739 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			739 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| //                           MOTIVATION AND TUTORIAL
 | |
| //
 | |
| // If you want to put in a single heap allocation N doubles followed by M ints,
 | |
| // it's easy if N and M are known at compile time.
 | |
| //
 | |
| //   struct S {
 | |
| //     double a[N];
 | |
| //     int b[M];
 | |
| //   };
 | |
| //
 | |
| //   S* p = new S;
 | |
| //
 | |
| // But what if N and M are known only in run time? Class template Layout to the
 | |
| // rescue! It's a portable generalization of the technique known as struct hack.
 | |
| //
 | |
| //   // This object will tell us everything we need to know about the memory
 | |
| //   // layout of double[N] followed by int[M]. It's structurally identical to
 | |
| //   // size_t[2] that stores N and M. It's very cheap to create.
 | |
| //   const Layout<double, int> layout(N, M);
 | |
| //
 | |
| //   // Allocate enough memory for both arrays. `AllocSize()` tells us how much
 | |
| //   // memory is needed. We are free to use any allocation function we want as
 | |
| //   // long as it returns aligned memory.
 | |
| //   std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
 | |
| //
 | |
| //   // Obtain the pointer to the array of doubles.
 | |
| //   // Equivalent to `reinterpret_cast<double*>(p.get())`.
 | |
| //   //
 | |
| //   // We could have written layout.Pointer<0>(p) instead. If all the types are
 | |
| //   // unique you can use either form, but if some types are repeated you must
 | |
| //   // use the index form.
 | |
| //   double* a = layout.Pointer<double>(p.get());
 | |
| //
 | |
| //   // Obtain the pointer to the array of ints.
 | |
| //   // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
 | |
| //   int* b = layout.Pointer<int>(p);
 | |
| //
 | |
| // If we are unable to specify sizes of all fields, we can pass as many sizes as
 | |
| // we can to `Partial()`. In return, it'll allow us to access the fields whose
 | |
| // locations and sizes can be computed from the provided information.
 | |
| // `Partial()` comes in handy when the array sizes are embedded into the
 | |
| // allocation.
 | |
| //
 | |
| //   // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
 | |
| //   using L = Layout<size_t, size_t, double, int>;
 | |
| //
 | |
| //   unsigned char* Allocate(size_t n, size_t m) {
 | |
| //     const L layout(1, 1, n, m);
 | |
| //     unsigned char* p = new unsigned char[layout.AllocSize()];
 | |
| //     *layout.Pointer<0>(p) = n;
 | |
| //     *layout.Pointer<1>(p) = m;
 | |
| //     return p;
 | |
| //   }
 | |
| //
 | |
| //   void Use(unsigned char* p) {
 | |
| //     // First, extract N and M.
 | |
| //     // Specify that the first array has only one element. Using `prefix` we
 | |
| //     // can access the first two arrays but not more.
 | |
| //     constexpr auto prefix = L::Partial(1);
 | |
| //     size_t n = *prefix.Pointer<0>(p);
 | |
| //     size_t m = *prefix.Pointer<1>(p);
 | |
| //
 | |
| //     // Now we can get pointers to the payload.
 | |
| //     const L layout(1, 1, n, m);
 | |
| //     double* a = layout.Pointer<double>(p);
 | |
| //     int* b = layout.Pointer<int>(p);
 | |
| //   }
 | |
| //
 | |
| // The layout we used above combines fixed-size with dynamically-sized fields.
 | |
| // This is quite common. Layout is optimized for this use case and generates
 | |
| // optimal code. All computations that can be performed at compile time are
 | |
| // indeed performed at compile time.
 | |
| //
 | |
| // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
 | |
| // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
 | |
| // padding in between arrays.
 | |
| //
 | |
| // You can manually override the alignment of an array by wrapping the type in
 | |
| // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
 | |
| // and behavior as `Layout<..., T, ...>` except that the first element of the
 | |
| // array of `T` is aligned to `N` (the rest of the elements follow without
 | |
| // padding). `N` cannot be less than `alignof(T)`.
 | |
| //
 | |
| // `AllocSize()` and `Pointer()` are the most basic methods for dealing with
 | |
| // memory layouts. Check out the reference or code below to discover more.
 | |
| //
 | |
| //                            EXAMPLE
 | |
| //
 | |
| //   // Immutable move-only string with sizeof equal to sizeof(void*). The
 | |
| //   // string size and the characters are kept in the same heap allocation.
 | |
| //   class CompactString {
 | |
| //    public:
 | |
| //     CompactString(const char* s = "") {
 | |
| //       const size_t size = strlen(s);
 | |
| //       // size_t[1] followed by char[size + 1].
 | |
| //       const L layout(1, size + 1);
 | |
| //       p_.reset(new unsigned char[layout.AllocSize()]);
 | |
| //       // If running under ASAN, mark the padding bytes, if any, to catch
 | |
| //       // memory errors.
 | |
| //       layout.PoisonPadding(p_.get());
 | |
| //       // Store the size in the allocation.
 | |
| //       *layout.Pointer<size_t>(p_.get()) = size;
 | |
| //       // Store the characters in the allocation.
 | |
| //       memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
 | |
| //     }
 | |
| //
 | |
| //     size_t size() const {
 | |
| //       // Equivalent to reinterpret_cast<size_t&>(*p).
 | |
| //       return *L::Partial().Pointer<size_t>(p_.get());
 | |
| //     }
 | |
| //
 | |
| //     const char* c_str() const {
 | |
| //       // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
 | |
| //       // The argument in Partial(1) specifies that we have size_t[1] in front
 | |
| //       // of the characters.
 | |
| //       return L::Partial(1).Pointer<char>(p_.get());
 | |
| //     }
 | |
| //
 | |
| //    private:
 | |
| //     // Our heap allocation contains a size_t followed by an array of chars.
 | |
| //     using L = Layout<size_t, char>;
 | |
| //     std::unique_ptr<unsigned char[]> p_;
 | |
| //   };
 | |
| //
 | |
| //   int main() {
 | |
| //     CompactString s = "hello";
 | |
| //     assert(s.size() == 5);
 | |
| //     assert(strcmp(s.c_str(), "hello") == 0);
 | |
| //   }
 | |
| //
 | |
| //                               DOCUMENTATION
 | |
| //
 | |
| // The interface exported by this file consists of:
 | |
| // - class `Layout<>` and its public members.
 | |
| // - The public members of class `internal_layout::LayoutImpl<>`. That class
 | |
| //   isn't intended to be used directly, and its name and template parameter
 | |
| //   list are internal implementation details, but the class itself provides
 | |
| //   most of the functionality in this file. See comments on its members for
 | |
| //   detailed documentation.
 | |
| //
 | |
| // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
 | |
| // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
 | |
| // creates a `Layout` object, which exposes the same functionality by inheriting
 | |
| // from `LayoutImpl<>`.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
 | |
| #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stddef.h>
 | |
| #include <stdint.h>
 | |
| #include <ostream>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <type_traits>
 | |
| #include <typeinfo>
 | |
| #include <utility>
 | |
| 
 | |
| #ifdef ADDRESS_SANITIZER
 | |
| #include <sanitizer/asan_interface.h>
 | |
| #endif
 | |
| 
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| #include "absl/types/span.h"
 | |
| #include "absl/utility/utility.h"
 | |
| 
 | |
| #if defined(__GXX_RTTI)
 | |
| #define ABSL_INTERNAL_HAS_CXA_DEMANGLE
 | |
| #endif
 | |
| 
 | |
| #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
 | |
| #include <cxxabi.h>
 | |
| #endif
 | |
| 
 | |
| namespace absl {
 | |
| namespace container_internal {
 | |
| 
 | |
| // A type wrapper that instructs `Layout` to use the specific alignment for the
 | |
| // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
 | |
| // and behavior as `Layout<..., T, ...>` except that the first element of the
 | |
| // array of `T` is aligned to `N` (the rest of the elements follow without
 | |
| // padding).
 | |
| //
 | |
| // Requires: `N >= alignof(T)` and `N` is a power of 2.
 | |
| template <class T, size_t N>
 | |
| struct Aligned;
 | |
| 
 | |
| namespace internal_layout {
 | |
| 
 | |
| template <class T>
 | |
| struct NotAligned {};
 | |
| 
 | |
| template <class T, size_t N>
 | |
| struct NotAligned<const Aligned<T, N>> {
 | |
|   static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
 | |
| };
 | |
| 
 | |
| template <size_t>
 | |
| using IntToSize = size_t;
 | |
| 
 | |
| template <class>
 | |
| using TypeToSize = size_t;
 | |
| 
 | |
| template <class T>
 | |
| struct Type : NotAligned<T> {
 | |
|   using type = T;
 | |
| };
 | |
| 
 | |
| template <class T, size_t N>
 | |
| struct Type<Aligned<T, N>> {
 | |
|   using type = T;
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
 | |
| 
 | |
| template <class T, size_t N>
 | |
| struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
 | |
| 
 | |
| // Note: workaround for https://gcc.gnu.org/PR88115
 | |
| template <class T>
 | |
| struct AlignOf : NotAligned<T> {
 | |
|   static constexpr size_t value = alignof(T);
 | |
| };
 | |
| 
 | |
| template <class T, size_t N>
 | |
| struct AlignOf<Aligned<T, N>> {
 | |
|   static_assert(N % alignof(T) == 0,
 | |
|                 "Custom alignment can't be lower than the type's alignment");
 | |
|   static constexpr size_t value = N;
 | |
| };
 | |
| 
 | |
| // Does `Ts...` contain `T`?
 | |
| template <class T, class... Ts>
 | |
| using Contains = absl::disjunction<std::is_same<T, Ts>...>;
 | |
| 
 | |
| template <class From, class To>
 | |
| using CopyConst =
 | |
|     typename std::conditional<std::is_const<From>::value, const To, To>::type;
 | |
| 
 | |
| // Note: We're not qualifying this with absl:: because it doesn't compile under
 | |
| // MSVC.
 | |
| template <class T>
 | |
| using SliceType = Span<T>;
 | |
| 
 | |
| // This namespace contains no types. It prevents functions defined in it from
 | |
| // being found by ADL.
 | |
| namespace adl_barrier {
 | |
| 
 | |
| template <class Needle, class... Ts>
 | |
| constexpr size_t Find(Needle, Needle, Ts...) {
 | |
|   static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| template <class Needle, class T, class... Ts>
 | |
| constexpr size_t Find(Needle, T, Ts...) {
 | |
|   return adl_barrier::Find(Needle(), Ts()...) + 1;
 | |
| }
 | |
| 
 | |
| constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
 | |
| 
 | |
| // Returns `q * m` for the smallest `q` such that `q * m >= n`.
 | |
| // Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
 | |
| constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
 | |
| 
 | |
| constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
 | |
| 
 | |
| constexpr size_t Max(size_t a) { return a; }
 | |
| 
 | |
| template <class... Ts>
 | |
| constexpr size_t Max(size_t a, size_t b, Ts... rest) {
 | |
|   return adl_barrier::Max(b < a ? a : b, rest...);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| std::string TypeName() {
 | |
|   std::string out;
 | |
|   int status = 0;
 | |
|   char* demangled = nullptr;
 | |
| #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
 | |
|   demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
 | |
| #endif
 | |
|   if (status == 0 && demangled != nullptr) {  // Demangling succeeded.
 | |
|     absl::StrAppend(&out, "<", demangled, ">");
 | |
|     free(demangled);
 | |
|   } else {
 | |
| #if defined(__GXX_RTTI) || defined(_CPPRTTI)
 | |
|     absl::StrAppend(&out, "<", typeid(T).name(), ">");
 | |
| #endif
 | |
|   }
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| }  // namespace adl_barrier
 | |
| 
 | |
| template <bool C>
 | |
| using EnableIf = typename std::enable_if<C, int>::type;
 | |
| 
 | |
| // Can `T` be a template argument of `Layout`?
 | |
| template <class T>
 | |
| using IsLegalElementType = std::integral_constant<
 | |
|     bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
 | |
|               !std::is_reference<typename Type<T>::type>::value &&
 | |
|               !std::is_volatile<typename Type<T>::type>::value &&
 | |
|               adl_barrier::IsPow2(AlignOf<T>::value)>;
 | |
| 
 | |
| template <class Elements, class SizeSeq, class OffsetSeq>
 | |
| class LayoutImpl;
 | |
| 
 | |
| // Public base class of `Layout` and the result type of `Layout::Partial()`.
 | |
| //
 | |
| // `Elements...` contains all template arguments of `Layout` that created this
 | |
| // instance.
 | |
| //
 | |
| // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
 | |
| // passed to `Layout::Partial()` or `Layout::Layout()`.
 | |
| //
 | |
| // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
 | |
| // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
 | |
| // can compute offsets).
 | |
| template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
 | |
| class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
 | |
|                  absl::index_sequence<OffsetSeq...>> {
 | |
|  private:
 | |
|   static_assert(sizeof...(Elements) > 0, "At least one field is required");
 | |
|   static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
 | |
|                 "Invalid element type (see IsLegalElementType)");
 | |
| 
 | |
|   enum {
 | |
|     NumTypes = sizeof...(Elements),
 | |
|     NumSizes = sizeof...(SizeSeq),
 | |
|     NumOffsets = sizeof...(OffsetSeq),
 | |
|   };
 | |
| 
 | |
|   // These are guaranteed by `Layout`.
 | |
|   static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
 | |
|                 "Internal error");
 | |
|   static_assert(NumTypes > 0, "Internal error");
 | |
| 
 | |
|   // Returns the index of `T` in `Elements...`. Results in a compilation error
 | |
|   // if `Elements...` doesn't contain exactly one instance of `T`.
 | |
|   template <class T>
 | |
|   static constexpr size_t ElementIndex() {
 | |
|     static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
 | |
|                   "Type not found");
 | |
|     return adl_barrier::Find(Type<T>(),
 | |
|                              Type<typename Type<Elements>::type>()...);
 | |
|   }
 | |
| 
 | |
|   template <size_t N>
 | |
|   using ElementAlignment =
 | |
|       AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
 | |
| 
 | |
|  public:
 | |
|   // Element types of all arrays packed in a tuple.
 | |
|   using ElementTypes = std::tuple<typename Type<Elements>::type...>;
 | |
| 
 | |
|   // Element type of the Nth array.
 | |
|   template <size_t N>
 | |
|   using ElementType = typename std::tuple_element<N, ElementTypes>::type;
 | |
| 
 | |
|   constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
 | |
|       : size_{sizes...} {}
 | |
| 
 | |
|   // Alignment of the layout, equal to the strictest alignment of all elements.
 | |
|   // All pointers passed to the methods of layout must be aligned to this value.
 | |
|   static constexpr size_t Alignment() {
 | |
|     return adl_barrier::Max(AlignOf<Elements>::value...);
 | |
|   }
 | |
| 
 | |
|   // Offset in bytes of the Nth array.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   assert(x.Offset<0>() == 0);   // The ints starts from 0.
 | |
|   //   assert(x.Offset<1>() == 16);  // The doubles starts from 16.
 | |
|   //
 | |
|   // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
 | |
|   template <size_t N, EnableIf<N == 0> = 0>
 | |
|   constexpr size_t Offset() const {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   template <size_t N, EnableIf<N != 0> = 0>
 | |
|   constexpr size_t Offset() const {
 | |
|     static_assert(N < NumOffsets, "Index out of bounds");
 | |
|     return adl_barrier::Align(
 | |
|         Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1],
 | |
|         ElementAlignment<N>::value);
 | |
|   }
 | |
| 
 | |
|   // Offset in bytes of the array with the specified element type. There must
 | |
|   // be exactly one such array and its zero-based index must be at most
 | |
|   // `NumSizes`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   assert(x.Offset<int>() == 0);      // The ints starts from 0.
 | |
|   //   assert(x.Offset<double>() == 16);  // The doubles starts from 16.
 | |
|   template <class T>
 | |
|   constexpr size_t Offset() const {
 | |
|     return Offset<ElementIndex<T>()>();
 | |
|   }
 | |
| 
 | |
|   // Offsets in bytes of all arrays for which the offsets are known.
 | |
|   constexpr std::array<size_t, NumOffsets> Offsets() const {
 | |
|     return {{Offset<OffsetSeq>()...}};
 | |
|   }
 | |
| 
 | |
|   // The number of elements in the Nth array. This is the Nth argument of
 | |
|   // `Layout::Partial()` or `Layout::Layout()` (zero-based).
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   assert(x.Size<0>() == 3);
 | |
|   //   assert(x.Size<1>() == 4);
 | |
|   //
 | |
|   // Requires: `N < NumSizes`.
 | |
|   template <size_t N>
 | |
|   constexpr size_t Size() const {
 | |
|     static_assert(N < NumSizes, "Index out of bounds");
 | |
|     return size_[N];
 | |
|   }
 | |
| 
 | |
|   // The number of elements in the array with the specified element type.
 | |
|   // There must be exactly one such array and its zero-based index must be
 | |
|   // at most `NumSizes`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   assert(x.Size<int>() == 3);
 | |
|   //   assert(x.Size<double>() == 4);
 | |
|   template <class T>
 | |
|   constexpr size_t Size() const {
 | |
|     return Size<ElementIndex<T>()>();
 | |
|   }
 | |
| 
 | |
|   // The number of elements of all arrays for which they are known.
 | |
|   constexpr std::array<size_t, NumSizes> Sizes() const {
 | |
|     return {{Size<SizeSeq>()...}};
 | |
|   }
 | |
| 
 | |
|   // Pointer to the beginning of the Nth array.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];
 | |
|   //   int* ints = x.Pointer<0>(p);
 | |
|   //   double* doubles = x.Pointer<1>(p);
 | |
|   //
 | |
|   // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   template <size_t N, class Char>
 | |
|   CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
 | |
|     using C = typename std::remove_const<Char>::type;
 | |
|     static_assert(
 | |
|         std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
 | |
|             std::is_same<C, signed char>(),
 | |
|         "The argument must be a pointer to [const] [signed|unsigned] char");
 | |
|     constexpr size_t alignment = Alignment();
 | |
|     (void)alignment;
 | |
|     assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
 | |
|     return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
 | |
|   }
 | |
| 
 | |
|   // Pointer to the beginning of the array with the specified element type.
 | |
|   // There must be exactly one such array and its zero-based index must be at
 | |
|   // most `NumSizes`.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];
 | |
|   //   int* ints = x.Pointer<int>(p);
 | |
|   //   double* doubles = x.Pointer<double>(p);
 | |
|   //
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   template <class T, class Char>
 | |
|   CopyConst<Char, T>* Pointer(Char* p) const {
 | |
|     return Pointer<ElementIndex<T>()>(p);
 | |
|   }
 | |
| 
 | |
|   // Pointers to all arrays for which pointers are known.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];
 | |
|   //
 | |
|   //   int* ints;
 | |
|   //   double* doubles;
 | |
|   //   std::tie(ints, doubles) = x.Pointers(p);
 | |
|   //
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   //
 | |
|   // Note: We're not using ElementType alias here because it does not compile
 | |
|   // under MSVC.
 | |
|   template <class Char>
 | |
|   std::tuple<CopyConst<
 | |
|       Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
 | |
|   Pointers(Char* p) const {
 | |
|     return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
 | |
|         Pointer<OffsetSeq>(p)...);
 | |
|   }
 | |
| 
 | |
|   // The Nth array.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];
 | |
|   //   Span<int> ints = x.Slice<0>(p);
 | |
|   //   Span<double> doubles = x.Slice<1>(p);
 | |
|   //
 | |
|   // Requires: `N < NumSizes`.
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   template <size_t N, class Char>
 | |
|   SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
 | |
|     return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
 | |
|   }
 | |
| 
 | |
|   // The array with the specified element type. There must be exactly one
 | |
|   // such array and its zero-based index must be less than `NumSizes`.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];
 | |
|   //   Span<int> ints = x.Slice<int>(p);
 | |
|   //   Span<double> doubles = x.Slice<double>(p);
 | |
|   //
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   template <class T, class Char>
 | |
|   SliceType<CopyConst<Char, T>> Slice(Char* p) const {
 | |
|     return Slice<ElementIndex<T>()>(p);
 | |
|   }
 | |
| 
 | |
|   // All arrays with known sizes.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];
 | |
|   //
 | |
|   //   Span<int> ints;
 | |
|   //   Span<double> doubles;
 | |
|   //   std::tie(ints, doubles) = x.Slices(p);
 | |
|   //
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   //
 | |
|   // Note: We're not using ElementType alias here because it does not compile
 | |
|   // under MSVC.
 | |
|   template <class Char>
 | |
|   std::tuple<SliceType<CopyConst<
 | |
|       Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
 | |
|   Slices(Char* p) const {
 | |
|     // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
 | |
|     // in 6.1).
 | |
|     (void)p;
 | |
|     return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
 | |
|         Slice<SizeSeq>(p)...);
 | |
|   }
 | |
| 
 | |
|   // The size of the allocation that fits all arrays.
 | |
|   //
 | |
|   //   // int[3], 4 bytes of padding, double[4].
 | |
|   //   Layout<int, double> x(3, 4);
 | |
|   //   unsigned char* p = new unsigned char[x.AllocSize()];  // 48 bytes
 | |
|   //
 | |
|   // Requires: `NumSizes == sizeof...(Ts)`.
 | |
|   constexpr size_t AllocSize() const {
 | |
|     static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
 | |
|     return Offset<NumTypes - 1>() +
 | |
|            SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1];
 | |
|   }
 | |
| 
 | |
|   // If built with --config=asan, poisons padding bytes (if any) in the
 | |
|   // allocation. The pointer must point to a memory block at least
 | |
|   // `AllocSize()` bytes in length.
 | |
|   //
 | |
|   // `Char` must be `[const] [signed|unsigned] char`.
 | |
|   //
 | |
|   // Requires: `p` is aligned to `Alignment()`.
 | |
|   template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
 | |
|   void PoisonPadding(const Char* p) const {
 | |
|     Pointer<0>(p);  // verify the requirements on `Char` and `p`
 | |
|   }
 | |
| 
 | |
|   template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
 | |
|   void PoisonPadding(const Char* p) const {
 | |
|     static_assert(N < NumOffsets, "Index out of bounds");
 | |
|     (void)p;
 | |
| #ifdef ADDRESS_SANITIZER
 | |
|     PoisonPadding<Char, N - 1>(p);
 | |
|     // The `if` is an optimization. It doesn't affect the observable behaviour.
 | |
|     if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) {
 | |
|       size_t start =
 | |
|           Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1];
 | |
|       ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Human-readable description of the memory layout. Useful for debugging.
 | |
|   // Slow.
 | |
|   //
 | |
|   //   // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
 | |
|   //   // by an unknown number of doubles.
 | |
|   //   auto x = Layout<char, int, double>::Partial(5, 3);
 | |
|   //   assert(x.DebugString() ==
 | |
|   //          "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
 | |
|   //
 | |
|   // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
 | |
|   // may be missing depending on the target platform). For example,
 | |
|   // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
 | |
|   // int is 4 bytes, and we have 3 of those ints. The size of the last field may
 | |
|   // be missing (as in the example above). Only fields with known offsets are
 | |
|   // described. Type names may differ across platforms: one compiler might
 | |
|   // produce "unsigned*" where another produces "unsigned int *".
 | |
|   std::string DebugString() const {
 | |
|     const auto offsets = Offsets();
 | |
|     const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...};
 | |
|     const std::string types[] = {
 | |
|         adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
 | |
|     std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
 | |
|     for (size_t i = 0; i != NumOffsets - 1; ++i) {
 | |
|       absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
 | |
|                       "(", sizes[i + 1], ")");
 | |
|     }
 | |
|     // NumSizes is a constant that may be zero. Some compilers cannot see that
 | |
|     // inside the if statement "size_[NumSizes - 1]" must be valid.
 | |
|     int last = static_cast<int>(NumSizes) - 1;
 | |
|     if (NumTypes == NumSizes && last >= 0) {
 | |
|       absl::StrAppend(&res, "[", size_[last], "]");
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Arguments of `Layout::Partial()` or `Layout::Layout()`.
 | |
|   size_t size_[NumSizes > 0 ? NumSizes : 1];
 | |
| };
 | |
| 
 | |
| template <size_t NumSizes, class... Ts>
 | |
| using LayoutType = LayoutImpl<
 | |
|     std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
 | |
|     absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
 | |
| 
 | |
| }  // namespace internal_layout
 | |
| 
 | |
| // Descriptor of arrays of various types and sizes laid out in memory one after
 | |
| // another. See the top of the file for documentation.
 | |
| //
 | |
| // Check out the public API of internal_layout::LayoutImpl above. The type is
 | |
| // internal to the library but its methods are public, and they are inherited
 | |
| // by `Layout`.
 | |
| template <class... Ts>
 | |
| class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
 | |
|  public:
 | |
|   static_assert(sizeof...(Ts) > 0, "At least one field is required");
 | |
|   static_assert(
 | |
|       absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
 | |
|       "Invalid element type (see IsLegalElementType)");
 | |
| 
 | |
|   // The result type of `Partial()` with `NumSizes` arguments.
 | |
|   template <size_t NumSizes>
 | |
|   using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
 | |
| 
 | |
|   // `Layout` knows the element types of the arrays we want to lay out in
 | |
|   // memory but not the number of elements in each array.
 | |
|   // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
 | |
|   // resulting immutable object can be used to obtain pointers to the
 | |
|   // individual arrays.
 | |
|   //
 | |
|   // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
 | |
|   // if all you need is to the offset of the second array, you only need to
 | |
|   // pass one argument -- the number of elements in the first array.
 | |
|   //
 | |
|   //   // int[3] followed by 4 bytes of padding and an unknown number of
 | |
|   //   // doubles.
 | |
|   //   auto x = Layout<int, double>::Partial(3);
 | |
|   //   // doubles start at byte 16.
 | |
|   //   assert(x.Offset<1>() == 16);
 | |
|   //
 | |
|   // If you know the number of elements in all arrays, you can still call
 | |
|   // `Partial()` but it's more convenient to use the constructor of `Layout`.
 | |
|   //
 | |
|   //   Layout<int, double> x(3, 5);
 | |
|   //
 | |
|   // Note: The sizes of the arrays must be specified in number of elements,
 | |
|   // not in bytes.
 | |
|   //
 | |
|   // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
 | |
|   // Requires: all arguments are convertible to `size_t`.
 | |
|   template <class... Sizes>
 | |
|   static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
 | |
|     static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
 | |
|     return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
 | |
|   }
 | |
| 
 | |
|   // Creates a layout with the sizes of all arrays specified. If you know
 | |
|   // only the sizes of the first N arrays (where N can be zero), you can use
 | |
|   // `Partial()` defined above. The constructor is essentially equivalent to
 | |
|   // calling `Partial()` and passing in all array sizes; the constructor is
 | |
|   // provided as a convenient abbreviation.
 | |
|   //
 | |
|   // Note: The sizes of the arrays must be specified in number of elements,
 | |
|   // not in bytes.
 | |
|   constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
 | |
|       : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
 | |
| };
 | |
| 
 | |
| }  // namespace container_internal
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
 |