251 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
\documentclass[12pt]{beamer}
 | 
						|
\usetheme{metropolis}
 | 
						|
\newenvironment{code}{\ttfamily}{\par}
 | 
						|
\title{Where does \textit{your} compiler come from?}
 | 
						|
\date{2018-03-13}
 | 
						|
\author{Vincent Ambo}
 | 
						|
\institute{Norwegian Unix User Group}
 | 
						|
\begin{document}
 | 
						|
  \maketitle
 | 
						|
 | 
						|
  %% Slide 1:
 | 
						|
  \section{Introduction}
 | 
						|
 | 
						|
  %% Slide 2:
 | 
						|
  \begin{frame}{Chicken and egg}
 | 
						|
    Self-hosted compilers are often built using themselves, for example:
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item C-family compilers bootstrap themselves \& each other
 | 
						|
    \item (Some!) Common Lisp compilers can bootstrap each other
 | 
						|
    \item \texttt{rustc} bootstraps itself with a previous version
 | 
						|
    \item ... same for many other languages!
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Chicken, egg and ... lizard?}
 | 
						|
    It's not just compilers: Languages have runtimes, too.
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item JVM is implemented in C++
 | 
						|
    \item Erlang-VM is C
 | 
						|
    \item Haskell runtime is C
 | 
						|
    \end{itemize}
 | 
						|
 | 
						|
    ... we can't ever get away from C, can we?
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 3:
 | 
						|
  \begin{frame}{Trusting Trust}
 | 
						|
    \begin{center}
 | 
						|
      \huge{Could this be exploited?}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 4:
 | 
						|
  \begin{frame}{Short interlude: A quine}
 | 
						|
    \begin{center}
 | 
						|
      \begin{code}
 | 
						|
        ((lambda (x) (list x (list 'quote x)))
 | 
						|
        \newline\vspace*{6mm} '(lambda (x) (list x (list 'quote x))))
 | 
						|
      \end{code}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 5:
 | 
						|
  \begin{frame}{Short interlude: Quine Relay}
 | 
						|
    \begin{center}
 | 
						|
      \includegraphics[
 | 
						|
        keepaspectratio=true,
 | 
						|
        height=\textheight
 | 
						|
      ]{quine-relay.png}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 6:
 | 
						|
  \begin{frame}{Trusting Trust}
 | 
						|
    An attack described by Ken Thompson in 1983:
 | 
						|
 | 
						|
    \begin{enumerate}
 | 
						|
    \item Modify a compiler to detect when it's compiling itself.
 | 
						|
    \item Let the modification insert \textit{itself} into the new compiler.
 | 
						|
    \item Add arbitrary attack code to the modification.
 | 
						|
    \item \textit{Optional!} Remove the attack from the source after compilation.
 | 
						|
    \end{enumerate}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 7:
 | 
						|
  \begin{frame}{Damage potential?}
 | 
						|
    \begin{center}
 | 
						|
      \large{Let your imagination run wild!}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 8:
 | 
						|
  \section{Countermeasures}
 | 
						|
 | 
						|
  %% Slide 9:
 | 
						|
  \begin{frame}{Diverse Double-Compiling}
 | 
						|
    Assume we have:
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item Target language compilers $A$ and $T$
 | 
						|
    \item The source code of $A$: $ S_{A} $
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 10:
 | 
						|
  \begin{frame}{Diverse Double-Compiling}
 | 
						|
    Apply the first stage (functional equivalence):
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item $ X = A(S_{A})$
 | 
						|
    \item $ Y = T(S_{A})$
 | 
						|
    \end{itemize}
 | 
						|
 | 
						|
    Apply the second stage (bit-for-bit equivalence):
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item $ V = X(S_{A})$
 | 
						|
    \item $ W = Y(S_{A})$
 | 
						|
    \end{itemize}
 | 
						|
 | 
						|
    Now we have a new problem: Reproducibility!
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 11:
 | 
						|
  \begin{frame}{Reproducibility}
 | 
						|
    Bit-for-bit equivalent output is hard, for example:
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item Timestamps in output artifacts
 | 
						|
    \item Non-deterministic linking order in concurrent builds
 | 
						|
    \item Non-deterministic VM \& memory states in outputs
 | 
						|
    \item Randomness in builds (sic!)
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Reproducibility}
 | 
						|
    \begin{center}
 | 
						|
      Without reproducibility, we can never trust that any shipped
 | 
						|
      binary matches the source code!
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 12:
 | 
						|
  \section{(Partial) State of the Union}
 | 
						|
 | 
						|
  \begin{frame}{The Desired State}
 | 
						|
    \begin{center}
 | 
						|
      \begin{enumerate}
 | 
						|
      \item Full-source bootstrap!
 | 
						|
      \item All packages reproducible!
 | 
						|
      \end{enumerate}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  %% Slide 13:
 | 
						|
  \begin{frame}{Bootstrapping Debian}
 | 
						|
    \begin{itemize}
 | 
						|
    \item Sparse information on the Debian-wiki
 | 
						|
    \item Bootstrapping discussions mostly resolve around new architectures
 | 
						|
    \item GCC is compiled by depending on previous versions of GCC
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Reproducing Debian}
 | 
						|
    Debian has a very active effort for reproducible builds:
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item Organised information about reproducibility status
 | 
						|
    \item Over 90\% reproducibility in Debian package base!
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Short interlude: Nix}
 | 
						|
    \begin{center}
 | 
						|
      \includegraphics[
 | 
						|
        keepaspectratio=true,
 | 
						|
        height=0.7\textheight
 | 
						|
      ]{nixos-logo.png}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Short interlude: Nix}
 | 
						|
    \begin{center}
 | 
						|
      \includegraphics[
 | 
						|
        keepaspectratio=true,
 | 
						|
        height=0.90\textheight
 | 
						|
      ]{drake-meme.png}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Short interlude: Nix}
 | 
						|
    \begin{center}
 | 
						|
      \includegraphics[
 | 
						|
        keepaspectratio=true,
 | 
						|
        height=0.7\textheight
 | 
						|
      ]{nixos-logo.png}
 | 
						|
    \end{center}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Bootstrapping NixOS}
 | 
						|
    Nix evaluation can not recurse forever: The bootstrap can not
 | 
						|
    simply depend on a previous GCC.
 | 
						|
 | 
						|
    Workaround: \texttt{bootstrap-tools} tarball from a previous
 | 
						|
    binary cache is fetched and used.
 | 
						|
 | 
						|
    An unfortunate magic binary blob ...
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Reproducing NixOS}
 | 
						|
    Not all reproducibility patches have been ported from Debian.
 | 
						|
 | 
						|
    However: Builds are fully repeatable via the Nix fundamentals!
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \section{Future Developments}
 | 
						|
 | 
						|
  \begin{frame}{Bootstrappable: stage0}
 | 
						|
    Hand-rolled ``Cthulhu's Path to Madness'' hex-programs:
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item No non-auditable binary blobs
 | 
						|
    \item Aims for understandability by 70\% of programmers
 | 
						|
    \item End goal is a full-source bootstrap of GCC
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
 | 
						|
  \begin{frame}{Bootstrappable: MES}
 | 
						|
    Bootstrapping the ``Maxwell Equations of Software'':
 | 
						|
 | 
						|
    \begin{itemize}
 | 
						|
    \item Minimal C-compiler written in Scheme
 | 
						|
    \item Minimal Scheme-interpreter (currently in C, but intended to
 | 
						|
      be rewritten in stage0 macros)
 | 
						|
    \item End goal is full-source bootstrap of the entire GuixSD
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Other platforms}
 | 
						|
    \begin{itemize}
 | 
						|
    \item Nix for Darwin is actively maintained
 | 
						|
    \item F-Droid Android repository works towards fully reproducible
 | 
						|
      builds of (open) Android software
 | 
						|
    \item Mobile devices (phones, tablets, etc.) are a lost cause at
 | 
						|
      the moment
 | 
						|
    \end{itemize}
 | 
						|
  \end{frame}
 | 
						|
 | 
						|
  \begin{frame}{Thanks!}
 | 
						|
    Resources:
 | 
						|
    \begin{itemize}
 | 
						|
    \item bootstrappable.org
 | 
						|
    \item reproducible-builds.org
 | 
						|
    \end{itemize}
 | 
						|
 | 
						|
    @tazjin | mail@tazj.in
 | 
						|
  \end{frame}
 | 
						|
\end{document}
 |