Previously, Nix strings were represented as a Box (within Value)
pointing to a tuple of an optional context, and another Box pointing to
the actual string allocation itself. This is pretty inefficient, both in
terms of memory usage (we use 48 whole bytes for a None context!) and in
terms of the extra indirection required to get at the actual data. It
was necessary, however, because with native Rust DSTs if we had
something like `struct NixString(Option<NixContext>, BStr)` we could
only pass around *fat* pointers to that value (with the length in the
pointer) and that'd make Value need to be bigger (which is a waste of
both memory and cache space, since that memory would be unused for all
other Values).
Instead, this commit implements *manual* allocation of a packed string
representation, with the length *in the allocation* as a field past the
context. This requires a big old pile of unsafe Rust, but the payoff is
clear:
hello outpath time: [882.18 ms 897.16 ms 911.23 ms]
change: [-15.143% -13.819% -12.500%] (p = 0.00 < 0.05)
Performance has improved.
Fortunately this change can be localized entirely within
value/string.rs, since we were abstracting things out nicely.
Change-Id: Ibf56dd16c9c503884f64facbb7f0ac596463efb6
Reviewed-on: https://cl.tvl.fyi/c/depot/+/10852
Tested-by: BuildkiteCI
Reviewed-by: raitobezarius <tvl@lahfa.xyz>
Autosubmit: aspen <root@gws.fyi>
1368 lines
50 KiB
Rust
1368 lines
50 KiB
Rust
//! This module implements the abstract/virtual machine that runs Tvix
|
|
//! bytecode.
|
|
//!
|
|
//! The operation of the VM is facilitated by the [`Frame`] type,
|
|
//! which controls the current execution state of the VM and is
|
|
//! processed within the VM's operating loop.
|
|
//!
|
|
//! A [`VM`] is used by instantiating it with an initial [`Frame`],
|
|
//! then triggering its execution and waiting for the VM to return or
|
|
//! yield an error.
|
|
|
|
pub mod generators;
|
|
mod macros;
|
|
|
|
use bstr::{BString, ByteSlice, ByteVec};
|
|
use codemap::Span;
|
|
use serde_json::json;
|
|
use std::{cmp::Ordering, collections::HashMap, ops::DerefMut, path::PathBuf, rc::Rc};
|
|
|
|
use crate::{
|
|
arithmetic_op,
|
|
chunk::Chunk,
|
|
cmp_op,
|
|
compiler::GlobalsMap,
|
|
errors::{CatchableErrorKind, Error, ErrorKind, EvalResult},
|
|
io::EvalIO,
|
|
lifted_pop,
|
|
nix_search_path::NixSearchPath,
|
|
observer::RuntimeObserver,
|
|
opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx},
|
|
spans::LightSpan,
|
|
upvalues::Upvalues,
|
|
value::{
|
|
Builtin, BuiltinResult, Closure, CoercionKind, Lambda, NixAttrs, NixContext, NixList,
|
|
PointerEquality, Thunk, Value,
|
|
},
|
|
vm::generators::GenCo,
|
|
warnings::{EvalWarning, WarningKind},
|
|
NixString, SourceCode,
|
|
};
|
|
|
|
use generators::{call_functor, Generator, GeneratorState};
|
|
|
|
use self::generators::{VMRequest, VMResponse};
|
|
|
|
/// Internal helper trait for taking a span from a variety of types, to make use
|
|
/// of `WithSpan` (defined below) more ergonomic at call sites.
|
|
trait GetSpan {
|
|
fn get_span(self) -> Span;
|
|
}
|
|
|
|
impl<'o, IO> GetSpan for &VM<'o, IO> {
|
|
fn get_span(self) -> Span {
|
|
self.reasonable_span.span()
|
|
}
|
|
}
|
|
|
|
impl GetSpan for &CallFrame {
|
|
fn get_span(self) -> Span {
|
|
self.current_span()
|
|
}
|
|
}
|
|
|
|
impl GetSpan for &LightSpan {
|
|
fn get_span(self) -> Span {
|
|
self.span()
|
|
}
|
|
}
|
|
|
|
impl GetSpan for Span {
|
|
fn get_span(self) -> Span {
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Internal helper trait for ergonomically converting from a `Result<T,
|
|
/// ErrorKind>` to a `Result<T, Error>` using the current span of a call frame,
|
|
/// and chaining the VM's frame stack around it for printing a cause chain.
|
|
trait WithSpan<T, S: GetSpan, IO> {
|
|
fn with_span(self, top_span: S, vm: &VM<IO>) -> Result<T, Error>;
|
|
}
|
|
|
|
impl<T, S: GetSpan, IO> WithSpan<T, S, IO> for Result<T, ErrorKind> {
|
|
fn with_span(self, top_span: S, vm: &VM<IO>) -> Result<T, Error> {
|
|
match self {
|
|
Ok(something) => Ok(something),
|
|
Err(kind) => {
|
|
let mut error = Error::new(kind, top_span.get_span(), vm.source.clone());
|
|
|
|
// Wrap the top-level error in chaining errors for each element
|
|
// of the frame stack.
|
|
for frame in vm.frames.iter().rev() {
|
|
match frame {
|
|
Frame::CallFrame { span, .. } => {
|
|
error = Error::new(
|
|
ErrorKind::BytecodeError(Box::new(error)),
|
|
span.span(),
|
|
vm.source.clone(),
|
|
);
|
|
}
|
|
Frame::Generator { name, span, .. } => {
|
|
error = Error::new(
|
|
ErrorKind::NativeError {
|
|
err: Box::new(error),
|
|
gen_type: name,
|
|
},
|
|
span.span(),
|
|
vm.source.clone(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
Err(error)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CallFrame {
|
|
/// The lambda currently being executed.
|
|
lambda: Rc<Lambda>,
|
|
|
|
/// Optional captured upvalues of this frame (if a thunk or
|
|
/// closure if being evaluated).
|
|
upvalues: Rc<Upvalues>,
|
|
|
|
/// Instruction pointer to the instruction currently being
|
|
/// executed.
|
|
ip: CodeIdx,
|
|
|
|
/// Stack offset, i.e. the frames "view" into the VM's full stack.
|
|
stack_offset: usize,
|
|
}
|
|
|
|
impl CallFrame {
|
|
/// Retrieve an upvalue from this frame at the given index.
|
|
fn upvalue(&self, idx: UpvalueIdx) -> &Value {
|
|
&self.upvalues[idx]
|
|
}
|
|
|
|
/// Borrow the chunk of this frame's lambda.
|
|
fn chunk(&self) -> &Chunk {
|
|
&self.lambda.chunk
|
|
}
|
|
|
|
/// Increment this frame's instruction pointer and return the operation that
|
|
/// the pointer moved past.
|
|
fn inc_ip(&mut self) -> OpCode {
|
|
let op = self.chunk()[self.ip];
|
|
self.ip += 1;
|
|
op
|
|
}
|
|
|
|
/// Construct an error result from the given ErrorKind and the source span
|
|
/// of the current instruction.
|
|
pub fn error<T, IO>(&self, vm: &VM<IO>, kind: ErrorKind) -> Result<T, Error> {
|
|
Err(kind).with_span(self, vm)
|
|
}
|
|
|
|
/// Returns the current span. This is potentially expensive and should only
|
|
/// be used when actually constructing an error or warning.
|
|
pub fn current_span(&self) -> Span {
|
|
self.chunk().get_span(self.ip - 1)
|
|
}
|
|
|
|
/// Returns the information needed to calculate the current span,
|
|
/// but without performing that calculation.
|
|
// TODO: why pub?
|
|
pub(crate) fn current_light_span(&self) -> LightSpan {
|
|
LightSpan::new_actual(self.current_span())
|
|
}
|
|
}
|
|
|
|
/// A frame represents an execution state of the VM. The VM has a stack of
|
|
/// frames representing the nesting of execution inside of the VM, and operates
|
|
/// on the frame at the top.
|
|
///
|
|
/// When a frame has been fully executed, it is removed from the VM's frame
|
|
/// stack and expected to leave a result [`Value`] on the top of the stack.
|
|
enum Frame {
|
|
/// CallFrame represents the execution of Tvix bytecode within a thunk,
|
|
/// function or closure.
|
|
CallFrame {
|
|
/// The call frame itself, separated out into another type to pass it
|
|
/// around easily.
|
|
call_frame: CallFrame,
|
|
|
|
/// Span from which the call frame was launched.
|
|
span: LightSpan,
|
|
},
|
|
|
|
/// Generator represents a frame that can yield further
|
|
/// instructions to the VM while its execution is being driven.
|
|
///
|
|
/// A generator is essentially an asynchronous function that can
|
|
/// be suspended while waiting for the VM to do something (e.g.
|
|
/// thunk forcing), and resume at the same point.
|
|
Generator {
|
|
/// human-readable description of the generator,
|
|
name: &'static str,
|
|
|
|
/// Span from which the generator was launched.
|
|
span: LightSpan,
|
|
|
|
state: GeneratorState,
|
|
|
|
/// Generator itself, which can be resumed with `.resume()`.
|
|
generator: Generator,
|
|
},
|
|
}
|
|
|
|
impl Frame {
|
|
pub fn span(&self) -> LightSpan {
|
|
match self {
|
|
Frame::CallFrame { span, .. } | Frame::Generator { span, .. } => span.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
struct ImportCache(HashMap<PathBuf, Value>);
|
|
|
|
/// The `ImportCache` holds the `Value` resulting from `import`ing a certain
|
|
/// file, so that the same file doesn't need to be re-evaluated multiple times.
|
|
/// Currently the real path of the imported file (determined using
|
|
/// [`std::fs::canonicalize()`], not to be confused with our
|
|
/// [`crate::value::canon_path()`]) is used to identify the file,
|
|
/// just like C++ Nix does.
|
|
///
|
|
/// Errors while determining the real path are currently just ignored, since we
|
|
/// pass around some fake paths like `/__corepkgs__/fetchurl.nix`.
|
|
///
|
|
/// In the future, we could use something more sophisticated, like file hashes.
|
|
/// However, a consideration is that the eval cache is observable via impurities
|
|
/// like pointer equality and `builtins.trace`.
|
|
impl ImportCache {
|
|
fn get(&self, path: PathBuf) -> Option<&Value> {
|
|
let path = match std::fs::canonicalize(path.as_path()).map_err(ErrorKind::from) {
|
|
Ok(path) => path,
|
|
Err(_) => path,
|
|
};
|
|
self.0.get(&path)
|
|
}
|
|
|
|
fn insert(&mut self, path: PathBuf, value: Value) -> Option<Value> {
|
|
self.0.insert(
|
|
match std::fs::canonicalize(path.as_path()).map_err(ErrorKind::from) {
|
|
Ok(path) => path,
|
|
Err(_) => path,
|
|
},
|
|
value,
|
|
)
|
|
}
|
|
}
|
|
|
|
struct VM<'o, IO> {
|
|
/// VM's frame stack, representing the execution contexts the VM is working
|
|
/// through. Elements are usually pushed when functions are called, or
|
|
/// thunks are being forced.
|
|
frames: Vec<Frame>,
|
|
|
|
/// The VM's top-level value stack. Within this stack, each code-executing
|
|
/// frame holds a "view" of the stack representing the slice of the
|
|
/// top-level stack that is relevant to its operation. This is done to avoid
|
|
/// allocating a new `Vec` for each frame's stack.
|
|
pub(crate) stack: Vec<Value>,
|
|
|
|
/// Stack indices (absolute indexes into `stack`) of attribute
|
|
/// sets from which variables should be dynamically resolved
|
|
/// (`with`).
|
|
with_stack: Vec<usize>,
|
|
|
|
/// Runtime warnings collected during evaluation.
|
|
warnings: Vec<EvalWarning>,
|
|
|
|
/// Import cache, mapping absolute file paths to the value that
|
|
/// they compile to. Note that this reuses thunks, too!
|
|
// TODO: should probably be based on a file hash
|
|
pub import_cache: ImportCache,
|
|
|
|
/// Data structure holding all source code evaluated in this VM,
|
|
/// used for pretty error reporting.
|
|
source: SourceCode,
|
|
|
|
/// Parsed Nix search path, which is used to resolve `<...>`
|
|
/// references.
|
|
nix_search_path: NixSearchPath,
|
|
|
|
/// Implementation of I/O operations used for impure builtins and
|
|
/// features like `import`.
|
|
io_handle: IO,
|
|
|
|
/// Runtime observer which can print traces of runtime operations.
|
|
observer: &'o mut dyn RuntimeObserver,
|
|
|
|
/// Strong reference to the globals, guaranteeing that they are
|
|
/// kept alive for the duration of evaluation.
|
|
///
|
|
/// This is important because recursive builtins (specifically
|
|
/// `import`) hold a weak reference to the builtins, while the
|
|
/// original strong reference is held by the compiler which does
|
|
/// not exist anymore at runtime.
|
|
#[allow(dead_code)]
|
|
globals: Rc<GlobalsMap>,
|
|
|
|
/// A reasonably applicable span that can be used for errors in each
|
|
/// execution situation.
|
|
///
|
|
/// The VM should update this whenever control flow changes take place (i.e.
|
|
/// entering or exiting a frame to yield control somewhere).
|
|
reasonable_span: LightSpan,
|
|
|
|
/// This field is responsible for handling `builtins.tryEval`. When that
|
|
/// builtin is encountered, it sends a special message to the VM which
|
|
/// pushes the frame index that requested to be informed of catchable
|
|
/// errors in this field.
|
|
///
|
|
/// The frame stack is then laid out like this:
|
|
///
|
|
/// ```notrust
|
|
/// ┌──┬──────────────────────────┐
|
|
/// │ 0│ `Result`-producing frame │
|
|
/// ├──┼──────────────────────────┤
|
|
/// │-1│ `builtins.tryEval` frame │
|
|
/// ├──┼──────────────────────────┤
|
|
/// │..│ ... other frames ... │
|
|
/// └──┴──────────────────────────┘
|
|
/// ```
|
|
///
|
|
/// Control is yielded to the outer VM loop, which evaluates the next frame
|
|
/// and returns the result itself to the `builtins.tryEval` frame.
|
|
try_eval_frames: Vec<usize>,
|
|
}
|
|
|
|
impl<'o, IO> VM<'o, IO>
|
|
where
|
|
IO: AsRef<dyn EvalIO> + 'static,
|
|
{
|
|
pub fn new(
|
|
nix_search_path: NixSearchPath,
|
|
io_handle: IO,
|
|
observer: &'o mut dyn RuntimeObserver,
|
|
source: SourceCode,
|
|
globals: Rc<GlobalsMap>,
|
|
reasonable_span: LightSpan,
|
|
) -> Self {
|
|
Self {
|
|
nix_search_path,
|
|
io_handle,
|
|
observer,
|
|
globals,
|
|
reasonable_span,
|
|
source,
|
|
frames: vec![],
|
|
stack: vec![],
|
|
with_stack: vec![],
|
|
warnings: vec![],
|
|
import_cache: Default::default(),
|
|
try_eval_frames: vec![],
|
|
}
|
|
}
|
|
|
|
/// Push a call frame onto the frame stack.
|
|
fn push_call_frame(&mut self, span: LightSpan, call_frame: CallFrame) {
|
|
self.frames.push(Frame::CallFrame { span, call_frame })
|
|
}
|
|
|
|
/// Run the VM's primary (outer) execution loop, continuing execution based
|
|
/// on the current frame at the top of the frame stack.
|
|
fn execute(mut self) -> EvalResult<RuntimeResult> {
|
|
while let Some(frame) = self.frames.pop() {
|
|
self.reasonable_span = frame.span();
|
|
let frame_id = self.frames.len();
|
|
|
|
match frame {
|
|
Frame::CallFrame { call_frame, span } => {
|
|
self.observer
|
|
.observe_enter_call_frame(0, &call_frame.lambda, frame_id);
|
|
|
|
match self.execute_bytecode(span, call_frame) {
|
|
Ok(true) => self.observer.observe_exit_call_frame(frame_id, &self.stack),
|
|
Ok(false) => self
|
|
.observer
|
|
.observe_suspend_call_frame(frame_id, &self.stack),
|
|
|
|
Err(err) => return Err(err),
|
|
};
|
|
}
|
|
|
|
// Handle generator frames, which can request thunk forcing
|
|
// during their execution.
|
|
Frame::Generator {
|
|
name,
|
|
span,
|
|
state,
|
|
generator,
|
|
} => {
|
|
self.observer
|
|
.observe_enter_generator(frame_id, name, &self.stack);
|
|
|
|
match self.run_generator(name, span, frame_id, state, generator, None) {
|
|
Ok(true) => {
|
|
self.observer
|
|
.observe_exit_generator(frame_id, name, &self.stack)
|
|
}
|
|
Ok(false) => {
|
|
self.observer
|
|
.observe_suspend_generator(frame_id, name, &self.stack)
|
|
}
|
|
|
|
Err(err) => return Err(err),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
// Once no more frames are present, return the stack's top value as the
|
|
// result.
|
|
let value = self
|
|
.stack
|
|
.pop()
|
|
.expect("tvix bug: runtime stack empty after execution");
|
|
Ok(RuntimeResult {
|
|
value,
|
|
warnings: self.warnings,
|
|
})
|
|
}
|
|
|
|
/// Run the VM's inner execution loop, processing Tvix bytecode from a
|
|
/// chunk. This function returns if:
|
|
///
|
|
/// 1. The code has run to the end, and has left a value on the top of the
|
|
/// stack. In this case, the frame is not returned to the frame stack.
|
|
///
|
|
/// 2. The code encounters a generator, in which case the frame in its
|
|
/// current state is pushed back on the stack, and the generator is left on
|
|
/// top of it for the outer loop to execute.
|
|
///
|
|
/// 3. An error is encountered.
|
|
///
|
|
/// This function *must* ensure that it leaves the frame stack in the
|
|
/// correct order, especially when re-enqueuing a frame to execute.
|
|
///
|
|
/// The return value indicates whether the bytecode has been executed to
|
|
/// completion, or whether it has been suspended in favour of a generator.
|
|
fn execute_bytecode(&mut self, span: LightSpan, mut frame: CallFrame) -> EvalResult<bool> {
|
|
loop {
|
|
let op = frame.inc_ip();
|
|
self.observer.observe_execute_op(frame.ip, &op, &self.stack);
|
|
|
|
match op {
|
|
OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => {
|
|
let blueprint = match &frame.chunk()[idx] {
|
|
Value::Blueprint(lambda) => lambda.clone(),
|
|
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
|
|
};
|
|
|
|
let upvalue_count = blueprint.upvalue_count;
|
|
let thunk = if matches!(op, OpCode::OpThunkClosure(_)) {
|
|
debug_assert!(
|
|
upvalue_count > 0,
|
|
"OpThunkClosure should not be called for plain lambdas"
|
|
);
|
|
Thunk::new_closure(blueprint)
|
|
} else {
|
|
Thunk::new_suspended(blueprint, frame.current_light_span())
|
|
};
|
|
let upvalues = thunk.upvalues_mut();
|
|
self.stack.push(Value::Thunk(thunk.clone()));
|
|
|
|
// From this point on we internally mutate the
|
|
// upvalues. The closure (if `is_closure`) is
|
|
// already in its stack slot, which means that it
|
|
// can capture itself as an upvalue for
|
|
// self-recursion.
|
|
self.populate_upvalues(&mut frame, upvalue_count, upvalues)?;
|
|
}
|
|
|
|
OpCode::OpForce => {
|
|
if let Some(Value::Thunk(_)) = self.stack.last() {
|
|
let thunk = match self.stack_pop() {
|
|
Value::Thunk(t) => t,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let gen_span = frame.current_light_span();
|
|
|
|
self.push_call_frame(span, frame);
|
|
self.enqueue_generator("force", gen_span.clone(), |co| {
|
|
Thunk::force(thunk, co, gen_span)
|
|
});
|
|
|
|
return Ok(false);
|
|
}
|
|
}
|
|
|
|
OpCode::OpGetUpvalue(upv_idx) => {
|
|
let value = frame.upvalue(upv_idx).clone();
|
|
self.stack.push(value);
|
|
}
|
|
|
|
// Discard the current frame.
|
|
OpCode::OpReturn => {
|
|
// TODO(amjoseph): I think this should assert `==` rather
|
|
// than `<=` but it fails with the stricter condition.
|
|
debug_assert!(self.stack.len() - 1 <= frame.stack_offset);
|
|
return Ok(true);
|
|
}
|
|
|
|
OpCode::OpConstant(idx) => {
|
|
let c = frame.chunk()[idx].clone();
|
|
self.stack.push(c);
|
|
}
|
|
|
|
OpCode::OpCall => {
|
|
let callable = self.stack_pop();
|
|
self.call_value(frame.current_light_span(), Some((span, frame)), callable)?;
|
|
|
|
// exit this loop and let the outer loop enter the new call
|
|
return Ok(true);
|
|
}
|
|
|
|
// Remove the given number of elements from the stack,
|
|
// but retain the top value.
|
|
OpCode::OpCloseScope(Count(count)) => {
|
|
// Immediately move the top value into the right
|
|
// position.
|
|
let target_idx = self.stack.len() - 1 - count;
|
|
self.stack[target_idx] = self.stack_pop();
|
|
|
|
// Then drop the remaining values.
|
|
for _ in 0..(count - 1) {
|
|
self.stack.pop();
|
|
}
|
|
}
|
|
|
|
OpCode::OpClosure(idx) => {
|
|
let blueprint = match &frame.chunk()[idx] {
|
|
Value::Blueprint(lambda) => lambda.clone(),
|
|
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
|
|
};
|
|
|
|
let upvalue_count = blueprint.upvalue_count;
|
|
debug_assert!(
|
|
upvalue_count > 0,
|
|
"OpClosure should not be called for plain lambdas"
|
|
);
|
|
|
|
let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count);
|
|
self.populate_upvalues(&mut frame, upvalue_count, &mut upvalues)?;
|
|
self.stack
|
|
.push(Value::Closure(Rc::new(Closure::new_with_upvalues(
|
|
Rc::new(upvalues),
|
|
blueprint,
|
|
))));
|
|
}
|
|
|
|
OpCode::OpAttrsSelect => lifted_pop! {
|
|
self(key, attrs) => {
|
|
let key = key.to_str().with_span(&frame, self)?;
|
|
let attrs = attrs.to_attrs().with_span(&frame, self)?;
|
|
|
|
match attrs.select(&key) {
|
|
Some(value) => self.stack.push(value.clone()),
|
|
|
|
None => {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::AttributeNotFound {
|
|
name: key.to_str_lossy().into_owned()
|
|
},
|
|
);
|
|
}
|
|
}
|
|
}
|
|
},
|
|
|
|
OpCode::OpJumpIfFalse(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if !self.stack_peek(0).as_bool().with_span(&frame, self)? {
|
|
frame.ip += offset;
|
|
}
|
|
}
|
|
|
|
OpCode::OpJumpIfCatchable(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if self.stack_peek(0).is_catchable() {
|
|
frame.ip += offset;
|
|
}
|
|
}
|
|
|
|
OpCode::OpJumpIfNoFinaliseRequest(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
match self.stack_peek(0) {
|
|
Value::FinaliseRequest(finalise) => {
|
|
if !finalise {
|
|
frame.ip += offset;
|
|
}
|
|
},
|
|
val => panic!("Tvix bug: OpJumIfNoFinaliseRequest: expected FinaliseRequest, but got {}", val.type_of()),
|
|
}
|
|
}
|
|
|
|
OpCode::OpPop => {
|
|
self.stack.pop();
|
|
}
|
|
|
|
OpCode::OpAttrsTrySelect => {
|
|
let key = self.stack_pop().to_str().with_span(&frame, self)?;
|
|
let value = match self.stack_pop() {
|
|
Value::Attrs(attrs) => match attrs.select(&key) {
|
|
Some(value) => value.clone(),
|
|
None => Value::AttrNotFound,
|
|
},
|
|
|
|
_ => Value::AttrNotFound,
|
|
};
|
|
|
|
self.stack.push(value);
|
|
}
|
|
|
|
OpCode::OpGetLocal(StackIdx(local_idx)) => {
|
|
let idx = frame.stack_offset + local_idx;
|
|
self.stack.push(self.stack[idx].clone());
|
|
}
|
|
|
|
OpCode::OpJumpIfNotFound(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if matches!(self.stack_peek(0), Value::AttrNotFound) {
|
|
self.stack_pop();
|
|
frame.ip += offset;
|
|
}
|
|
}
|
|
|
|
OpCode::OpJump(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
frame.ip += offset;
|
|
}
|
|
|
|
OpCode::OpEqual => lifted_pop! {
|
|
self(b, a) => {
|
|
let gen_span = frame.current_light_span();
|
|
self.push_call_frame(span, frame);
|
|
self.enqueue_generator("nix_eq", gen_span.clone(), |co| {
|
|
a.nix_eq_owned_genco(b, co, PointerEquality::ForbidAll, gen_span)
|
|
});
|
|
return Ok(false);
|
|
}
|
|
},
|
|
|
|
// These assertion operations error out if the stack
|
|
// top is not of the expected type. This is necessary
|
|
// to implement some specific behaviours of Nix
|
|
// exactly.
|
|
OpCode::OpAssertBool => {
|
|
let val = self.stack_peek(0);
|
|
// TODO(edef): propagate this into is_bool, since bottom values *are* values of any type
|
|
if !val.is_catchable() && !val.is_bool() {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::TypeError {
|
|
expected: "bool",
|
|
actual: val.type_of(),
|
|
},
|
|
);
|
|
}
|
|
}
|
|
|
|
OpCode::OpAssertAttrs => {
|
|
let val = self.stack_peek(0);
|
|
// TODO(edef): propagate this into is_attrs, since bottom values *are* values of any type
|
|
if !val.is_catchable() && !val.is_attrs() {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::TypeError {
|
|
expected: "set",
|
|
actual: val.type_of(),
|
|
},
|
|
);
|
|
}
|
|
}
|
|
|
|
OpCode::OpAttrs(Count(count)) => self.run_attrset(&frame, count)?,
|
|
|
|
OpCode::OpAttrsUpdate => lifted_pop! {
|
|
self(rhs, lhs) => {
|
|
let rhs = rhs.to_attrs().with_span(&frame, self)?;
|
|
let lhs = lhs.to_attrs().with_span(&frame, self)?;
|
|
self.stack.push(Value::attrs(lhs.update(*rhs)))
|
|
}
|
|
},
|
|
|
|
OpCode::OpInvert => lifted_pop! {
|
|
self(v) => {
|
|
let v = v.as_bool().with_span(&frame, self)?;
|
|
self.stack.push(Value::Bool(!v));
|
|
}
|
|
},
|
|
|
|
OpCode::OpList(Count(count)) => {
|
|
let list =
|
|
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
|
|
|
|
self.stack.push(Value::List(list));
|
|
}
|
|
|
|
OpCode::OpJumpIfTrue(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if self.stack_peek(0).as_bool().with_span(&frame, self)? {
|
|
frame.ip += offset;
|
|
}
|
|
}
|
|
|
|
OpCode::OpHasAttr => lifted_pop! {
|
|
self(key, attrs) => {
|
|
let key = key.to_str().with_span(&frame, self)?;
|
|
let result = match attrs {
|
|
Value::Attrs(attrs) => attrs.contains(&key),
|
|
|
|
// Nix allows use of `?` on non-set types, but
|
|
// always returns false in those cases.
|
|
_ => false,
|
|
};
|
|
|
|
self.stack.push(Value::Bool(result));
|
|
}
|
|
},
|
|
|
|
OpCode::OpConcat => lifted_pop! {
|
|
self(rhs, lhs) => {
|
|
let rhs = rhs.to_list().with_span(&frame, self)?.into_inner();
|
|
let lhs = lhs.to_list().with_span(&frame, self)?.into_inner();
|
|
self.stack.push(Value::List(NixList::from(lhs + rhs)))
|
|
}
|
|
},
|
|
|
|
OpCode::OpResolveWith => {
|
|
let ident = self.stack_pop().to_str().with_span(&frame, self)?;
|
|
|
|
// Re-enqueue this frame.
|
|
let op_span = frame.current_light_span();
|
|
self.push_call_frame(span, frame);
|
|
|
|
// Construct a generator frame doing the lookup in constant
|
|
// stack space.
|
|
let with_stack_len = self.with_stack.len();
|
|
let closed_with_stack_len = self
|
|
.last_call_frame()
|
|
.map(|frame| frame.upvalues.with_stack_len())
|
|
.unwrap_or(0);
|
|
|
|
self.enqueue_generator("resolve_with", op_span, |co| {
|
|
resolve_with(
|
|
co,
|
|
ident.as_bstr().to_owned(),
|
|
with_stack_len,
|
|
closed_with_stack_len,
|
|
)
|
|
});
|
|
|
|
return Ok(false);
|
|
}
|
|
|
|
OpCode::OpFinalise(StackIdx(idx)) => match &self.stack[frame.stack_offset + idx] {
|
|
Value::Closure(_) => panic!("attempted to finalise a closure"),
|
|
Value::Thunk(thunk) => thunk.finalise(&self.stack[frame.stack_offset..]),
|
|
_ => panic!("attempted to finalise a non-thunk"),
|
|
},
|
|
|
|
OpCode::OpCoerceToString(kind) => {
|
|
let value = self.stack_pop();
|
|
let gen_span = frame.current_light_span();
|
|
self.push_call_frame(span, frame);
|
|
|
|
self.enqueue_generator("coerce_to_string", gen_span.clone(), |co| {
|
|
value.coerce_to_string(co, kind, gen_span)
|
|
});
|
|
|
|
return Ok(false);
|
|
}
|
|
|
|
OpCode::OpInterpolate(Count(count)) => self.run_interpolate(&frame, count)?,
|
|
|
|
OpCode::OpValidateClosedFormals => {
|
|
let formals = frame.lambda.formals.as_ref().expect(
|
|
"OpValidateClosedFormals called within the frame of a lambda without formals",
|
|
);
|
|
|
|
let peeked = self.stack_peek(0);
|
|
if peeked.is_catchable() {
|
|
continue;
|
|
}
|
|
|
|
let args = peeked.to_attrs().with_span(&frame, self)?;
|
|
for arg in args.keys() {
|
|
if !formals.contains(arg) {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::UnexpectedArgument {
|
|
arg: arg.clone(),
|
|
formals_span: formals.span,
|
|
},
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
OpCode::OpAdd => lifted_pop! {
|
|
self(b, a) => {
|
|
let gen_span = frame.current_light_span();
|
|
self.push_call_frame(span, frame);
|
|
|
|
// OpAdd can add not just numbers, but also string-like
|
|
// things, which requires more VM logic. This operation is
|
|
// evaluated in a generator frame.
|
|
self.enqueue_generator("add_values", gen_span, |co| add_values(co, a, b));
|
|
return Ok(false);
|
|
}
|
|
},
|
|
|
|
OpCode::OpSub => lifted_pop! {
|
|
self(b, a) => {
|
|
let result = arithmetic_op!(&a, &b, -).with_span(&frame, self)?;
|
|
self.stack.push(result);
|
|
}
|
|
},
|
|
|
|
OpCode::OpMul => lifted_pop! {
|
|
self(b, a) => {
|
|
let result = arithmetic_op!(&a, &b, *).with_span(&frame, self)?;
|
|
self.stack.push(result);
|
|
}
|
|
},
|
|
|
|
OpCode::OpDiv => lifted_pop! {
|
|
self(b, a) => {
|
|
match b {
|
|
Value::Integer(0) => return frame.error(self, ErrorKind::DivisionByZero),
|
|
Value::Float(b) if b == 0.0_f64 => {
|
|
return frame.error(self, ErrorKind::DivisionByZero)
|
|
}
|
|
_ => {}
|
|
};
|
|
|
|
let result = arithmetic_op!(&a, &b, /).with_span(&frame, self)?;
|
|
self.stack.push(result);
|
|
}
|
|
},
|
|
|
|
OpCode::OpNegate => match self.stack_pop() {
|
|
Value::Integer(i) => self.stack.push(Value::Integer(-i)),
|
|
Value::Float(f) => self.stack.push(Value::Float(-f)),
|
|
Value::Catchable(cex) => self.stack.push(Value::Catchable(cex)),
|
|
v => {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::TypeError {
|
|
expected: "number (either int or float)",
|
|
actual: v.type_of(),
|
|
},
|
|
);
|
|
}
|
|
},
|
|
|
|
OpCode::OpLess => cmp_op!(self, frame, span, <),
|
|
OpCode::OpLessOrEq => cmp_op!(self, frame, span, <=),
|
|
OpCode::OpMore => cmp_op!(self, frame, span, >),
|
|
OpCode::OpMoreOrEq => cmp_op!(self, frame, span, >=),
|
|
|
|
OpCode::OpFindFile => match self.stack_pop() {
|
|
Value::UnresolvedPath(path) => {
|
|
let resolved = self
|
|
.nix_search_path
|
|
.resolve(&self.io_handle, *path)
|
|
.with_span(&frame, self)?;
|
|
self.stack.push(resolved.into());
|
|
}
|
|
|
|
_ => panic!("tvix compiler bug: OpFindFile called on non-UnresolvedPath"),
|
|
},
|
|
|
|
OpCode::OpResolveHomePath => match self.stack_pop() {
|
|
Value::UnresolvedPath(path) => {
|
|
match dirs::home_dir() {
|
|
None => {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::RelativePathResolution(
|
|
"failed to determine home directory".into(),
|
|
),
|
|
);
|
|
}
|
|
Some(mut buf) => {
|
|
buf.push(*path);
|
|
self.stack.push(buf.into());
|
|
}
|
|
};
|
|
}
|
|
|
|
_ => {
|
|
panic!("tvix compiler bug: OpResolveHomePath called on non-UnresolvedPath")
|
|
}
|
|
},
|
|
|
|
OpCode::OpPushWith(StackIdx(idx)) => self.with_stack.push(frame.stack_offset + idx),
|
|
|
|
OpCode::OpPopWith => {
|
|
self.with_stack.pop();
|
|
}
|
|
|
|
OpCode::OpAssertFail => {
|
|
self.stack
|
|
.push(Value::from(CatchableErrorKind::AssertionFailed));
|
|
}
|
|
|
|
// Data-carrying operands should never be executed,
|
|
// that is a critical error in the VM/compiler.
|
|
OpCode::DataStackIdx(_)
|
|
| OpCode::DataDeferredLocal(_)
|
|
| OpCode::DataUpvalueIdx(_)
|
|
| OpCode::DataCaptureWith => {
|
|
panic!("Tvix bug: attempted to execute data-carrying operand")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Implementation of helper functions for the runtime logic above.
|
|
impl<'o, IO> VM<'o, IO>
|
|
where
|
|
IO: AsRef<dyn EvalIO> + 'static,
|
|
{
|
|
pub(crate) fn stack_pop(&mut self) -> Value {
|
|
self.stack.pop().expect("runtime stack empty")
|
|
}
|
|
|
|
fn stack_peek(&self, offset: usize) -> &Value {
|
|
&self.stack[self.stack.len() - 1 - offset]
|
|
}
|
|
|
|
fn run_attrset(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> {
|
|
let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))
|
|
.with_span(frame, self)?
|
|
.map(Value::attrs)
|
|
.into();
|
|
|
|
self.stack.push(attrs);
|
|
Ok(())
|
|
}
|
|
|
|
/// Access the last call frame present in the frame stack.
|
|
fn last_call_frame(&self) -> Option<&CallFrame> {
|
|
for frame in self.frames.iter().rev() {
|
|
if let Frame::CallFrame { call_frame, .. } = frame {
|
|
return Some(call_frame);
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Push an already constructed warning.
|
|
pub fn push_warning(&mut self, warning: EvalWarning) {
|
|
self.warnings.push(warning);
|
|
}
|
|
|
|
/// Emit a warning with the given WarningKind and the source span
|
|
/// of the current instruction.
|
|
pub fn emit_warning(&mut self, kind: WarningKind) {
|
|
self.push_warning(EvalWarning {
|
|
kind,
|
|
span: self.get_span(),
|
|
});
|
|
}
|
|
|
|
/// Interpolate string fragments by popping the specified number of
|
|
/// fragments of the stack, evaluating them to strings, and pushing
|
|
/// the concatenated result string back on the stack.
|
|
fn run_interpolate(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> {
|
|
let mut out = BString::default();
|
|
// Interpolation propagates the context and union them.
|
|
let mut context: NixContext = NixContext::new();
|
|
|
|
for i in 0..count {
|
|
let val = self.stack_pop();
|
|
if val.is_catchable() {
|
|
for _ in (i + 1)..count {
|
|
self.stack.pop();
|
|
}
|
|
self.stack.push(val);
|
|
return Ok(());
|
|
}
|
|
let mut nix_string = val.to_contextful_str().with_span(frame, self)?;
|
|
out.push_str(nix_string.as_bstr());
|
|
if let Some(nix_string_ctx) = nix_string.context_mut() {
|
|
context = context.join(nix_string_ctx);
|
|
}
|
|
}
|
|
|
|
self.stack
|
|
.push(Value::String(NixString::new_context_from(context, out)));
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns a reasonable light span for the current situation that the VM is
|
|
/// in.
|
|
pub fn reasonable_light_span(&self) -> LightSpan {
|
|
self.reasonable_span.clone()
|
|
}
|
|
|
|
/// Apply an argument from the stack to a builtin, and attempt to call it.
|
|
///
|
|
/// All calls are tail-calls in Tvix, as every function application is a
|
|
/// separate thunk and OpCall is thus the last result in the thunk.
|
|
///
|
|
/// Due to this, once control flow exits this function, the generator will
|
|
/// automatically be run by the VM.
|
|
fn call_builtin(&mut self, span: LightSpan, mut builtin: Builtin) -> EvalResult<()> {
|
|
let builtin_name = builtin.name();
|
|
self.observer.observe_enter_builtin(builtin_name);
|
|
|
|
builtin.apply_arg(self.stack_pop());
|
|
|
|
match builtin.call() {
|
|
// Partially applied builtin is just pushed back on the stack.
|
|
BuiltinResult::Partial(partial) => self.stack.push(Value::Builtin(partial)),
|
|
|
|
// Builtin is fully applied and the generator needs to be run by the VM.
|
|
BuiltinResult::Called(name, generator) => self.frames.push(Frame::Generator {
|
|
generator,
|
|
span,
|
|
name,
|
|
state: GeneratorState::Running,
|
|
}),
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn call_value(
|
|
&mut self,
|
|
span: LightSpan,
|
|
parent: Option<(LightSpan, CallFrame)>,
|
|
callable: Value,
|
|
) -> EvalResult<()> {
|
|
match callable {
|
|
Value::Builtin(builtin) => self.call_builtin(span, builtin),
|
|
Value::Thunk(thunk) => self.call_value(span, parent, thunk.value().clone()),
|
|
|
|
Value::Closure(closure) => {
|
|
let lambda = closure.lambda();
|
|
self.observer.observe_tail_call(self.frames.len(), &lambda);
|
|
|
|
// The stack offset is always `stack.len() - arg_count`, and
|
|
// since this branch handles native Nix functions (which always
|
|
// take only a single argument and are curried), the offset is
|
|
// `stack_len - 1`.
|
|
let stack_offset = self.stack.len() - 1;
|
|
|
|
// Reenqueue the parent frame, which should only have
|
|
// `OpReturn` left. Not throwing it away leads to more
|
|
// useful error traces.
|
|
if let Some((parent_span, parent_frame)) = parent {
|
|
self.push_call_frame(parent_span, parent_frame);
|
|
}
|
|
|
|
self.push_call_frame(
|
|
span,
|
|
CallFrame {
|
|
lambda,
|
|
upvalues: closure.upvalues(),
|
|
ip: CodeIdx(0),
|
|
stack_offset,
|
|
},
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Attribute sets with a __functor attribute are callable.
|
|
val @ Value::Attrs(_) => {
|
|
if let Some((parent_span, parent_frame)) = parent {
|
|
self.push_call_frame(parent_span, parent_frame);
|
|
}
|
|
|
|
self.enqueue_generator("__functor call", span, |co| call_functor(co, val));
|
|
Ok(())
|
|
}
|
|
|
|
val @ Value::Catchable(_) => {
|
|
// the argument that we tried to apply a catchable to
|
|
self.stack.pop();
|
|
// applying a `throw` to anything is still a `throw`, so we just
|
|
// push it back on the stack.
|
|
self.stack.push(val);
|
|
Ok(())
|
|
}
|
|
|
|
v => Err(ErrorKind::NotCallable(v.type_of())).with_span(&span, self),
|
|
}
|
|
}
|
|
|
|
/// Populate the upvalue fields of a thunk or closure under construction.
|
|
fn populate_upvalues(
|
|
&mut self,
|
|
frame: &mut CallFrame,
|
|
count: usize,
|
|
mut upvalues: impl DerefMut<Target = Upvalues>,
|
|
) -> EvalResult<()> {
|
|
for _ in 0..count {
|
|
match frame.inc_ip() {
|
|
OpCode::DataStackIdx(StackIdx(stack_idx)) => {
|
|
let idx = frame.stack_offset + stack_idx;
|
|
|
|
let val = match self.stack.get(idx) {
|
|
Some(val) => val.clone(),
|
|
None => {
|
|
return frame.error(
|
|
self,
|
|
ErrorKind::TvixBug {
|
|
msg: "upvalue to be captured was missing on stack",
|
|
metadata: Some(Rc::new(json!({
|
|
"ip": format!("{:#x}", frame.ip.0 - 1),
|
|
"stack_idx(relative)": stack_idx,
|
|
"stack_idx(absolute)": idx,
|
|
}))),
|
|
},
|
|
);
|
|
}
|
|
};
|
|
|
|
upvalues.deref_mut().push(val);
|
|
}
|
|
|
|
OpCode::DataUpvalueIdx(upv_idx) => {
|
|
upvalues.deref_mut().push(frame.upvalue(upv_idx).clone());
|
|
}
|
|
|
|
OpCode::DataDeferredLocal(idx) => {
|
|
upvalues.deref_mut().push(Value::DeferredUpvalue(idx));
|
|
}
|
|
|
|
OpCode::DataCaptureWith => {
|
|
// Start the captured with_stack off of the
|
|
// current call frame's captured with_stack, ...
|
|
let mut captured_with_stack = frame
|
|
.upvalues
|
|
.with_stack()
|
|
.map(Clone::clone)
|
|
// ... or make an empty one if there isn't one already.
|
|
.unwrap_or_else(|| Vec::with_capacity(self.with_stack.len()));
|
|
|
|
for idx in &self.with_stack {
|
|
captured_with_stack.push(self.stack[*idx].clone());
|
|
}
|
|
|
|
upvalues.deref_mut().set_with_stack(captured_with_stack);
|
|
}
|
|
|
|
_ => panic!("compiler error: missing closure operand"),
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
// TODO(amjoseph): de-asyncify this
|
|
/// Resolve a dynamically bound identifier (through `with`) by looking
|
|
/// for matching values in the with-stacks carried at runtime.
|
|
async fn resolve_with(
|
|
co: GenCo,
|
|
ident: BString,
|
|
vm_with_len: usize,
|
|
upvalue_with_len: usize,
|
|
) -> Result<Value, ErrorKind> {
|
|
/// Fetch and force a value on the with-stack from the VM.
|
|
async fn fetch_forced_with(co: &GenCo, idx: usize) -> Value {
|
|
match co.yield_(VMRequest::WithValue(idx)).await {
|
|
VMResponse::Value(value) => value,
|
|
msg => panic!(
|
|
"Tvix bug: VM responded with incorrect generator message: {}",
|
|
msg
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Fetch and force a value on the *captured* with-stack from the VM.
|
|
async fn fetch_captured_with(co: &GenCo, idx: usize) -> Value {
|
|
match co.yield_(VMRequest::CapturedWithValue(idx)).await {
|
|
VMResponse::Value(value) => value,
|
|
msg => panic!(
|
|
"Tvix bug: VM responded with incorrect generator message: {}",
|
|
msg
|
|
),
|
|
}
|
|
}
|
|
|
|
for with_stack_idx in (0..vm_with_len).rev() {
|
|
// TODO(tazjin): is this branch still live with the current with-thunking?
|
|
let with = fetch_forced_with(&co, with_stack_idx).await;
|
|
|
|
if with.is_catchable() {
|
|
return Ok(with);
|
|
}
|
|
|
|
match with.to_attrs()?.select(&ident) {
|
|
None => continue,
|
|
Some(val) => return Ok(val.clone()),
|
|
}
|
|
}
|
|
|
|
for upvalue_with_idx in (0..upvalue_with_len).rev() {
|
|
let with = fetch_captured_with(&co, upvalue_with_idx).await;
|
|
|
|
if with.is_catchable() {
|
|
return Ok(with);
|
|
}
|
|
|
|
match with.to_attrs()?.select(&ident) {
|
|
None => continue,
|
|
Some(val) => return Ok(val.clone()),
|
|
}
|
|
}
|
|
|
|
Err(ErrorKind::UnknownDynamicVariable(ident.to_string()))
|
|
}
|
|
|
|
// TODO(amjoseph): de-asyncify this
|
|
async fn add_values(co: GenCo, a: Value, b: Value) -> Result<Value, ErrorKind> {
|
|
// What we try to do is solely determined by the type of the first value!
|
|
let result = match (a, b) {
|
|
(Value::Path(p), v) => {
|
|
let mut path = p.into_os_string();
|
|
match generators::request_string_coerce(
|
|
&co,
|
|
v,
|
|
CoercionKind {
|
|
strong: false,
|
|
|
|
// Concatenating a Path with something else results in a
|
|
// Path, so we don't need to import any paths (paths
|
|
// imported by Nix always exist as a string, unless
|
|
// converted by the user). In C++ Nix they even may not
|
|
// contain any string context, the resulting error of such a
|
|
// case can not be replicated by us.
|
|
import_paths: false,
|
|
// FIXME(raitobezarius): per https://b.tvl.fyi/issues/364, this is a usecase
|
|
// for having a `reject_context: true` option here. This didn't occur yet in
|
|
// nixpkgs during my evaluations, therefore, I skipped it.
|
|
},
|
|
)
|
|
.await
|
|
{
|
|
Ok(vs) => {
|
|
path.push(vs.to_os_str()?);
|
|
crate::value::canon_path(PathBuf::from(path)).into()
|
|
}
|
|
Err(c) => Value::Catchable(Box::new(c)),
|
|
}
|
|
}
|
|
(Value::String(s1), Value::String(s2)) => Value::String(s1.concat(&s2)),
|
|
(Value::String(s1), v) => generators::request_string_coerce(
|
|
&co,
|
|
v,
|
|
CoercionKind {
|
|
strong: false,
|
|
// Behaves the same as string interpolation
|
|
import_paths: true,
|
|
},
|
|
)
|
|
.await
|
|
.map(|s2| Value::String(s1.concat(&s2)))
|
|
.into(),
|
|
(a @ Value::Integer(_), b) | (a @ Value::Float(_), b) => arithmetic_op!(&a, &b, +)?,
|
|
(a, b) => {
|
|
let r1 = generators::request_string_coerce(
|
|
&co,
|
|
a,
|
|
CoercionKind {
|
|
strong: false,
|
|
import_paths: false,
|
|
},
|
|
)
|
|
.await;
|
|
let r2 = generators::request_string_coerce(
|
|
&co,
|
|
b,
|
|
CoercionKind {
|
|
strong: false,
|
|
import_paths: false,
|
|
},
|
|
)
|
|
.await;
|
|
match (r1, r2) {
|
|
(Ok(s1), Ok(s2)) => Value::String(s1.concat(&s2)),
|
|
(Err(c), _) => return Ok(Value::from(c)),
|
|
(_, Err(c)) => return Ok(Value::from(c)),
|
|
}
|
|
}
|
|
};
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
/// The result of a VM's runtime evaluation.
|
|
pub struct RuntimeResult {
|
|
pub value: Value,
|
|
pub warnings: Vec<EvalWarning>,
|
|
}
|
|
|
|
// TODO(amjoseph): de-asyncify this
|
|
/// Generator that retrieves the final value from the stack, and deep-forces it
|
|
/// before returning.
|
|
async fn final_deep_force(co: GenCo) -> Result<Value, ErrorKind> {
|
|
let value = generators::request_stack_pop(&co).await;
|
|
Ok(generators::request_deep_force(&co, value).await)
|
|
}
|
|
|
|
pub fn run_lambda<IO>(
|
|
nix_search_path: NixSearchPath,
|
|
io_handle: IO,
|
|
observer: &mut dyn RuntimeObserver,
|
|
source: SourceCode,
|
|
globals: Rc<GlobalsMap>,
|
|
lambda: Rc<Lambda>,
|
|
strict: bool,
|
|
) -> EvalResult<RuntimeResult>
|
|
where
|
|
IO: AsRef<dyn EvalIO> + 'static,
|
|
{
|
|
// Retain the top-level span of the expression in this lambda, as
|
|
// synthetic "calls" in deep_force will otherwise not have a span
|
|
// to fall back to.
|
|
//
|
|
// We exploit the fact that the compiler emits a final instruction
|
|
// with the span of the entire file for top-level expressions.
|
|
let root_span = lambda.chunk.get_span(CodeIdx(lambda.chunk.code.len() - 1));
|
|
|
|
let mut vm = VM::new(
|
|
nix_search_path,
|
|
io_handle,
|
|
observer,
|
|
source,
|
|
globals,
|
|
root_span.into(),
|
|
);
|
|
|
|
// When evaluating strictly, synthesise a frame that will instruct
|
|
// the VM to deep-force the final value before returning it.
|
|
if strict {
|
|
vm.enqueue_generator("final_deep_force", root_span.into(), final_deep_force);
|
|
}
|
|
|
|
vm.frames.push(Frame::CallFrame {
|
|
span: root_span.into(),
|
|
call_frame: CallFrame {
|
|
lambda,
|
|
upvalues: Rc::new(Upvalues::with_capacity(0)),
|
|
ip: CodeIdx(0),
|
|
stack_offset: 0,
|
|
},
|
|
});
|
|
|
|
vm.execute()
|
|
}
|