The strategy is described in-depth in the comment at the top of the implementation file, as well as in the design document: https://storage.googleapis.com/nixdoc/nixery-layers.html
		
			
				
	
	
		
			267 lines
		
	
	
	
		
			6.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
	
		
			6.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // This program reads an export reference graph (i.e. a graph representing the
 | |
| // runtime dependencies of a set of derivations) created by Nix and groups them
 | |
| // in a way that is likely to match the grouping for other derivation sets with
 | |
| // overlapping dependencies.
 | |
| //
 | |
| // This is used to determine which derivations to include in which layers of a
 | |
| // container image.
 | |
| //
 | |
| // # Inputs
 | |
| //
 | |
| // * a graph of Nix runtime dependencies, generated via exportReferenceGraph
 | |
| // * a file containing absolute popularity values of packages in the
 | |
| //   Nix package set (in the form of a direct reference count)
 | |
| // * a maximum number of layers to allocate for the image (the "layer budget")
 | |
| //
 | |
| // # Algorithm
 | |
| //
 | |
| // It works by first creating a (directed) dependency tree:
 | |
| //
 | |
| // img (root node)
 | |
| // │
 | |
| // ├───> A ─────┐
 | |
| // │            v
 | |
| // ├───> B ───> E
 | |
| // │            ^
 | |
| // ├───> C ─────┘
 | |
| // │     │
 | |
| // │     v
 | |
| // └───> D ───> F
 | |
| //       │
 | |
| //       └────> G
 | |
| //
 | |
| // Each node (i.e. package) is then visited to determine how important
 | |
| // it is to separate this node into its own layer, specifically:
 | |
| //
 | |
| // 1. Is the node within a certain threshold percentile of absolute
 | |
| //    popularity within all of nixpkgs? (e.g. `glibc`, `openssl`)
 | |
| //
 | |
| // 2. Is the node's runtime closure above a threshold size? (e.g. 100MB)
 | |
| //
 | |
| // In either case, a bit is flipped for this node representing each
 | |
| // condition and an edge to it is inserted directly from the image
 | |
| // root, if it does not already exist.
 | |
| //
 | |
| // For the rest of the example we assume 'G' is above the threshold
 | |
| // size and 'E' is popular.
 | |
| //
 | |
| // This tree is then transformed into a dominator tree:
 | |
| //
 | |
| // img
 | |
| // │
 | |
| // ├───> A
 | |
| // ├───> B
 | |
| // ├───> C
 | |
| // ├───> E
 | |
| // ├───> D ───> F
 | |
| // └───> G
 | |
| //
 | |
| // Specifically this means that the paths to A, B, C, E, G, and D
 | |
| // always pass through the root (i.e. are dominated by it), whilst F
 | |
| // is dominated by D (all paths go through it).
 | |
| //
 | |
| // The top-level subtrees are considered as the initially selected
 | |
| // layers.
 | |
| //
 | |
| // If the list of layers fits within the layer budget, it is returned.
 | |
| //
 | |
| // Otherwise layers are merged together in this order:
 | |
| //
 | |
| // * layers whose root meets neither condition above
 | |
| // * layers whose root is popular
 | |
| // * layers whose root is big
 | |
| // * layers whose root meets both conditions
 | |
| //
 | |
| // # Threshold values
 | |
| //
 | |
| // Threshold values for the partitioning conditions mentioned above
 | |
| // have not yet been determined, but we will make a good first guess
 | |
| // based on gut feeling and proceed to measure their impact on cache
 | |
| // hits/misses.
 | |
| //
 | |
| // # Example
 | |
| //
 | |
| // Using the logic described above as well as the example presented in
 | |
| // the introduction, this program would create the following layer
 | |
| // groupings (assuming no additional partitioning):
 | |
| //
 | |
| // Layer budget: 1
 | |
| // Layers: { A, B, C, D, E, F, G }
 | |
| //
 | |
| // Layer budget: 2
 | |
| // Layers: { G }, { A, B, C, D, E, F }
 | |
| //
 | |
| // Layer budget: 3
 | |
| // Layers: { G }, { E }, { A, B, C, D, F }
 | |
| //
 | |
| // Layer budget: 4
 | |
| // Layers: { G }, { E }, { D, F }, { A, B, C }
 | |
| //
 | |
| // ...
 | |
| //
 | |
| // Layer budget: 10
 | |
| // Layers: { E }, { D, F }, { A }, { B }, { C }
 | |
| package main
 | |
| 
 | |
| import (
 | |
| 	"encoding/json"
 | |
| 	"flag"
 | |
| 	"io/ioutil"
 | |
| 	"log"
 | |
| 	"fmt"
 | |
| 	"regexp"
 | |
| 	"os"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/graph/simple"
 | |
| 	"gonum.org/v1/gonum/graph/flow"
 | |
| 	"gonum.org/v1/gonum/graph/encoding/dot"
 | |
| )
 | |
| 
 | |
| // closureGraph represents the structured attributes Nix outputs when asking it
 | |
| // for the exportReferencesGraph of a list of derivations.
 | |
| type exportReferences struct {
 | |
| 	References struct {
 | |
| 		Graph []string `json:"graph"`
 | |
| 	} `json:"exportReferencesGraph"`
 | |
| 
 | |
| 	Graph []struct {
 | |
| 		Size uint64 `json:"closureSize`
 | |
| 		Path string   `json:"path"`
 | |
| 		Refs []string `json:"references"`
 | |
| 	} `json:"graph"`
 | |
| }
 | |
| 
 | |
| // closure as pointed to by the graph nodes.
 | |
| type closure struct {
 | |
| 	GraphID int64
 | |
| 	Path string
 | |
| 	Size uint64
 | |
| 	Refs []string
 | |
| 	// TODO(tazjin): popularity and other funny business
 | |
| }
 | |
| 
 | |
| func (c *closure) ID() int64 {
 | |
| 	return c.GraphID
 | |
| }
 | |
| 
 | |
| var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`)
 | |
| func (c *closure) DOTID() string {
 | |
| 	return nixRegexp.ReplaceAllString(c.Path, "")
 | |
| }
 | |
| 
 | |
| func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) {
 | |
| 	for _, c := range node.Refs {
 | |
| 		// Nix adds a self reference to each node, which
 | |
| 		// should not be inserted.
 | |
| 		if c != node.Path {
 | |
| 			edge := graph.NewEdge(node, (*cmap)[c])
 | |
| 			graph.SetEdge(edge)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Create a graph structure from the references supplied by Nix.
 | |
| func buildGraph(refs *exportReferences) *simple.DirectedGraph {
 | |
| 	cmap := make(map[string]*closure)
 | |
| 	graph := simple.NewDirectedGraph()
 | |
| 
 | |
| 	// Insert all closures into the graph, as well as a fake root
 | |
| 	// closure which serves as the top of the tree.
 | |
| 	//
 | |
| 	// A map from store paths to IDs is kept to actually insert
 | |
| 	// edges below.
 | |
| 	root := &closure {
 | |
| 		GraphID: 0,
 | |
| 		Path: "image_root",
 | |
| 	}
 | |
| 	graph.AddNode(root)
 | |
| 
 | |
| 	for idx, c := range refs.Graph {
 | |
| 		node := &closure {
 | |
| 			GraphID: int64(idx + 1), // inc because of root node
 | |
| 			Path: c.Path,
 | |
| 			Size: c.Size,
 | |
| 			Refs: c.Refs,
 | |
| 		}
 | |
| 
 | |
| 		graph.AddNode(node)
 | |
| 		cmap[c.Path] = node
 | |
| 	}
 | |
| 
 | |
| 	// Insert the top-level closures with edges from the root
 | |
| 	// node, then insert all edges for each closure.
 | |
| 	for _, p := range refs.References.Graph {
 | |
| 		edge := graph.NewEdge(root, cmap[p])
 | |
| 		graph.SetEdge(edge)
 | |
| 	}
 | |
| 
 | |
| 	for _, c := range cmap {
 | |
| 		insertEdges(graph, &cmap, c)
 | |
| 	}
 | |
| 
 | |
| 	gv, err := dot.Marshal(graph, "deps", "", "")
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Could not encode graph: %s\n", err)
 | |
| 	}
 | |
| 	fmt.Print(string(gv))
 | |
| 	os.Exit(0)
 | |
| 
 | |
| 	return graph
 | |
| }
 | |
| 
 | |
| // Calculate the dominator tree of the entire package set and group
 | |
| // each top-level subtree into a layer.
 | |
| func dominate(graph *simple.DirectedGraph) {
 | |
| 	dt := flow.Dominators(graph.Node(0), graph)
 | |
| 
 | |
| 	// convert dominator tree back into encodable graph
 | |
| 	dg := simple.NewDirectedGraph()
 | |
| 
 | |
| 	for nodes := graph.Nodes(); nodes.Next(); {
 | |
| 		dg.AddNode(nodes.Node())
 | |
| 	}
 | |
| 
 | |
| 	for nodes := dg.Nodes(); nodes.Next(); {
 | |
| 		node := nodes.Node()
 | |
| 		for _, child := range dt.DominatedBy(node.ID()) {
 | |
| 			edge := dg.NewEdge(node, child)
 | |
| 			dg.SetEdge(edge)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	gv, err := dot.Marshal(dg, "deps", "", "")
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Could not encode graph: %s\n", err)
 | |
| 	}
 | |
| 	fmt.Print(string(gv))
 | |
| 
 | |
| 	// fmt.Printf("%v edges in the graph\n", graph.Edges().Len())
 | |
| 	// top := 0
 | |
| 	// for _, n := range dt.DominatedBy(0) {
 | |
| 	// 	fmt.Printf("%q is top-level\n", n.(*closure).Path)
 | |
| 	// 	top++
 | |
| 	// }
 | |
| 	// fmt.Printf("%v total top-level nodes\n", top)
 | |
| 	// root := dt.Root().(*closure)
 | |
| 	// fmt.Printf("dominator tree root is %q\n", root.Path)
 | |
| 	// fmt.Printf("%v nodes can reach to 1\n", nodes.Len())
 | |
| }
 | |
| 
 | |
| func main() {
 | |
| 	inputFile := flag.String("input", ".attrs.json", "Input file containing graph")
 | |
| 	flag.Parse()
 | |
| 
 | |
| 	file, err := ioutil.ReadFile(*inputFile)
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Failed to load input: %s\n", err)
 | |
| 	}
 | |
| 
 | |
| 	var refs exportReferences
 | |
| 	err = json.Unmarshal(file, &refs)
 | |
| 	if err != nil {
 | |
| 		log.Fatalf("Failed to deserialise input: %s\n", err)
 | |
| 	}
 | |
| 
 | |
| 	graph := buildGraph(&refs)
 | |
| 	dominate(graph)
 | |
| }
 |