... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
		
			
				
	
	
		
			493 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			493 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: node_hash_set.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // An `absl::node_hash_set<T>` is an unordered associative container designed to
 | |
| // be a more efficient replacement for `std::unordered_set`. Like
 | |
| // `unordered_set`, search, insertion, and deletion of map elements can be done
 | |
| // as an `O(1)` operation. However, `node_hash_set` (and other unordered
 | |
| // associative containers known as the collection of Abseil "Swiss tables")
 | |
| // contain other optimizations that result in both memory and computation
 | |
| // advantages.
 | |
| //
 | |
| // In most cases, your default choice for a hash table should be a map of type
 | |
| // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
 | |
| // pointer stability, a `node_hash_set` should be your preferred choice. As
 | |
| // well, if you are migrating your code from using `std::unordered_set`, a
 | |
| // `node_hash_set` should be an easy migration. Consider migrating to
 | |
| // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
 | |
| // upon further review.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
 | |
| #define ABSL_CONTAINER_NODE_HASH_SET_H_
 | |
| 
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/algorithm/container.h"
 | |
| #include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
 | |
| #include "absl/container/internal/node_hash_policy.h"
 | |
| #include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
 | |
| #include "absl/memory/memory.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace container_internal {
 | |
| template <typename T>
 | |
| struct NodeHashSetPolicy;
 | |
| }  // namespace container_internal
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // absl::node_hash_set
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // An `absl::node_hash_set<T>` is an unordered associative container which
 | |
| // has been optimized for both speed and memory footprint in most common use
 | |
| // cases. Its interface is similar to that of `std::unordered_set<T>` with the
 | |
| // following notable differences:
 | |
| //
 | |
| // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
 | |
| //   `insert()`, provided that the map is provided a compatible heterogeneous
 | |
| //   hashing function and equality operator.
 | |
| // * Contains a `capacity()` member function indicating the number of element
 | |
| //   slots (open, deleted, and empty) within the hash set.
 | |
| // * Returns `void` from the `erase(iterator)` overload.
 | |
| //
 | |
| // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
 | |
| // All fundamental and Abseil types that support the `absl::Hash` framework have
 | |
| // a compatible equality operator for comparing insertions into `node_hash_set`.
 | |
| // If your type is not yet supported by the `absl::Hash` framework, see
 | |
| // absl/hash/hash.h for information on extending Abseil hashing to user-defined
 | |
| // types.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //   // Create a node hash set of three strings
 | |
| //   absl::node_hash_map<std::string, std::string> ducks =
 | |
| //     {"huey", "dewey", "louie"};
 | |
| //
 | |
| //  // Insert a new element into the node hash map
 | |
| //  ducks.insert("donald"};
 | |
| //
 | |
| //  // Force a rehash of the node hash map
 | |
| //  ducks.rehash(0);
 | |
| //
 | |
| //  // See if "dewey" is present
 | |
| //  if (ducks.contains("dewey")) {
 | |
| //    std::cout << "We found dewey!" << std::endl;
 | |
| //  }
 | |
| template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
 | |
|           class Eq = absl::container_internal::hash_default_eq<T>,
 | |
|           class Alloc = std::allocator<T>>
 | |
| class node_hash_set
 | |
|     : public absl::container_internal::raw_hash_set<
 | |
|           absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
 | |
|   using Base = typename node_hash_set::raw_hash_set;
 | |
| 
 | |
|  public:
 | |
|   // Constructors and Assignment Operators
 | |
|   //
 | |
|   // A node_hash_set supports the same overload set as `std::unordered_map`
 | |
|   // for construction and assignment:
 | |
|   //
 | |
|   // *  Default constructor
 | |
|   //
 | |
|   //    // No allocation for the table's elements is made.
 | |
|   //    absl::node_hash_set<std::string> set1;
 | |
|   //
 | |
|   // * Initializer List constructor
 | |
|   //
 | |
|   //   absl::node_hash_set<std::string> set2 =
 | |
|   //       {{"huey"}, {"dewey"}, {"louie"}};
 | |
|   //
 | |
|   // * Copy constructor
 | |
|   //
 | |
|   //   absl::node_hash_set<std::string> set3(set2);
 | |
|   //
 | |
|   // * Copy assignment operator
 | |
|   //
 | |
|   //  // Hash functor and Comparator are copied as well
 | |
|   //  absl::node_hash_set<std::string> set4;
 | |
|   //  set4 = set3;
 | |
|   //
 | |
|   // * Move constructor
 | |
|   //
 | |
|   //   // Move is guaranteed efficient
 | |
|   //   absl::node_hash_set<std::string> set5(std::move(set4));
 | |
|   //
 | |
|   // * Move assignment operator
 | |
|   //
 | |
|   //   // May be efficient if allocators are compatible
 | |
|   //   absl::node_hash_set<std::string> set6;
 | |
|   //   set6 = std::move(set5);
 | |
|   //
 | |
|   // * Range constructor
 | |
|   //
 | |
|   //   std::vector<std::string> v = {"a", "b"};
 | |
|   //   absl::node_hash_set<std::string> set7(v.begin(), v.end());
 | |
|   node_hash_set() {}
 | |
|   using Base::Base;
 | |
| 
 | |
|   // node_hash_set::begin()
 | |
|   //
 | |
|   // Returns an iterator to the beginning of the `node_hash_set`.
 | |
|   using Base::begin;
 | |
| 
 | |
|   // node_hash_set::cbegin()
 | |
|   //
 | |
|   // Returns a const iterator to the beginning of the `node_hash_set`.
 | |
|   using Base::cbegin;
 | |
| 
 | |
|   // node_hash_set::cend()
 | |
|   //
 | |
|   // Returns a const iterator to the end of the `node_hash_set`.
 | |
|   using Base::cend;
 | |
| 
 | |
|   // node_hash_set::end()
 | |
|   //
 | |
|   // Returns an iterator to the end of the `node_hash_set`.
 | |
|   using Base::end;
 | |
| 
 | |
|   // node_hash_set::capacity()
 | |
|   //
 | |
|   // Returns the number of element slots (assigned, deleted, and empty)
 | |
|   // available within the `node_hash_set`.
 | |
|   //
 | |
|   // NOTE: this member function is particular to `absl::node_hash_set` and is
 | |
|   // not provided in the `std::unordered_map` API.
 | |
|   using Base::capacity;
 | |
| 
 | |
|   // node_hash_set::empty()
 | |
|   //
 | |
|   // Returns whether or not the `node_hash_set` is empty.
 | |
|   using Base::empty;
 | |
| 
 | |
|   // node_hash_set::max_size()
 | |
|   //
 | |
|   // Returns the largest theoretical possible number of elements within a
 | |
|   // `node_hash_set` under current memory constraints. This value can be thought
 | |
|   // of the largest value of `std::distance(begin(), end())` for a
 | |
|   // `node_hash_set<T>`.
 | |
|   using Base::max_size;
 | |
| 
 | |
|   // node_hash_set::size()
 | |
|   //
 | |
|   // Returns the number of elements currently within the `node_hash_set`.
 | |
|   using Base::size;
 | |
| 
 | |
|   // node_hash_set::clear()
 | |
|   //
 | |
|   // Removes all elements from the `node_hash_set`. Invalidates any references,
 | |
|   // pointers, or iterators referring to contained elements.
 | |
|   //
 | |
|   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
 | |
|   // the underlying buffer call `erase(begin(), end())`.
 | |
|   using Base::clear;
 | |
| 
 | |
|   // node_hash_set::erase()
 | |
|   //
 | |
|   // Erases elements within the `node_hash_set`. Erasing does not trigger a
 | |
|   // rehash. Overloads are listed below.
 | |
|   //
 | |
|   // void erase(const_iterator pos):
 | |
|   //
 | |
|   //   Erases the element at `position` of the `node_hash_set`, returning
 | |
|   //   `void`.
 | |
|   //
 | |
|   //   NOTE: this return behavior is different than that of STL containers in
 | |
|   //   general and `std::unordered_map` in particular.
 | |
|   //
 | |
|   // iterator erase(const_iterator first, const_iterator last):
 | |
|   //
 | |
|   //   Erases the elements in the open interval [`first`, `last`), returning an
 | |
|   //   iterator pointing to `last`.
 | |
|   //
 | |
|   // size_type erase(const key_type& key):
 | |
|   //
 | |
|   //   Erases the element with the matching key, if it exists, returning the
 | |
|   //   number of elements erased (0 or 1).
 | |
|   using Base::erase;
 | |
| 
 | |
|   // node_hash_set::insert()
 | |
|   //
 | |
|   // Inserts an element of the specified value into the `node_hash_set`,
 | |
|   // returning an iterator pointing to the newly inserted element, provided that
 | |
|   // an element with the given key does not already exist. If rehashing occurs
 | |
|   // due to the insertion, all iterators are invalidated. Overloads are listed
 | |
|   // below.
 | |
|   //
 | |
|   // std::pair<iterator,bool> insert(const T& value):
 | |
|   //
 | |
|   //   Inserts a value into the `node_hash_set`. Returns a pair consisting of an
 | |
|   //   iterator to the inserted element (or to the element that prevented the
 | |
|   //   insertion) and a bool denoting whether the insertion took place.
 | |
|   //
 | |
|   // std::pair<iterator,bool> insert(T&& value):
 | |
|   //
 | |
|   //   Inserts a moveable value into the `node_hash_set`. Returns a pair
 | |
|   //   consisting of an iterator to the inserted element (or to the element that
 | |
|   //   prevented the insertion) and a bool denoting whether the insertion took
 | |
|   //   place.
 | |
|   //
 | |
|   // iterator insert(const_iterator hint, const T& value):
 | |
|   // iterator insert(const_iterator hint, T&& value):
 | |
|   //
 | |
|   //   Inserts a value, using the position of `hint` as a non-binding suggestion
 | |
|   //   for where to begin the insertion search. Returns an iterator to the
 | |
|   //   inserted element, or to the existing element that prevented the
 | |
|   //   insertion.
 | |
|   //
 | |
|   // void insert(InputIterator first, InputIterator last):
 | |
|   //
 | |
|   //   Inserts a range of values [`first`, `last`).
 | |
|   //
 | |
|   //   NOTE: Although the STL does not specify which element may be inserted if
 | |
|   //   multiple keys compare equivalently, for `node_hash_set` we guarantee the
 | |
|   //   first match is inserted.
 | |
|   //
 | |
|   // void insert(std::initializer_list<T> ilist):
 | |
|   //
 | |
|   //   Inserts the elements within the initializer list `ilist`.
 | |
|   //
 | |
|   //   NOTE: Although the STL does not specify which element may be inserted if
 | |
|   //   multiple keys compare equivalently within the initializer list, for
 | |
|   //   `node_hash_set` we guarantee the first match is inserted.
 | |
|   using Base::insert;
 | |
| 
 | |
|   // node_hash_set::emplace()
 | |
|   //
 | |
|   // Inserts an element of the specified value by constructing it in-place
 | |
|   // within the `node_hash_set`, provided that no element with the given key
 | |
|   // already exists.
 | |
|   //
 | |
|   // The element may be constructed even if there already is an element with the
 | |
|   // key in the container, in which case the newly constructed element will be
 | |
|   // destroyed immediately.
 | |
|   //
 | |
|   // If rehashing occurs due to the insertion, all iterators are invalidated.
 | |
|   using Base::emplace;
 | |
| 
 | |
|   // node_hash_set::emplace_hint()
 | |
|   //
 | |
|   // Inserts an element of the specified value by constructing it in-place
 | |
|   // within the `node_hash_set`, using the position of `hint` as a non-binding
 | |
|   // suggestion for where to begin the insertion search, and only inserts
 | |
|   // provided that no element with the given key already exists.
 | |
|   //
 | |
|   // The element may be constructed even if there already is an element with the
 | |
|   // key in the container, in which case the newly constructed element will be
 | |
|   // destroyed immediately.
 | |
|   //
 | |
|   // If rehashing occurs due to the insertion, all iterators are invalidated.
 | |
|   using Base::emplace_hint;
 | |
| 
 | |
|   // node_hash_set::extract()
 | |
|   //
 | |
|   // Extracts the indicated element, erasing it in the process, and returns it
 | |
|   // as a C++17-compatible node handle. Overloads are listed below.
 | |
|   //
 | |
|   // node_type extract(const_iterator position):
 | |
|   //
 | |
|   //   Extracts the element at the indicated position and returns a node handle
 | |
|   //   owning that extracted data.
 | |
|   //
 | |
|   // node_type extract(const key_type& x):
 | |
|   //
 | |
|   //   Extracts the element with the key matching the passed key value and
 | |
|   //   returns a node handle owning that extracted data. If the `node_hash_set`
 | |
|   //   does not contain an element with a matching key, this function returns an
 | |
|   // empty node handle.
 | |
|   using Base::extract;
 | |
| 
 | |
|   // node_hash_set::merge()
 | |
|   //
 | |
|   // Extracts elements from a given `source` flat hash map into this
 | |
|   // `node_hash_set`. If the destination `node_hash_set` already contains an
 | |
|   // element with an equivalent key, that element is not extracted.
 | |
|   using Base::merge;
 | |
| 
 | |
|   // node_hash_set::swap(node_hash_set& other)
 | |
|   //
 | |
|   // Exchanges the contents of this `node_hash_set` with those of the `other`
 | |
|   // flat hash map, avoiding invocation of any move, copy, or swap operations on
 | |
|   // individual elements.
 | |
|   //
 | |
|   // All iterators and references on the `node_hash_set` remain valid, excepting
 | |
|   // for the past-the-end iterator, which is invalidated.
 | |
|   //
 | |
|   // `swap()` requires that the flat hash set's hashing and key equivalence
 | |
|   // functions be Swappable, and are exchaged using unqualified calls to
 | |
|   // non-member `swap()`. If the map's allocator has
 | |
|   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
 | |
|   // set to `true`, the allocators are also exchanged using an unqualified call
 | |
|   // to non-member `swap()`; otherwise, the allocators are not swapped.
 | |
|   using Base::swap;
 | |
| 
 | |
|   // node_hash_set::rehash(count)
 | |
|   //
 | |
|   // Rehashes the `node_hash_set`, setting the number of slots to be at least
 | |
|   // the passed value. If the new number of slots increases the load factor more
 | |
|   // than the current maximum load factor
 | |
|   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
 | |
|   // will be at least `size()` / `max_load_factor()`.
 | |
|   //
 | |
|   // To force a rehash, pass rehash(0).
 | |
|   //
 | |
|   // NOTE: unlike behavior in `std::unordered_set`, references are also
 | |
|   // invalidated upon a `rehash()`.
 | |
|   using Base::rehash;
 | |
| 
 | |
|   // node_hash_set::reserve(count)
 | |
|   //
 | |
|   // Sets the number of slots in the `node_hash_set` to the number needed to
 | |
|   // accommodate at least `count` total elements without exceeding the current
 | |
|   // maximum load factor, and may rehash the container if needed.
 | |
|   using Base::reserve;
 | |
| 
 | |
|   // node_hash_set::contains()
 | |
|   //
 | |
|   // Determines whether an element comparing equal to the given `key` exists
 | |
|   // within the `node_hash_set`, returning `true` if so or `false` otherwise.
 | |
|   using Base::contains;
 | |
| 
 | |
|   // node_hash_set::count(const Key& key) const
 | |
|   //
 | |
|   // Returns the number of elements comparing equal to the given `key` within
 | |
|   // the `node_hash_set`. note that this function will return either `1` or `0`
 | |
|   // since duplicate elements are not allowed within a `node_hash_set`.
 | |
|   using Base::count;
 | |
| 
 | |
|   // node_hash_set::equal_range()
 | |
|   //
 | |
|   // Returns a closed range [first, last], defined by a `std::pair` of two
 | |
|   // iterators, containing all elements with the passed key in the
 | |
|   // `node_hash_set`.
 | |
|   using Base::equal_range;
 | |
| 
 | |
|   // node_hash_set::find()
 | |
|   //
 | |
|   // Finds an element with the passed `key` within the `node_hash_set`.
 | |
|   using Base::find;
 | |
| 
 | |
|   // node_hash_set::bucket_count()
 | |
|   //
 | |
|   // Returns the number of "buckets" within the `node_hash_set`. Note that
 | |
|   // because a flat hash map contains all elements within its internal storage,
 | |
|   // this value simply equals the current capacity of the `node_hash_set`.
 | |
|   using Base::bucket_count;
 | |
| 
 | |
|   // node_hash_set::load_factor()
 | |
|   //
 | |
|   // Returns the current load factor of the `node_hash_set` (the average number
 | |
|   // of slots occupied with a value within the hash map).
 | |
|   using Base::load_factor;
 | |
| 
 | |
|   // node_hash_set::max_load_factor()
 | |
|   //
 | |
|   // Manages the maximum load factor of the `node_hash_set`. Overloads are
 | |
|   // listed below.
 | |
|   //
 | |
|   // float node_hash_set::max_load_factor()
 | |
|   //
 | |
|   //   Returns the current maximum load factor of the `node_hash_set`.
 | |
|   //
 | |
|   // void node_hash_set::max_load_factor(float ml)
 | |
|   //
 | |
|   //   Sets the maximum load factor of the `node_hash_set` to the passed value.
 | |
|   //
 | |
|   //   NOTE: This overload is provided only for API compatibility with the STL;
 | |
|   //   `node_hash_set` will ignore any set load factor and manage its rehashing
 | |
|   //   internally as an implementation detail.
 | |
|   using Base::max_load_factor;
 | |
| 
 | |
|   // node_hash_set::get_allocator()
 | |
|   //
 | |
|   // Returns the allocator function associated with this `node_hash_set`.
 | |
|   using Base::get_allocator;
 | |
| 
 | |
|   // node_hash_set::hash_function()
 | |
|   //
 | |
|   // Returns the hashing function used to hash the keys within this
 | |
|   // `node_hash_set`.
 | |
|   using Base::hash_function;
 | |
| 
 | |
|   // node_hash_set::key_eq()
 | |
|   //
 | |
|   // Returns the function used for comparing keys equality.
 | |
|   using Base::key_eq;
 | |
| };
 | |
| 
 | |
| // erase_if(node_hash_set<>, Pred)
 | |
| //
 | |
| // Erases all elements that satisfy the predicate `pred` from the container `c`.
 | |
| template <typename T, typename H, typename E, typename A, typename Predicate>
 | |
| void erase_if(node_hash_set<T, H, E, A>& c, Predicate pred) {
 | |
|   container_internal::EraseIf(pred, &c);
 | |
| }
 | |
| 
 | |
| namespace container_internal {
 | |
| 
 | |
| template <class T>
 | |
| struct NodeHashSetPolicy
 | |
|     : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
 | |
|   using key_type = T;
 | |
|   using init_type = T;
 | |
|   using constant_iterators = std::true_type;
 | |
| 
 | |
|   template <class Allocator, class... Args>
 | |
|   static T* new_element(Allocator* alloc, Args&&... args) {
 | |
|     using ValueAlloc =
 | |
|         typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
 | |
|     ValueAlloc value_alloc(*alloc);
 | |
|     T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
 | |
|     absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
 | |
|                                                   std::forward<Args>(args)...);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   template <class Allocator>
 | |
|   static void delete_element(Allocator* alloc, T* elem) {
 | |
|     using ValueAlloc =
 | |
|         typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
 | |
|     ValueAlloc value_alloc(*alloc);
 | |
|     absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
 | |
|     absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
 | |
|   }
 | |
| 
 | |
|   template <class F, class... Args>
 | |
|   static decltype(absl::container_internal::DecomposeValue(
 | |
|       std::declval<F>(), std::declval<Args>()...))
 | |
|   apply(F&& f, Args&&... args) {
 | |
|     return absl::container_internal::DecomposeValue(
 | |
|         std::forward<F>(f), std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   static size_t element_space_used(const T*) { return sizeof(T); }
 | |
| };
 | |
| }  // namespace container_internal
 | |
| 
 | |
| namespace container_algorithm_internal {
 | |
| 
 | |
| // Specialization of trait in absl/algorithm/container.h
 | |
| template <class Key, class Hash, class KeyEqual, class Allocator>
 | |
| struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
 | |
|     : std::true_type {};
 | |
| 
 | |
| }  // namespace container_algorithm_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_NODE_HASH_SET_H_
 |