // patch jump *over* else body
|
|
}
|
|
|
|
// Compile a standard `let ...; in ...` statement.
|
|
//
|
|
// Unless in a non-standard scope, the encountered values are
|
|
// simply pushed on the stack and their indices noted in the
|
|
// entries vector.
|
|
fn compile_let_in(&mut self, node: ast::LetIn) {
|
|
self.begin_scope();
|
|
|
|
for inherit in node.inherits() {
|
|
match inherit.from() {
|
|
// Within a `let` binding, inheriting from the outer
|
|
// scope is practically a no-op.
|
|
None => {
|
|
self.emit_warning(inherit.syntax().clone(), WarningKind::UselessInherit);
|
|
|
|
continue;
|
|
}
|
|
|
|
Some(from) => {
|
|
for ident in inherit.idents() {
|
|
self.compile(from.expr().unwrap());
|
|
self.emit_literal_ident(&ident);
|
|
self.chunk().push_op(OpCode::OpAttrsSelect);
|
|
self.declare_local(
|
|
ident.syntax().clone(),
|
|
ident.ident_token().unwrap().text(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for entry in node.attrpath_values() {
|
|
let mut path = match normalise_ident_path(entry.attrpath().unwrap().attrs()) {
|
|
Ok(p) => p,
|
|
Err(err) => {
|
|
self.errors.push(err);
|
|
continue;
|
|
}
|
|
};
|
|
|
|
if path.len() != 1 {
|
|
todo!("nested bindings in let expressions :(")
|
|
}
|
|
|
|
self.compile(entry.value().unwrap());
|
|
self.declare_local(
|
|
entry.attrpath().unwrap().syntax().clone(),
|
|
path.pop().unwrap(),
|
|
);
|
|
}
|
|
|
|
// Deal with the body, then clean up the locals afterwards.
|
|
self.compile(node.body().unwrap());
|
|
self.end_scope();
|
|
}
|
|
|
|
fn compile_ident(&mut self, node: ast::Ident) {
|
|
let ident = node.ident_token().unwrap();
|
|
|
|
// If the identifier is a global, and it is not poisoned, emit
|
|
// the global directly.
|
|
if let Some(global) = self.globals.get(ident.text()) {
|
|
if !self.scope().is_poisoned(ident.text()) {
|
|
global.clone()(self);
|
|
return;
|
|
}
|
|
}
|
|
|
|
match self.resolve_local(ident.text()) {
|
|
Some(idx) => self.chunk().push_op(OpCode::OpGetLocal(idx)),
|
|
None => {
|
|
if self.scope().with_stack.is_empty() {
|
|
self.emit_error(node.syntax().clone(), ErrorKind::UnknownStaticVariable);
|
|
return;
|
|
}
|
|
|
|
// Variable needs to be dynamically resolved
|
|
// at runtime.
|
|
self.emit_constant(Value::String(ident.text().into()));
|
|
self.chunk().push_op(OpCode::OpResolveWith)
|
|
}
|
|
};
|
|
}
|
|
|
|
// Compile `with` expressions by emitting instructions that
|
|
// pop/remove the indices of attribute sets that are implicitly in
|
|
// scope through `with` on the "with-stack".
|
|
fn compile_with(&mut self, node: ast::With) {
|
|
// TODO: Detect if the namespace is just an identifier, and
|
|
// resolve that directly (thus avoiding duplication on the
|
|
// stack).
|
|
self.compile(node.namespace().unwrap());
|
|
|
|
self.declare_phantom();
|
|
let depth = self.scope().scope_depth;
|
|
self.scope_mut().with_stack.push(With { depth });
|
|
|
|
let with_idx = self.scope().locals.len() - 1;
|
|
self.chunk().push_op(OpCode::OpPushWith(with_idx));
|
|
|
|
self.compile(node.body().unwrap());
|
|
}
|
|
|
|
fn compile_lambda(&mut self, node: ast::Lambda) {
|
|
// Open new lambda context in compiler, which has its own
|
|
// scope etc.
|
|
self.contexts.push(LambdaCtx::new());
|
|
self.begin_scope();
|
|
|
|
// Compile the function itself
|
|
match node.param().unwrap() {
|
|
ast::Param::Pattern(_) => todo!("formals function definitions"),
|
|
ast::Param::IdentParam(param) => {
|
|
let name = param
|
|
.ident()
|
|
.unwrap()
|
|
.ident_token()
|
|
.unwrap()
|
|
.text()
|
|
.to_string();
|
|
|
|
self.declare_local(param.syntax().clone(), name);
|
|
}
|
|
}
|
|
|
|
self.compile(node.body().unwrap());
|
|
self.end_scope();
|
|
|
|
// TODO: determine and insert enclosing name, if available.
|
|
|
|
// Pop the lambda context back off, and emit the finished
|
|
// lambda as a constant.
|
|
let compiled = self.contexts.pop().unwrap();
|
|
|
|
#[cfg(feature = "disassembler")]
|
|
{
|
|
crate::disassembler::disassemble_chunk(&compiled.lambda.chunk);
|
|
}
|
|
|
|
self.emit_constant(Value::Lambda(compiled.lambda));
|
|
}
|
|
|
|
fn compile_apply(&mut self, node: ast::Apply) {
|
|
// To call a function, we leave its arguments on the stack,
|
|
// followed by the function expression itself, and then emit a
|
|
// call instruction. This way, the stack is perfectly laid out
|
|
// to enter the function call straight away.
|
|
self.compile(node.argument().unwrap());
|
|
self.compile(node.lambda().unwrap());
|
|
self.chunk().push_op(OpCode::OpCall);
|
|
}
|
|
|
|
/// Emit the literal string value of an identifier. Required for
|
|
/// several operations related to attribute sets, where
|
|
/// identifiers are used as string keys.
|
|
fn emit_literal_ident(&mut self, ident: &ast::Ident) {
|
|
self.emit_constant(Value::String(ident.ident_token().unwrap().text().into()));
|
|
}
|
|
|
|
fn patch_jump(&mut self, idx: CodeIdx) {
|
|
let offset = self.chunk().code.len() - 1 - idx.0;
|
|
|
|
match &mut self.chunk().code[idx.0] {
|
|
OpCode::OpJump(n)
|
|
| OpCode::OpJumpIfFalse(n)
|
|
| OpCode::OpJumpIfTrue(n)
|
|
| OpCode::OpJumpIfNotFound(n) => {
|
|
*n = offset;
|
|
}
|
|
|
|
op => panic!("attempted to patch unsupported op: {:?}", op),
|
|
}
|
|
}
|
|
|
|
fn begin_scope(&mut self) {
|
|
self.scope_mut().scope_depth += 1;
|
|
}
|
|
|
|
fn end_scope(&mut self) {
|
|
debug_assert!(self.scope().scope_depth != 0, "can not end top scope");
|
|
|
|
// If this scope poisoned any builtins or special identifiers,
|
|
// they need to be reset.
|
|
let depth = self.scope().scope_depth;
|
|
self.scope_mut().unpoison(depth);
|
|
|
|
self.scope_mut().scope_depth -= 1;
|
|
|
|
// When ending a scope, all corresponding locals need to be
|
|
// removed, but the value of the body needs to remain on the
|
|
// stack. This is implemented by a separate instruction.
|
|
let mut pops = 0;
|
|
|
|
// TL;DR - iterate from the back while things belonging to the
|
|
// ended scope still exist.
|
|
while !self.scope().locals.is_empty()
|
|
&& self.scope().locals[self.scope().locals.len() - 1].depth > self.scope().scope_depth
|
|
{
|
|
pops += 1;
|
|
|
|
// While removing the local, analyse whether it has been
|
|
// accessed while it existed and emit a warning to the
|
|
// user otherwise.
|
|
if let Some(Local {
|
|
node: Some(node),
|
|
used,
|
|
..
|
|
}) = self.scope_mut().locals.pop()
|
|
{
|
|
if !used {
|
|
self.emit_warning(node, WarningKind::UnusedBinding);
|
|
}
|
|
}
|
|
}
|
|
|
|
if pops > 0 {
|
|
self.chunk().push_op(OpCode::OpCloseScope(pops));
|
|
}
|
|
|
|
while !self.scope().with_stack.is_empty()
|
|
&& self.scope().with_stack[self.scope().with_stack.len() - 1].depth
|
|
> self.scope().scope_depth
|
|
{
|
|
self.chunk().push_op(OpCode::OpPopWith);
|
|
self.scope_mut().with_stack.pop();
|
|
}
|
|
}
|
|
|
|
/// Declare a local variable known in the scope that is being
|
|
/// compiled by pushing it to the locals. This is used to
|
|
/// determine the stack offset of variables.
|
|
fn declare_local<S: Into<String>>(&mut self, node: rnix::SyntaxNode, name: S) {
|
|
let name = name.into();
|
|
let depth = self.scope().scope_depth;
|
|
|
|
// Do this little dance to get ahold of the *static* key and
|
|
// use it for poisoning if required.
|
|
let key: Option<&'static str> = match self.globals.get_key_value(name.as_str()) {
|
|
Some((key, _)) => Some(*key),
|
|
None => None,
|
|
};
|
|
|
|
if let Some(global_ident) = key {
|
|
self.scope_mut().poison(global_ident, depth);
|
|
}
|
|
|
|
self.scope_mut().locals.push(Local {
|
|
depth,
|
|
name: name.into(),
|
|
node: Some(node),
|
|
phantom: false,
|
|
used: false,
|
|
});
|
|
}
|
|
|
|
fn declare_phantom(&mut self) {
|
|
let depth = self.scope().scope_depth;
|
|
self.scope_mut().locals.push(Local {
|
|
depth,
|
|
name: "".into(),
|
|
node: None,
|
|
phantom: true,
|
|
used: true,
|
|
});
|
|
}
|
|
|
|
fn resolve_local(&mut self, name: &str) -> Option<usize> {
|
|
let scope = self.scope_mut();
|
|
|
|
for (idx, local) in scope.locals.iter_mut().enumerate().rev() {
|
|
if !local.phantom && local.name == name {
|
|
local.used = true;
|
|
return Some(idx);
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
fn emit_warning(&mut self, node: rnix::SyntaxNode, kind: WarningKind) {
|
|
self.warnings.push(EvalWarning { node, kind })
|
|
}
|
|
|
|
fn emit_error(&mut self, node: rnix::SyntaxNode, kind: ErrorKind) {
|
|
self.errors.push(Error {
|
|
node: Some(node),
|
|
kind,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Convert a non-dynamic string expression to a string if possible,
|
|
/// or raise an error.
|
|
fn expr_str_to_string(expr: ast::Str) -> EvalResult<String> {
|
|
if expr.normalized_parts().len() == 1 {
|
|
if let ast::InterpolPart::Literal(s) = expr.normalized_parts().pop().unwrap() {
|
|
return Ok(s);
|
|
}
|
|
}
|
|
|
|
return Err(Error {
|
|
node: Some(expr.syntax().clone()),
|
|
kind: ErrorKind::DynamicKeyInLet(expr.syntax().clone()),
|
|
});
|
|
}
|
|
|
|
/// Convert a single identifier path fragment to a string if possible,
|
|
/// or raise an error about the node being dynamic.
|
|
fn attr_to_string(node: ast::Attr) -> EvalResult<String> {
|
|
match node {
|
|
ast::Attr::Ident(ident) => Ok(ident.ident_token().unwrap().text().into()),
|
|
ast::Attr::Str(s) => expr_str_to_string(s),
|
|
|
|
// The dynamic node type is just a wrapper. C++ Nix does not
|
|
// care about the dynamic wrapper when determining whether the
|
|
// node itself is dynamic, it depends solely on the expression
|
|
// inside (i.e. `let ${"a"} = 1; in a` is valid).
|
|
ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
|
|
ast::Expr::Str(s) => expr_str_to_string(s),
|
|
_ => Err(ErrorKind::DynamicKeyInLet(node.syntax().clone()).into()),
|
|
},
|
|
}
|
|
}
|
|
|
|
// Normalises identifier fragments into a single string vector for
|
|
// `let`-expressions; fails if fragments requiring dynamic computation
|
|
// are encountered.
|
|
fn normalise_ident_path<I: Iterator<Item = ast::Attr>>(path: I) -> EvalResult<Vec<String>> {
|
|
path.map(attr_to_string).collect()
|
|
}
|
|
|
|
/// Prepare the full set of globals from additional globals supplied
|
|
/// by the caller of the compiler, as well as the built-in globals
|
|
/// that are always part of the language.
|
|
///
|
|
/// Note that all builtin functions are *not* considered part of the
|
|
/// language in this sense and MUST be supplied as additional global
|
|
/// values, including the `builtins` set itself.
|
|
fn prepare_globals(additional: HashMap<&'static str, Value>) -> GlobalsMap {
|
|
let mut globals: GlobalsMap = HashMap::new();
|
|
|
|
globals.insert(
|
|
"true",
|
|
Rc::new(|compiler| {
|
|
compiler.chunk().push_op(OpCode::OpTrue);
|
|
}),
|
|
);
|
|
|
|
globals.insert(
|
|
"false",
|
|
Rc::new(|compiler| {
|
|
compiler.chunk().push_op(OpCode::OpFalse);
|
|
}),
|
|
);
|
|
|
|
globals.insert(
|
|
"null",
|
|
Rc::new(|compiler| {
|
|
compiler.chunk().push_op(OpCode::OpNull);
|
|
}),
|
|
);
|
|
|
|
for (ident, value) in additional.into_iter() {
|
|
globals.insert(
|
|
ident,
|
|
Rc::new(move |compiler| compiler.emit_constant(value.clone())),
|
|
);
|
|
}
|
|
|
|
globals
|
|
}
|
|
|
|
pub fn compile(expr: ast::Expr, location: Option<PathBuf>) -> EvalResult<CompilationResult> {
|
|
let mut root_dir = match location {
|
|
Some(dir) => Ok(dir),
|
|
None => std::env::current_dir().map_err(|e| {
|
|
ErrorKind::PathResolution(format!("could not determine current directory: {}", e))
|
|
}),
|
|
}?;
|
|
|
|
// If the path passed from the caller points to a file, the
|
|
// filename itself needs to be truncated as this must point to a
|
|
// directory.
|
|
if root_dir.is_file() {
|
|
root_dir.pop();
|
|
}
|
|
|
|
// TODO: accept globals as an external parameter
|
|
let globals = prepare_globals(HashMap::new());
|
|
|
|
let mut c = Compiler {
|
|
root_dir,
|
|
globals,
|
|
contexts: vec![LambdaCtx::new()],
|
|
warnings: vec![],
|
|
errors: vec![],
|
|
};
|
|
|
|
c.compile(expr);
|
|
|
|
Ok(CompilationResult {
|
|
lambda: c.contexts.pop().unwrap().lambda,
|
|
warnings: c.warnings,
|
|
errors: c.errors,
|
|
})
|
|
}
|