-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
		
			
				
	
	
		
			666 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			666 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
 | |
| // symbols from arbitrary system and other headers, since it may be built
 | |
| // with different flags from other targets, using different levels of
 | |
| // optimization, potentially introducing ODR violations.
 | |
| 
 | |
| #include "absl/random/internal/randen_hwaes.h"
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "absl/random/internal/platform.h"
 | |
| 
 | |
| // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
 | |
| // a hardware accelerated implementation of randen, or whether it
 | |
| // will contain stubs that exit the process.
 | |
| #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
 | |
| // The platform.h directives are sufficient to indicate whether
 | |
| // we should build accelerated implementations for x86.
 | |
| #if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH)
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| #endif
 | |
| #elif defined(ABSL_ARCH_PPC)
 | |
| // The platform.h directives are sufficient to indicate whether
 | |
| // we should build accelerated implementations for PPC.
 | |
| //
 | |
| // NOTE: This has mostly been tested on 64-bit Power variants,
 | |
| // and not embedded cpus such as powerpc32-8540
 | |
| #if ABSL_HAVE_ACCELERATED_AES
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| #endif
 | |
| #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
 | |
| // ARM is somewhat more complicated. We might support crypto natively...
 | |
| #if ABSL_HAVE_ACCELERATED_AES || \
 | |
|     (defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO))
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| 
 | |
| #elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \
 | |
|     (defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9)
 | |
| // ...or, on GCC, we can use an ASM directive to
 | |
| // instruct the assember to allow crypto instructions.
 | |
| #define ABSL_RANDEN_HWAES_IMPL 1
 | |
| #define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1
 | |
| #endif
 | |
| #else
 | |
| // HWAES is unsupported by these architectures / platforms:
 | |
| //   __myriad2__
 | |
| //   __mips__
 | |
| //
 | |
| // Other architectures / platforms are unknown.
 | |
| //
 | |
| // See the Abseil documentation on supported macros at:
 | |
| // https://abseil.io/docs/cpp/platforms/macros
 | |
| #endif
 | |
| 
 | |
| #if !defined(ABSL_RANDEN_HWAES_IMPL)
 | |
| // No accelerated implementation is supported.
 | |
| // The RandenHwAes functions are stubs that print an error and exit.
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| 
 | |
| namespace absl {
 | |
| namespace random_internal {
 | |
| 
 | |
| // No accelerated implementation.
 | |
| bool HasRandenHwAesImplementation() { return false; }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| const void* RandenHwAes::GetKeys() {
 | |
|   // Attempted to dispatch to an unsupported dispatch target.
 | |
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
 | |
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
 | |
|   exit(1);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void RandenHwAes::Absorb(const void*, void*) {
 | |
|   // Attempted to dispatch to an unsupported dispatch target.
 | |
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
 | |
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void RandenHwAes::Generate(const void*, void*) {
 | |
|   // Attempted to dispatch to an unsupported dispatch target.
 | |
|   const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
 | |
|   fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| }  // namespace random_internal
 | |
| }  // namespace absl
 | |
| 
 | |
| #else  // defined(ABSL_RANDEN_HWAES_IMPL)
 | |
| //
 | |
| // Accelerated implementations are supported.
 | |
| // We need the per-architecture includes and defines.
 | |
| //
 | |
| 
 | |
| #include "absl/random/internal/randen_traits.h"
 | |
| 
 | |
| // ABSL_FUNCTION_ALIGN32 defines a 32-byte alignment attribute
 | |
| // for the functions in this file.
 | |
| //
 | |
| // NOTE: Determine whether we actually have any wins from ALIGN32
 | |
| // using microbenchmarks. If not, remove.
 | |
| #undef ABSL_FUNCTION_ALIGN32
 | |
| #if ABSL_HAVE_ATTRIBUTE(aligned) || (defined(__GNUC__) && !defined(__clang__))
 | |
| #define ABSL_FUNCTION_ALIGN32 __attribute__((aligned(32)))
 | |
| #else
 | |
| #define ABSL_FUNCTION_ALIGN32
 | |
| #endif
 | |
| 
 | |
| // TARGET_CRYPTO defines a crypto attribute for each architecture.
 | |
| //
 | |
| // NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
 | |
| #if (defined(__clang__) || defined(__GNUC__))
 | |
| #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
 | |
| #define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
 | |
| #elif defined(ABSL_ARCH_PPC)
 | |
| #define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
 | |
| #else
 | |
| #define ABSL_TARGET_CRYPTO
 | |
| #endif
 | |
| #else
 | |
| #define ABSL_TARGET_CRYPTO
 | |
| #endif
 | |
| 
 | |
| #if defined(ABSL_ARCH_PPC)
 | |
| // NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
 | |
| // however the PPC altivec vector registers (and thus the AES instructions)
 | |
| // always operate in big-endian mode.
 | |
| 
 | |
| #include <altivec.h>
 | |
| // <altivec.h> #defines vector __vector; in C++, this is bad form.
 | |
| #undef vector
 | |
| 
 | |
| // Rely on the PowerPC AltiVec vector operations for accelerated AES
 | |
| // instructions. GCC support of the PPC vector types is described in:
 | |
| // https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
 | |
| //
 | |
| // Already provides operator^=.
 | |
| using Vector128 = __vector unsigned long long;  // NOLINT(runtime/int)
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| ReverseBytes(const Vector128& v) {
 | |
|   // Reverses the bytes of the vector.
 | |
|   const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
 | |
|                                        7,  6,  5,  4,  3,  2,  1, 0};
 | |
|   return vec_perm(v, v, perm);
 | |
| }
 | |
| 
 | |
| // WARNING: these load/store in native byte order. It is OK to load and then
 | |
| // store an unchanged vector, but interpreting the bits as a number or input
 | |
| // to AES will have undefined results.
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
 | |
|   return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store(
 | |
|     const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
 | |
|   vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
 | |
| }
 | |
| 
 | |
| // One round of AES. "round_key" is a public constant for breaking the
 | |
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| AesRound(const Vector128& state, const Vector128& round_key) {
 | |
|   return Vector128(__builtin_crypto_vcipher(state, round_key));
 | |
| }
 | |
| 
 | |
| // Enables native loads in the round loop by pre-swapping.
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian(
 | |
|     uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
 | |
|   using absl::random_internal::RandenTraits;
 | |
|   constexpr size_t kLanes = 2;
 | |
|   constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
 | |
| 
 | |
|   for (uint32_t branch = 0; branch < kFeistelBlocks; ++branch) {
 | |
|     const Vector128 v = ReverseBytes(Vector128Load(state + kLanes * branch));
 | |
|     Vector128Store(v, state + kLanes * branch);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
 | |
| 
 | |
| // This asm directive will cause the file to be compiled with crypto extensions
 | |
| // whether or not the cpu-architecture supports it.
 | |
| #if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE
 | |
| asm(".arch_extension  crypto\n");
 | |
| 
 | |
| // Override missing defines.
 | |
| #if !defined(__ARM_NEON)
 | |
| #define __ARM_NEON 1
 | |
| #endif
 | |
| 
 | |
| #if !defined(__ARM_FEATURE_CRYPTO)
 | |
| #define __ARM_FEATURE_CRYPTO 1
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
 | |
| // uint8x16_t is the user alias for underlying __simd128_uint8_t type.
 | |
| // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
 | |
| //
 | |
| // <arm_neon> defines the following
 | |
| //
 | |
| // typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
 | |
| // typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
 | |
| // typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
 | |
| //
 | |
| // vld1q_v
 | |
| // vst1q_v
 | |
| // vaeseq_v
 | |
| // vaesmcq_v
 | |
| #include <arm_neon.h>
 | |
| 
 | |
| // Already provides operator^=.
 | |
| using Vector128 = uint8x16_t;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
 | |
|   return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store(
 | |
|     const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
 | |
|   vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
 | |
| }
 | |
| 
 | |
| // One round of AES. "round_key" is a public constant for breaking the
 | |
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| AesRound(const Vector128& state, const Vector128& round_key) {
 | |
|   // It is important to always use the full round function - omitting the
 | |
|   // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
 | |
|   // and does not help because we never decrypt.
 | |
|   //
 | |
|   // Note that ARM divides AES instructions differently than x86 / PPC,
 | |
|   // And we need to skip the first AddRoundKey step and add an extra
 | |
|   // AddRoundKey step to the end. Lucky for us this is just XOR.
 | |
|   return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian(
 | |
|     uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {}
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
 | |
| // On x86 we rely on the aesni instructions
 | |
| #include <wmmintrin.h>
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Vector128 class is only wrapper for __m128i, benchmark indicates that it's
 | |
| // faster than using __m128i directly.
 | |
| class Vector128 {
 | |
|  public:
 | |
|   // Convert from/to intrinsics.
 | |
|   inline ABSL_ATTRIBUTE_ALWAYS_INLINE explicit Vector128(
 | |
|       const __m128i& Vector128)
 | |
|       : data_(Vector128) {}
 | |
| 
 | |
|   inline ABSL_ATTRIBUTE_ALWAYS_INLINE __m128i data() const { return data_; }
 | |
| 
 | |
|   inline ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128& operator^=(
 | |
|       const Vector128& other) {
 | |
|     data_ = _mm_xor_si128(data_, other.data());
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   __m128i data_;
 | |
| };
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
 | |
|   return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store(
 | |
|     const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
 | |
|   _mm_store_si128(reinterpret_cast<__m128i * ABSL_RANDOM_INTERNAL_RESTRICT>(to),
 | |
|                   v.data());
 | |
| }
 | |
| 
 | |
| // One round of AES. "round_key" is a public constant for breaking the
 | |
| // symmetry of AES (ensures previously equal columns differ afterwards).
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE Vector128
 | |
| AesRound(const Vector128& state, const Vector128& round_key) {
 | |
|   // It is important to always use the full round function - omitting the
 | |
|   // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
 | |
|   // and does not help because we never decrypt.
 | |
|   return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
 | |
| }
 | |
| 
 | |
| inline ABSL_TARGET_CRYPTO ABSL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian(
 | |
|     uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {}
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // u64x2 is a 128-bit, (2 x uint64_t lanes) struct used to store
 | |
| // the randen_keys.
 | |
| struct alignas(16) u64x2 {
 | |
|   constexpr u64x2(uint64_t hi, uint64_t lo)
 | |
| #if defined(ABSL_ARCH_PPC)
 | |
|       // This has been tested with PPC running in little-endian mode;
 | |
|       // We byte-swap the u64x2 structure from little-endian to big-endian
 | |
|       // because altivec always runs in big-endian mode.
 | |
|       : v{__builtin_bswap64(hi), __builtin_bswap64(lo)} {
 | |
| #else
 | |
|       : v{lo, hi} {
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   constexpr bool operator==(const u64x2& other) const {
 | |
|     return v[0] == other.v[0] && v[1] == other.v[1];
 | |
|   }
 | |
| 
 | |
|   constexpr bool operator!=(const u64x2& other) const {
 | |
|     return !(*this == other);
 | |
|   }
 | |
| 
 | |
|   uint64_t v[2];
 | |
| };  // namespace
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wunknown-pragmas"
 | |
| #endif
 | |
| 
 | |
| // At this point, all of the platform-specific features have been defined /
 | |
| // implemented.
 | |
| //
 | |
| // REQUIRES: using u64x2 = ...
 | |
| // REQUIRES: using Vector128 = ...
 | |
| // REQUIRES: Vector128 Vector128Load(void*) {...}
 | |
| // REQUIRES: void Vector128Store(Vector128, void*) {...}
 | |
| // REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
 | |
| // REQUIRES: void SwapEndian(uint64_t*) {...}
 | |
| //
 | |
| // PROVIDES: absl::random_internal::RandenHwAes::Absorb
 | |
| // PROVIDES: absl::random_internal::RandenHwAes::Generate
 | |
| 
 | |
| // RANDen = RANDom generator or beetroots in Swiss German.
 | |
| // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random
 | |
| // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32.
 | |
| //
 | |
| // High-level summary:
 | |
| // 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is
 | |
| //    a sponge-like random generator that requires a cryptographic permutation.
 | |
| //    It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by
 | |
| //    achieving backtracking resistance with only one Permute() per buffer.
 | |
| //
 | |
| // 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round
 | |
| //    Function" constructs up to 1024-bit permutations using an improved
 | |
| //    Generalized Feistel network with 2-round AES-128 functions. This Feistel
 | |
| //    block shuffle achieves diffusion faster and is less vulnerable to
 | |
| //    sliced-biclique attacks than the Type-2 cyclic shuffle.
 | |
| //
 | |
| // 3) "Improving the Generalized Feistel" and "New criterion for diffusion
 | |
| //    property" extends the same kind of improved Feistel block shuffle to 16
 | |
| //    branches, which enables a 2048-bit permutation.
 | |
| //
 | |
| // We combine these three ideas and also change Simpira's subround keys from
 | |
| // structured/low-entropy counters to digits of Pi.
 | |
| 
 | |
| // Randen constants.
 | |
| using absl::random_internal::RandenTraits;
 | |
| constexpr size_t kStateBytes = RandenTraits::kStateBytes;
 | |
| constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes;
 | |
| constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
 | |
| constexpr size_t kFeistelRounds = RandenTraits::kFeistelRounds;
 | |
| constexpr size_t kFeistelFunctions = RandenTraits::kFeistelFunctions;
 | |
| 
 | |
| // Independent keys (272 = 2.1 KiB) for the first AES subround of each function.
 | |
| constexpr size_t kKeys = kFeistelRounds * kFeistelFunctions;
 | |
| 
 | |
| // INCLUDE keys.
 | |
| #include "absl/random/internal/randen-keys.inc"
 | |
| 
 | |
| static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal");
 | |
| static_assert(round_keys[kKeys - 1] != u64x2(0, 0),
 | |
|               "Too few round_keys initializers");
 | |
| 
 | |
| // Number of uint64_t lanes per 128-bit vector;
 | |
| constexpr size_t kLanes = 2;
 | |
| 
 | |
| // Block shuffles applies a shuffle to the entire state between AES rounds.
 | |
| // Improved odd-even shuffle from "New criterion for diffusion property".
 | |
| inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void BlockShuffle(
 | |
|     uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
 | |
|   static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
 | |
| 
 | |
|   constexpr size_t shuffle[kFeistelBlocks] = {7,  2, 13, 4,  11, 8,  3, 6,
 | |
|                                               15, 0, 9,  10, 1,  14, 5, 12};
 | |
| 
 | |
|   // The fully unrolled loop without the memcpy improves the speed by about
 | |
|   // 30% over the equivalent loop.
 | |
|   const Vector128 v0 = Vector128Load(state + kLanes * shuffle[0]);
 | |
|   const Vector128 v1 = Vector128Load(state + kLanes * shuffle[1]);
 | |
|   const Vector128 v2 = Vector128Load(state + kLanes * shuffle[2]);
 | |
|   const Vector128 v3 = Vector128Load(state + kLanes * shuffle[3]);
 | |
|   const Vector128 v4 = Vector128Load(state + kLanes * shuffle[4]);
 | |
|   const Vector128 v5 = Vector128Load(state + kLanes * shuffle[5]);
 | |
|   const Vector128 v6 = Vector128Load(state + kLanes * shuffle[6]);
 | |
|   const Vector128 v7 = Vector128Load(state + kLanes * shuffle[7]);
 | |
|   const Vector128 w0 = Vector128Load(state + kLanes * shuffle[8]);
 | |
|   const Vector128 w1 = Vector128Load(state + kLanes * shuffle[9]);
 | |
|   const Vector128 w2 = Vector128Load(state + kLanes * shuffle[10]);
 | |
|   const Vector128 w3 = Vector128Load(state + kLanes * shuffle[11]);
 | |
|   const Vector128 w4 = Vector128Load(state + kLanes * shuffle[12]);
 | |
|   const Vector128 w5 = Vector128Load(state + kLanes * shuffle[13]);
 | |
|   const Vector128 w6 = Vector128Load(state + kLanes * shuffle[14]);
 | |
|   const Vector128 w7 = Vector128Load(state + kLanes * shuffle[15]);
 | |
| 
 | |
|   Vector128Store(v0, state + kLanes * 0);
 | |
|   Vector128Store(v1, state + kLanes * 1);
 | |
|   Vector128Store(v2, state + kLanes * 2);
 | |
|   Vector128Store(v3, state + kLanes * 3);
 | |
|   Vector128Store(v4, state + kLanes * 4);
 | |
|   Vector128Store(v5, state + kLanes * 5);
 | |
|   Vector128Store(v6, state + kLanes * 6);
 | |
|   Vector128Store(v7, state + kLanes * 7);
 | |
|   Vector128Store(w0, state + kLanes * 8);
 | |
|   Vector128Store(w1, state + kLanes * 9);
 | |
|   Vector128Store(w2, state + kLanes * 10);
 | |
|   Vector128Store(w3, state + kLanes * 11);
 | |
|   Vector128Store(w4, state + kLanes * 12);
 | |
|   Vector128Store(w5, state + kLanes * 13);
 | |
|   Vector128Store(w6, state + kLanes * 14);
 | |
|   Vector128Store(w7, state + kLanes * 15);
 | |
| }
 | |
| 
 | |
| // Feistel round function using two AES subrounds. Very similar to F()
 | |
| // from Simpira v2, but with independent subround keys. Uses 17 AES rounds
 | |
| // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
 | |
| // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
 | |
| // XORs are 'free' (included in the second AES instruction).
 | |
| inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO const u64x2*
 | |
| FeistelRound(uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state,
 | |
|              const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
 | |
|   static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
 | |
| 
 | |
|   // MSVC does a horrible job at unrolling loops.
 | |
|   // So we unroll the loop by hand to improve the performance.
 | |
|   const Vector128 s0 = Vector128Load(state + kLanes * 0);
 | |
|   const Vector128 s1 = Vector128Load(state + kLanes * 1);
 | |
|   const Vector128 s2 = Vector128Load(state + kLanes * 2);
 | |
|   const Vector128 s3 = Vector128Load(state + kLanes * 3);
 | |
|   const Vector128 s4 = Vector128Load(state + kLanes * 4);
 | |
|   const Vector128 s5 = Vector128Load(state + kLanes * 5);
 | |
|   const Vector128 s6 = Vector128Load(state + kLanes * 6);
 | |
|   const Vector128 s7 = Vector128Load(state + kLanes * 7);
 | |
|   const Vector128 s8 = Vector128Load(state + kLanes * 8);
 | |
|   const Vector128 s9 = Vector128Load(state + kLanes * 9);
 | |
|   const Vector128 s10 = Vector128Load(state + kLanes * 10);
 | |
|   const Vector128 s11 = Vector128Load(state + kLanes * 11);
 | |
|   const Vector128 s12 = Vector128Load(state + kLanes * 12);
 | |
|   const Vector128 s13 = Vector128Load(state + kLanes * 13);
 | |
|   const Vector128 s14 = Vector128Load(state + kLanes * 14);
 | |
|   const Vector128 s15 = Vector128Load(state + kLanes * 15);
 | |
| 
 | |
|   // Encode even blocks with keys.
 | |
|   const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
 | |
|   const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
 | |
|   const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
 | |
|   const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
 | |
|   const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
 | |
|   const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
 | |
|   const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
 | |
|   const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
 | |
| 
 | |
|   // Encode odd blocks with even output from above.
 | |
|   const Vector128 o1 = AesRound(e0, s1);
 | |
|   const Vector128 o3 = AesRound(e2, s3);
 | |
|   const Vector128 o5 = AesRound(e4, s5);
 | |
|   const Vector128 o7 = AesRound(e6, s7);
 | |
|   const Vector128 o9 = AesRound(e8, s9);
 | |
|   const Vector128 o11 = AesRound(e10, s11);
 | |
|   const Vector128 o13 = AesRound(e12, s13);
 | |
|   const Vector128 o15 = AesRound(e14, s15);
 | |
| 
 | |
|   // Store odd blocks. (These will be shuffled later).
 | |
|   Vector128Store(o1, state + kLanes * 1);
 | |
|   Vector128Store(o3, state + kLanes * 3);
 | |
|   Vector128Store(o5, state + kLanes * 5);
 | |
|   Vector128Store(o7, state + kLanes * 7);
 | |
|   Vector128Store(o9, state + kLanes * 9);
 | |
|   Vector128Store(o11, state + kLanes * 11);
 | |
|   Vector128Store(o13, state + kLanes * 13);
 | |
|   Vector128Store(o15, state + kLanes * 15);
 | |
| 
 | |
|   return keys + 8;
 | |
| }
 | |
| 
 | |
| // Cryptographic permutation based via type-2 Generalized Feistel Network.
 | |
| // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
 | |
| // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
 | |
| // of Simpira v2, but more efficient than its generic construction for b=16.
 | |
| inline ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_TARGET_CRYPTO void Permute(
 | |
|     const void* ABSL_RANDOM_INTERNAL_RESTRICT keys,
 | |
|     uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
 | |
|   const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 =
 | |
|       static_cast<const u64x2*>(keys);
 | |
| 
 | |
|   // (Successfully unrolled; the first iteration jumps into the second half)
 | |
| #ifdef __clang__
 | |
| #pragma clang loop unroll_count(2)
 | |
| #endif
 | |
|   for (size_t round = 0; round < kFeistelRounds; ++round) {
 | |
|     keys128 = FeistelRound(state, keys128);
 | |
|     BlockShuffle(state);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| namespace absl {
 | |
| namespace random_internal {
 | |
| 
 | |
| bool HasRandenHwAesImplementation() { return true; }
 | |
| 
 | |
| const void* ABSL_TARGET_CRYPTO ABSL_FUNCTION_ALIGN32 ABSL_ATTRIBUTE_FLATTEN
 | |
| RandenHwAes::GetKeys() {
 | |
|   // Round keys for one AES per Feistel round and branch.
 | |
|   // The canonical implementation uses first digits of Pi.
 | |
|   return round_keys;
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void ABSL_TARGET_CRYPTO ABSL_FUNCTION_ALIGN32 ABSL_ATTRIBUTE_FLATTEN
 | |
| RandenHwAes::Absorb(const void* seed_void, void* state_void) {
 | |
|   uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state =
 | |
|       reinterpret_cast<uint64_t*>(state_void);
 | |
|   const uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT seed =
 | |
|       reinterpret_cast<const uint64_t*>(seed_void);
 | |
| 
 | |
|   constexpr size_t kCapacityBlocks = kCapacityBytes / sizeof(Vector128);
 | |
|   constexpr size_t kStateBlocks = kStateBytes / sizeof(Vector128);
 | |
| 
 | |
|   static_assert(kCapacityBlocks * sizeof(Vector128) == kCapacityBytes,
 | |
|                 "Not i*V");
 | |
|   static_assert(kCapacityBlocks == 1, "Unexpected Randen kCapacityBlocks");
 | |
|   static_assert(kStateBlocks == 16, "Unexpected Randen kStateBlocks");
 | |
| 
 | |
|   Vector128 b1 = Vector128Load(state + kLanes * 1);
 | |
|   b1 ^= Vector128Load(seed + kLanes * 0);
 | |
|   Vector128Store(b1, state + kLanes * 1);
 | |
| 
 | |
|   Vector128 b2 = Vector128Load(state + kLanes * 2);
 | |
|   b2 ^= Vector128Load(seed + kLanes * 1);
 | |
|   Vector128Store(b2, state + kLanes * 2);
 | |
| 
 | |
|   Vector128 b3 = Vector128Load(state + kLanes * 3);
 | |
|   b3 ^= Vector128Load(seed + kLanes * 2);
 | |
|   Vector128Store(b3, state + kLanes * 3);
 | |
| 
 | |
|   Vector128 b4 = Vector128Load(state + kLanes * 4);
 | |
|   b4 ^= Vector128Load(seed + kLanes * 3);
 | |
|   Vector128Store(b4, state + kLanes * 4);
 | |
| 
 | |
|   Vector128 b5 = Vector128Load(state + kLanes * 5);
 | |
|   b5 ^= Vector128Load(seed + kLanes * 4);
 | |
|   Vector128Store(b5, state + kLanes * 5);
 | |
| 
 | |
|   Vector128 b6 = Vector128Load(state + kLanes * 6);
 | |
|   b6 ^= Vector128Load(seed + kLanes * 5);
 | |
|   Vector128Store(b6, state + kLanes * 6);
 | |
| 
 | |
|   Vector128 b7 = Vector128Load(state + kLanes * 7);
 | |
|   b7 ^= Vector128Load(seed + kLanes * 6);
 | |
|   Vector128Store(b7, state + kLanes * 7);
 | |
| 
 | |
|   Vector128 b8 = Vector128Load(state + kLanes * 8);
 | |
|   b8 ^= Vector128Load(seed + kLanes * 7);
 | |
|   Vector128Store(b8, state + kLanes * 8);
 | |
| 
 | |
|   Vector128 b9 = Vector128Load(state + kLanes * 9);
 | |
|   b9 ^= Vector128Load(seed + kLanes * 8);
 | |
|   Vector128Store(b9, state + kLanes * 9);
 | |
| 
 | |
|   Vector128 b10 = Vector128Load(state + kLanes * 10);
 | |
|   b10 ^= Vector128Load(seed + kLanes * 9);
 | |
|   Vector128Store(b10, state + kLanes * 10);
 | |
| 
 | |
|   Vector128 b11 = Vector128Load(state + kLanes * 11);
 | |
|   b11 ^= Vector128Load(seed + kLanes * 10);
 | |
|   Vector128Store(b11, state + kLanes * 11);
 | |
| 
 | |
|   Vector128 b12 = Vector128Load(state + kLanes * 12);
 | |
|   b12 ^= Vector128Load(seed + kLanes * 11);
 | |
|   Vector128Store(b12, state + kLanes * 12);
 | |
| 
 | |
|   Vector128 b13 = Vector128Load(state + kLanes * 13);
 | |
|   b13 ^= Vector128Load(seed + kLanes * 12);
 | |
|   Vector128Store(b13, state + kLanes * 13);
 | |
| 
 | |
|   Vector128 b14 = Vector128Load(state + kLanes * 14);
 | |
|   b14 ^= Vector128Load(seed + kLanes * 13);
 | |
|   Vector128Store(b14, state + kLanes * 14);
 | |
| 
 | |
|   Vector128 b15 = Vector128Load(state + kLanes * 15);
 | |
|   b15 ^= Vector128Load(seed + kLanes * 14);
 | |
|   Vector128Store(b15, state + kLanes * 15);
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE
 | |
| void ABSL_TARGET_CRYPTO ABSL_FUNCTION_ALIGN32 ABSL_ATTRIBUTE_FLATTEN
 | |
| RandenHwAes::Generate(const void* keys, void* state_void) {
 | |
|   static_assert(kCapacityBytes == sizeof(Vector128), "Capacity mismatch");
 | |
| 
 | |
|   uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state =
 | |
|       reinterpret_cast<uint64_t*>(state_void);
 | |
| 
 | |
|   const Vector128 prev_inner = Vector128Load(state);
 | |
| 
 | |
|   SwapEndian(state);
 | |
| 
 | |
|   Permute(keys, state);
 | |
| 
 | |
|   SwapEndian(state);
 | |
| 
 | |
|   // Ensure backtracking resistance.
 | |
|   Vector128 inner = Vector128Load(state);
 | |
|   inner ^= prev_inner;
 | |
|   Vector128Store(inner, state);
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| }  // namespace random_internal
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // (ABSL_RANDEN_HWAES_IMPL)
 |