-- 7f6c15aadc4d97e217dd446518dbb4fdc86b36a3 by Derek Mauro <dmauro@google.com>: Upgrade GCC automated testing to use GCC 9.2 and Cmake 3.16.2 PiperOrigin-RevId: 288488783 -- a978cee848d3cf65b0826c981bfd81022fc36660 by Abseil Team <absl-team@google.com>: Removing formatting traits that were only used internally. ON_CALL/EXPECT_CALL do a sufficient job here. PiperOrigin-RevId: 288386509 -- fdec6f40293d5883220f1f0ea1261f7c5b60a66e by Derek Mauro <dmauro@google.com>: Upgrade MacOS tests to use Bazel 2.0.0 PiperOrigin-RevId: 288373298 -- 465865c4123e9481ab50ea0527e92b39519704dd by Derek Mauro <dmauro@google.com>: Changes to support GCC 9 * Fix several -Wredundant-move warnings * Remove FlatHashMap.Any test, which basically doesn't work on any platform any more (see https://cplusplus.github.io/LWG/lwg-active.html#3121) * Fix a constant sign-compare warning * Conditionally compile out the PoisonHash test which doesn't build PiperOrigin-RevId: 288360204 -- 57c4bb07fc58e7dd2a04f3c45027aab5ecaccf25 by Andy Soffer <asoffer@google.com>: Deflaking MockingBitGen test. Because MockingBitGen can return random values, it is inherently flaky. For log-unifrom, 2040 is a common enough value that tests failed unreasonably frequently. Replacing it with a significantly larger value so as to be much less common. 50000 is a good choice because it is (tied for) the least likely to occur randomly from this distribution, but is still in the distribution. PiperOrigin-RevId: 288360112 -- 86f38e4109899d972de353b1c556c018cfe37956 by Matt Calabrese <calabrese@google.com>: Remove construction tests for the internal `CompressedTuple<std::any>` instantiation. This was not guaranteed to work for the reasons that `std::tuple<std::any>` copy construction does not actually work by standard specification (some implementations introduce workarounds for this). In GCC9, `CompressedTuple<std::any>` and `std::tuple<std::any>` both fail for the same reasons, and a proper "fix" requires updating `std::any`, which is out of our control. PiperOrigin-RevId: 288351977 GitOrigin-RevId: 7f6c15aadc4d97e217dd446518dbb4fdc86b36a3 Change-Id: I5d5c62bd297dc0ff1f2970ff076bb5cd088a7e4c
		
			
				
	
	
		
			937 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			937 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/hash/hash.h"
 | |
| 
 | |
| #include <array>
 | |
| #include <bitset>
 | |
| #include <cstring>
 | |
| #include <deque>
 | |
| #include <forward_list>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <type_traits>
 | |
| #include <unordered_map>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/container/flat_hash_set.h"
 | |
| #include "absl/hash/hash_testing.h"
 | |
| #include "absl/hash/internal/spy_hash_state.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| #include "absl/numeric/int128.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using absl::Hash;
 | |
| using absl::hash_internal::SpyHashState;
 | |
| 
 | |
| template <typename T>
 | |
| class HashValueIntTest : public testing::Test {
 | |
| };
 | |
| TYPED_TEST_SUITE_P(HashValueIntTest);
 | |
| 
 | |
| template <typename T>
 | |
| SpyHashState SpyHash(const T& value) {
 | |
|   return SpyHashState::combine(SpyHashState(), value);
 | |
| }
 | |
| 
 | |
| // Helper trait to verify if T is hashable. We use absl::Hash's poison status to
 | |
| // detect it.
 | |
| template <typename T>
 | |
| using is_hashable = std::is_default_constructible<absl::Hash<T>>;
 | |
| 
 | |
| TYPED_TEST_P(HashValueIntTest, BasicUsage) {
 | |
|   EXPECT_TRUE((is_hashable<TypeParam>::value));
 | |
| 
 | |
|   TypeParam n = 42;
 | |
|   EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
 | |
|   EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
 | |
|   EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
 | |
|             SpyHash(std::numeric_limits<TypeParam>::min()));
 | |
| }
 | |
| 
 | |
| TYPED_TEST_P(HashValueIntTest, FastPath) {
 | |
|   // Test the fast-path to make sure the values are the same.
 | |
|   TypeParam n = 42;
 | |
|   EXPECT_EQ(absl::Hash<TypeParam>{}(n),
 | |
|             absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
 | |
| }
 | |
| 
 | |
| REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath);
 | |
| using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
 | |
|                                 uint64_t, size_t>;
 | |
| INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes);
 | |
| 
 | |
| enum LegacyEnum { kValue1, kValue2, kValue3 };
 | |
| 
 | |
| enum class EnumClass { kValue4, kValue5, kValue6 };
 | |
| 
 | |
| TEST(HashValueTest, EnumAndBool) {
 | |
|   EXPECT_TRUE((is_hashable<LegacyEnum>::value));
 | |
|   EXPECT_TRUE((is_hashable<EnumClass>::value));
 | |
|   EXPECT_TRUE((is_hashable<bool>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(true, false)));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, FloatingPoint) {
 | |
|   EXPECT_TRUE((is_hashable<float>::value));
 | |
|   EXPECT_TRUE((is_hashable<double>::value));
 | |
|   EXPECT_TRUE((is_hashable<long double>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),
 | |
|                       -std::numeric_limits<float>::infinity())));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),
 | |
|                       -std::numeric_limits<double>::infinity())));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       // Add some values with small exponent to test that NORMAL values also
 | |
|       // append their category.
 | |
|       .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,
 | |
|       17 * static_cast<long double>(std::numeric_limits<double>::max()),
 | |
|       std::numeric_limits<long double>::infinity(),
 | |
|       -std::numeric_limits<long double>::infinity())));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, Pointer) {
 | |
|   EXPECT_TRUE((is_hashable<int*>::value));
 | |
| 
 | |
|   int i;
 | |
|   int* ptr = &i;
 | |
|   int* n = nullptr;
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, PointerAlignment) {
 | |
|   // We want to make sure that pointer alignment will not cause bits to be
 | |
|   // stuck.
 | |
| 
 | |
|   constexpr size_t kTotalSize = 1 << 20;
 | |
|   std::unique_ptr<char[]> data(new char[kTotalSize]);
 | |
|   constexpr size_t kLog2NumValues = 5;
 | |
|   constexpr size_t kNumValues = 1 << kLog2NumValues;
 | |
| 
 | |
|   for (size_t align = 1; align < kTotalSize / kNumValues;
 | |
|        align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {
 | |
|     SCOPED_TRACE(align);
 | |
|     ASSERT_LE(align * kNumValues, kTotalSize);
 | |
| 
 | |
|     size_t bits_or = 0;
 | |
|     size_t bits_and = ~size_t{};
 | |
| 
 | |
|     for (size_t i = 0; i < kNumValues; ++i) {
 | |
|       size_t hash = absl::Hash<void*>()(data.get() + i * align);
 | |
|       bits_or |= hash;
 | |
|       bits_and &= hash;
 | |
|     }
 | |
| 
 | |
|     // Limit the scope to the bits we would be using for Swisstable.
 | |
|     constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;
 | |
|     size_t stuck_bits = (~bits_or | bits_and) & kMask;
 | |
|     EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, PairAndTuple) {
 | |
|   EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));
 | |
|   EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));
 | |
|   EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));
 | |
|   EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),
 | |
|       std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),
 | |
|                       std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),
 | |
|                       std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),
 | |
|                       std::make_tuple(0, 0, -42))));
 | |
| 
 | |
|   // Test that tuples of lvalue references work (so we need a few lvalues):
 | |
|   int a = 0, b = 1, c = 17, d = 23;
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));
 | |
| 
 | |
|   // Test that tuples of rvalue references work:
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),
 | |
|       std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),
 | |
|       std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),
 | |
|       std::forward_as_tuple(0, 0, -42))));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, CombineContiguousWorks) {
 | |
|   std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};
 | |
|   std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};
 | |
| 
 | |
|   auto vh1 = SpyHash(v1);
 | |
|   auto vh2 = SpyHash(v2);
 | |
|   EXPECT_NE(vh1, vh2);
 | |
| }
 | |
| 
 | |
| struct DummyDeleter {
 | |
|   template <typename T>
 | |
|   void operator() (T* ptr) {}
 | |
| };
 | |
| 
 | |
| struct SmartPointerEq {
 | |
|   template <typename T, typename U>
 | |
|   bool operator()(const T& t, const U& u) const {
 | |
|     return GetPtr(t) == GetPtr(u);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   static auto GetPtr(const T& t) -> decltype(&*t) {
 | |
|     return t ? &*t : nullptr;
 | |
|   }
 | |
| 
 | |
|   static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }
 | |
| };
 | |
| 
 | |
| TEST(HashValueTest, SmartPointers) {
 | |
|   EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));
 | |
|   EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));
 | |
|   EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));
 | |
| 
 | |
|   int i, j;
 | |
|   std::unique_ptr<int, DummyDeleter> unique1(&i);
 | |
|   std::unique_ptr<int, DummyDeleter> unique2(&i);
 | |
|   std::unique_ptr<int, DummyDeleter> unique_other(&j);
 | |
|   std::unique_ptr<int, DummyDeleter> unique_null;
 | |
| 
 | |
|   std::shared_ptr<int> shared1(&i, DummyDeleter());
 | |
|   std::shared_ptr<int> shared2(&i, DummyDeleter());
 | |
|   std::shared_ptr<int> shared_other(&j, DummyDeleter());
 | |
|   std::shared_ptr<int> shared_null;
 | |
| 
 | |
|   // Sanity check of the Eq function.
 | |
|   ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));
 | |
|   ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));
 | |
|   ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));
 | |
|   ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::forward_as_tuple(&i, nullptr,                    //
 | |
|                             unique1, unique2, unique_null,  //
 | |
|                             absl::make_unique<int>(),       //
 | |
|                             shared1, shared2, shared_null,  //
 | |
|                             std::make_shared<int>()),
 | |
|       SmartPointerEq{}));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, FunctionPointer) {
 | |
|   using Func = int (*)();
 | |
|   EXPECT_TRUE(is_hashable<Func>::value);
 | |
| 
 | |
|   Func p1 = [] { return 2; }, p2 = [] { return 1; };
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(p1, p2, nullptr)));
 | |
| }
 | |
| 
 | |
| struct WrapInTuple {
 | |
|   template <typename T>
 | |
|   std::tuple<int, T, size_t> operator()(const T& t) const {
 | |
|     return std::make_tuple(7, t, 0xdeadbeef);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(HashValueTest, Strings) {
 | |
|   EXPECT_TRUE((is_hashable<std::string>::value));
 | |
| 
 | |
|   const std::string small = "foo";
 | |
|   const std::string dup = "foofoo";
 | |
|   const std::string large = std::string(2048, 'x');  // multiple of chunk size
 | |
|   const std::string huge = std::string(5000, 'a');   // not a multiple
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::string(), absl::string_view(),
 | |
|       std::string(""), absl::string_view(""),
 | |
|       std::string(small), absl::string_view(small),
 | |
|       std::string(dup), absl::string_view(dup),
 | |
|       std::string(large), absl::string_view(large),
 | |
|       std::string(huge), absl::string_view(huge))));
 | |
| 
 | |
|   // Also check that nested types maintain the same hash.
 | |
|   const WrapInTuple t{};
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       t(std::string()), t(absl::string_view()),
 | |
|       t(std::string("")), t(absl::string_view("")),
 | |
|       t(std::string(small)), t(absl::string_view(small)),
 | |
|       t(std::string(dup)), t(absl::string_view(dup)),
 | |
|       t(std::string(large)), t(absl::string_view(large)),
 | |
|       t(std::string(huge)), t(absl::string_view(huge)))));
 | |
| 
 | |
|   // Make sure that hashing a `const char*` does not use its std::string-value.
 | |
|   EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),
 | |
|             SpyHash(absl::string_view("ABC")));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, WString) {
 | |
|   EXPECT_TRUE((is_hashable<std::wstring>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"),
 | |
|       std::wstring(L"Some other different string"),
 | |
|       std::wstring(L"Iñtërnâtiônàlizætiøn"))));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, U16String) {
 | |
|   EXPECT_TRUE((is_hashable<std::u16string>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"),
 | |
|       std::u16string(u"Some other different string"),
 | |
|       std::u16string(u"Iñtërnâtiônàlizætiøn"))));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, U32String) {
 | |
|   EXPECT_TRUE((is_hashable<std::u32string>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"),
 | |
|       std::u32string(U"Some other different string"),
 | |
|       std::u32string(U"Iñtërnâtiônàlizætiøn"))));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, StdArray) {
 | |
|   EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, StdBitset) {
 | |
|   EXPECT_TRUE((is_hashable<std::bitset<257>>::value));
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),
 | |
|        std::bitset<2>("11")}));
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));
 | |
| 
 | |
|   constexpr int kNumBits = 256;
 | |
|   std::array<std::string, 6> bit_strings;
 | |
|   bit_strings.fill(std::string(kNumBits, '1'));
 | |
|   bit_strings[1][0] = '0';
 | |
|   bit_strings[2][1] = '0';
 | |
|   bit_strings[3][kNumBits / 3] = '0';
 | |
|   bit_strings[4][kNumBits - 2] = '0';
 | |
|   bit_strings[5][kNumBits - 1] = '0';
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       {std::bitset<kNumBits>(bit_strings[0].c_str()),
 | |
|        std::bitset<kNumBits>(bit_strings[1].c_str()),
 | |
|        std::bitset<kNumBits>(bit_strings[2].c_str()),
 | |
|        std::bitset<kNumBits>(bit_strings[3].c_str()),
 | |
|        std::bitset<kNumBits>(bit_strings[4].c_str()),
 | |
|        std::bitset<kNumBits>(bit_strings[5].c_str())}));
 | |
| }  // namespace
 | |
| 
 | |
| template <typename T>
 | |
| class HashValueSequenceTest : public testing::Test {
 | |
| };
 | |
| TYPED_TEST_SUITE_P(HashValueSequenceTest);
 | |
| 
 | |
| TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {
 | |
|   EXPECT_TRUE((is_hashable<TypeParam>::value));
 | |
| 
 | |
|   using ValueType = typename TypeParam::value_type;
 | |
|   auto a = static_cast<ValueType>(0);
 | |
|   auto b = static_cast<ValueType>(23);
 | |
|   auto c = static_cast<ValueType>(42);
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(TypeParam(), TypeParam{}, TypeParam{a, b, c},
 | |
|                       TypeParam{a, b}, TypeParam{b, c})));
 | |
| }
 | |
| 
 | |
| REGISTER_TYPED_TEST_CASE_P(HashValueSequenceTest, BasicUsage);
 | |
| using IntSequenceTypes =
 | |
|     testing::Types<std::deque<int>, std::forward_list<int>, std::list<int>,
 | |
|                    std::vector<int>, std::vector<bool>, std::set<int>,
 | |
|                    std::multiset<int>>;
 | |
| INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueSequenceTest, IntSequenceTypes);
 | |
| 
 | |
| // Private type that only supports AbslHashValue to make sure our chosen hash
 | |
| // implentation is recursive within absl::Hash.
 | |
| // It uses std::abs() on the value to provide different bitwise representations
 | |
| // of the same logical value.
 | |
| struct Private {
 | |
|   int i;
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H h, Private p) {
 | |
|     return H::combine(std::move(h), std::abs(p.i));
 | |
|   }
 | |
| 
 | |
|   friend bool operator==(Private a, Private b) {
 | |
|     return std::abs(a.i) == std::abs(b.i);
 | |
|   }
 | |
| 
 | |
|   friend std::ostream& operator<<(std::ostream& o, Private p) {
 | |
|     return o << p.i;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Test helper for combine_piecewise_buffer.  It holds a string_view to the
 | |
| // buffer-to-be-hashed.  Its AbslHashValue specialization will split up its
 | |
| // contents at the character offsets requested.
 | |
| class PiecewiseHashTester {
 | |
|  public:
 | |
|   // Create a hash view of a buffer to be hashed contiguously.
 | |
|   explicit PiecewiseHashTester(absl::string_view buf)
 | |
|       : buf_(buf), piecewise_(false), split_locations_() {}
 | |
| 
 | |
|   // Create a hash view of a buffer to be hashed piecewise, with breaks at the
 | |
|   // given locations.
 | |
|   PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations)
 | |
|       : buf_(buf),
 | |
|         piecewise_(true),
 | |
|         split_locations_(std::move(split_locations)) {}
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H h, const PiecewiseHashTester& p) {
 | |
|     if (!p.piecewise_) {
 | |
|       return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size());
 | |
|     }
 | |
|     absl::hash_internal::PiecewiseCombiner combiner;
 | |
|     if (p.split_locations_.empty()) {
 | |
|       h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size());
 | |
|       return combiner.finalize(std::move(h));
 | |
|     }
 | |
|     size_t begin = 0;
 | |
|     for (size_t next : p.split_locations_) {
 | |
|       absl::string_view chunk = p.buf_.substr(begin, next - begin);
 | |
|       h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size());
 | |
|       begin = next;
 | |
|     }
 | |
|     absl::string_view last_chunk = p.buf_.substr(begin);
 | |
|     if (!last_chunk.empty()) {
 | |
|       h = combiner.add_buffer(std::move(h), last_chunk.data(),
 | |
|                               last_chunk.size());
 | |
|     }
 | |
|     return combiner.finalize(std::move(h));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   absl::string_view buf_;
 | |
|   bool piecewise_;
 | |
|   std::set<size_t> split_locations_;
 | |
| };
 | |
| 
 | |
| // Dummy object that hashes as two distinct contiguous buffers, "foo" followed
 | |
| // by "bar"
 | |
| struct DummyFooBar {
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H h, const DummyFooBar&) {
 | |
|     const char* foo = "foo";
 | |
|     const char* bar = "bar";
 | |
|     h = H::combine_contiguous(std::move(h), foo, 3);
 | |
|     h = H::combine_contiguous(std::move(h), bar, 3);
 | |
|     return h;
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(HashValueTest, CombinePiecewiseBuffer) {
 | |
|   absl::Hash<PiecewiseHashTester> hash;
 | |
| 
 | |
|   // Check that hashing an empty buffer through the piecewise API works.
 | |
|   EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {})));
 | |
| 
 | |
|   // Similarly, small buffers should give consistent results
 | |
|   EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
 | |
|             hash(PiecewiseHashTester("foobar", {})));
 | |
|   EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
 | |
|             hash(PiecewiseHashTester("foobar", {3})));
 | |
| 
 | |
|   // But hashing "foobar" in pieces gives a different answer than hashing "foo"
 | |
|   // contiguously, then "bar" contiguously.
 | |
|   EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})),
 | |
|             absl::Hash<DummyFooBar>()(DummyFooBar{}));
 | |
| 
 | |
|   // Test hashing a large buffer incrementally, broken up in several different
 | |
|   // ways.  Arrange for breaks on and near the stride boundaries to look for
 | |
|   // off-by-one errors in the implementation.
 | |
|   //
 | |
|   // This test is run on a buffer that is a multiple of the stride size, and one
 | |
|   // that isn't.
 | |
|   for (size_t big_buffer_size : {1024 * 2 + 512, 1024 * 3}) {
 | |
|     SCOPED_TRACE(big_buffer_size);
 | |
|     std::string big_buffer;
 | |
|     for (int i = 0; i < big_buffer_size; ++i) {
 | |
|       // Arbitrary std::string
 | |
|       big_buffer.push_back(32 + (i * (i / 3)) % 64);
 | |
|     }
 | |
|     auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer));
 | |
| 
 | |
|     const int possible_breaks = 9;
 | |
|     size_t breaks[possible_breaks] = {1,    512,  1023, 1024, 1025,
 | |
|                                       1536, 2047, 2048, 2049};
 | |
|     for (unsigned test_mask = 0; test_mask < (1u << possible_breaks);
 | |
|          ++test_mask) {
 | |
|       SCOPED_TRACE(test_mask);
 | |
|       std::set<size_t> break_locations;
 | |
|       for (int j = 0; j < possible_breaks; ++j) {
 | |
|         if (test_mask & (1u << j)) {
 | |
|           break_locations.insert(breaks[j]);
 | |
|         }
 | |
|       }
 | |
|       EXPECT_EQ(
 | |
|           hash(PiecewiseHashTester(big_buffer, std::move(break_locations))),
 | |
|           big_buffer_hash);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, PrivateSanity) {
 | |
|   // Sanity check that Private is working as the tests below expect it to work.
 | |
|   EXPECT_TRUE(is_hashable<Private>::value);
 | |
|   EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));
 | |
|   EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, Optional) {
 | |
|   EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);
 | |
| 
 | |
|   using O = absl::optional<Private>;
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
 | |
|       std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, Variant) {
 | |
|   using V = absl::variant<Private, std::string>;
 | |
|   EXPECT_TRUE(is_hashable<V>::value);
 | |
| 
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));
 | |
| 
 | |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
 | |
|   struct S {};
 | |
|   EXPECT_FALSE(is_hashable<absl::variant<S>>::value);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| TEST(HashValueTest, Maps) {
 | |
|   EXPECT_TRUE((is_hashable<std::map<int, std::string>>::value));
 | |
| 
 | |
|   using M = std::map<int, std::string>;
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       M{}, M{{0, "foo"}}, M{{1, "foo"}}, M{{0, "bar"}}, M{{1, "bar"}},
 | |
|       M{{0, "foo"}, {42, "bar"}}, M{{1, "foo"}, {42, "bar"}},
 | |
|       M{{1, "foo"}, {43, "bar"}}, M{{1, "foo"}, {43, "baz"}})));
 | |
| 
 | |
|   using MM = std::multimap<int, std::string>;
 | |
|   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
 | |
|       MM{}, MM{{0, "foo"}}, MM{{1, "foo"}}, MM{{0, "bar"}}, MM{{1, "bar"}},
 | |
|       MM{{0, "foo"}, {0, "bar"}}, MM{{0, "bar"}, {0, "foo"}},
 | |
|       MM{{0, "foo"}, {42, "bar"}}, MM{{1, "foo"}, {42, "bar"}},
 | |
|       MM{{1, "foo"}, {1, "foo"}, {43, "bar"}}, MM{{1, "foo"}, {43, "baz"}})));
 | |
| }
 | |
| 
 | |
| template <typename T, typename = void>
 | |
| struct IsHashCallable : std::false_type {};
 | |
| 
 | |
| template <typename T>
 | |
| struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
 | |
|                             std::declval<const T&>()))>> : std::true_type {};
 | |
| 
 | |
| template <typename T, typename = void>
 | |
| struct IsAggregateInitializable : std::false_type {};
 | |
| 
 | |
| template <typename T>
 | |
| struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
 | |
|     : std::true_type {};
 | |
| 
 | |
| TEST(IsHashableTest, ValidHash) {
 | |
|   EXPECT_TRUE((is_hashable<int>::value));
 | |
|   EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
 | |
|   EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
 | |
|   EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
 | |
|   EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
 | |
|   EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
 | |
|   EXPECT_TRUE(IsHashCallable<int>::value);
 | |
|   EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
 | |
| }
 | |
| 
 | |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
 | |
| TEST(IsHashableTest, PoisonHash) {
 | |
|   struct X {};
 | |
|   EXPECT_FALSE((is_hashable<X>::value));
 | |
|   EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
 | |
|   EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
 | |
|   EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
 | |
|   EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
 | |
|   EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
 | |
|   EXPECT_FALSE(IsHashCallable<X>::value);
 | |
| #if !defined(__GNUC__) || __GNUC__ < 9
 | |
|   // This doesn't compile on GCC 9.
 | |
|   EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
 | |
| #endif
 | |
| }
 | |
| #endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
 | |
| 
 | |
| // Hashable types
 | |
| //
 | |
| // These types exist simply to exercise various AbslHashValue behaviors, so
 | |
| // they are named by what their AbslHashValue overload does.
 | |
| struct NoOp {
 | |
|   template <typename HashCode>
 | |
|   friend HashCode AbslHashValue(HashCode h, NoOp n) {
 | |
|     return h;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct EmptyCombine {
 | |
|   template <typename HashCode>
 | |
|   friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
 | |
|     return HashCode::combine(std::move(h));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Int>
 | |
| struct CombineIterative {
 | |
|   template <typename HashCode>
 | |
|   friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
 | |
|     for (int i = 0; i < 5; ++i) {
 | |
|       h = HashCode::combine(std::move(h), Int(i));
 | |
|     }
 | |
|     return h;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Int>
 | |
| struct CombineVariadic {
 | |
|   template <typename HashCode>
 | |
|   friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
 | |
|     return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
 | |
|                              Int(4));
 | |
|   }
 | |
| };
 | |
| enum class InvokeTag {
 | |
|   kUniquelyRepresented,
 | |
|   kHashValue,
 | |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
 | |
|   kLegacyHash,
 | |
| #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
 | |
|   kStdHash,
 | |
|   kNone
 | |
| };
 | |
| 
 | |
| template <InvokeTag T>
 | |
| using InvokeTagConstant = std::integral_constant<InvokeTag, T>;
 | |
| 
 | |
| template <InvokeTag... Tags>
 | |
| struct MinTag;
 | |
| 
 | |
| template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
 | |
| struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};
 | |
| 
 | |
| template <InvokeTag a>
 | |
| struct MinTag<a> : InvokeTagConstant<a> {};
 | |
| 
 | |
| template <InvokeTag... Tags>
 | |
| struct CustomHashType {
 | |
|   explicit CustomHashType(size_t val) : value(val) {}
 | |
|   size_t value;
 | |
| };
 | |
| 
 | |
| template <InvokeTag allowed, InvokeTag... tags>
 | |
| struct EnableIfContained
 | |
|     : std::enable_if<absl::disjunction<
 | |
|           std::integral_constant<bool, allowed == tags>...>::value> {};
 | |
| 
 | |
| template <
 | |
|     typename H, InvokeTag... Tags,
 | |
|     typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
 | |
| H AbslHashValue(H state, CustomHashType<Tags...> t) {
 | |
|   static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
 | |
|   return H::combine(std::move(state),
 | |
|                     t.value + static_cast<int>(InvokeTag::kHashValue));
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace hash_internal {
 | |
| template <InvokeTag... Tags>
 | |
| struct is_uniquely_represented<
 | |
|     CustomHashType<Tags...>,
 | |
|     typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
 | |
|     : std::true_type {};
 | |
| }  // namespace hash_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
 | |
| namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
 | |
| template <InvokeTag... Tags>
 | |
| struct hash<CustomHashType<Tags...>> {
 | |
|   template <InvokeTag... TagsIn, typename = typename EnableIfContained<
 | |
|                                      InvokeTag::kLegacyHash, TagsIn...>::type>
 | |
|   size_t operator()(CustomHashType<TagsIn...> t) const {
 | |
|     static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
 | |
|     return t.value + static_cast<int>(InvokeTag::kLegacyHash);
 | |
|   }
 | |
| };
 | |
| }  // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
 | |
| #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
 | |
| 
 | |
| namespace std {
 | |
| template <InvokeTag... Tags>  // NOLINT
 | |
| struct hash<CustomHashType<Tags...>> {
 | |
|   template <InvokeTag... TagsIn, typename = typename EnableIfContained<
 | |
|                                      InvokeTag::kStdHash, TagsIn...>::type>
 | |
|   size_t operator()(CustomHashType<TagsIn...> t) const {
 | |
|     static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
 | |
|     return t.value + static_cast<int>(InvokeTag::kStdHash);
 | |
|   }
 | |
| };
 | |
| }  // namespace std
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| template <typename... T>
 | |
| void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
 | |
|   using type = CustomHashType<T::value...>;
 | |
|   SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
 | |
|   EXPECT_TRUE(is_hashable<type>());
 | |
|   EXPECT_TRUE(is_hashable<const type>());
 | |
|   EXPECT_TRUE(is_hashable<const type&>());
 | |
| 
 | |
|   const size_t offset = static_cast<int>(std::min({T::value...}));
 | |
|   EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset}));
 | |
| }
 | |
| 
 | |
| void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
 | |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
 | |
|   // is_hashable is false if we don't support any of the hooks.
 | |
|   using type = CustomHashType<>;
 | |
|   EXPECT_FALSE(is_hashable<type>());
 | |
|   EXPECT_FALSE(is_hashable<const type>());
 | |
|   EXPECT_FALSE(is_hashable<const type&>());
 | |
| #endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
 | |
| }
 | |
| 
 | |
| template <InvokeTag Tag, typename... T>
 | |
| void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
 | |
|   constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
 | |
|   TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
 | |
|   TestCustomHashType(InvokeTagConstant<next>(), t...);
 | |
| }
 | |
| 
 | |
| TEST(HashTest, CustomHashType) {
 | |
|   TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
 | |
| }
 | |
| 
 | |
| TEST(HashTest, NoOpsAreEquivalent) {
 | |
|   EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
 | |
|   EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| class HashIntTest : public testing::Test {
 | |
| };
 | |
| TYPED_TEST_SUITE_P(HashIntTest);
 | |
| 
 | |
| TYPED_TEST_P(HashIntTest, BasicUsage) {
 | |
|   EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
 | |
|   EXPECT_NE(Hash<NoOp>()({}),
 | |
|             Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
 | |
|   if (std::numeric_limits<TypeParam>::min() != 0) {
 | |
|     EXPECT_NE(Hash<NoOp>()({}),
 | |
|               Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
 | |
|   }
 | |
| 
 | |
|   EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
 | |
|             Hash<CombineVariadic<TypeParam>>()({}));
 | |
| }
 | |
| 
 | |
| REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage);
 | |
| using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
 | |
|                                 uint64_t, size_t>;
 | |
| INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes);
 | |
| 
 | |
| struct StructWithPadding {
 | |
|   char c;
 | |
|   int i;
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
 | |
|     return H::combine(std::move(hash_state), s.c, s.i);
 | |
|   }
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
 | |
|               "StructWithPadding doesn't have padding");
 | |
| static_assert(std::is_standard_layout<StructWithPadding>::value, "");
 | |
| 
 | |
| // This check has to be disabled because libstdc++ doesn't support it.
 | |
| // static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
 | |
| 
 | |
| template <typename T>
 | |
| struct ArraySlice {
 | |
|   T* begin;
 | |
|   T* end;
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
 | |
|     for (auto t = slice.begin; t != slice.end; ++t) {
 | |
|       hash_state = H::combine(std::move(hash_state), *t);
 | |
|     }
 | |
|     return hash_state;
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(HashTest, HashNonUniquelyRepresentedType) {
 | |
|   // Create equal StructWithPadding objects that are known to have non-equal
 | |
|   // padding bytes.
 | |
|   static const size_t kNumStructs = 10;
 | |
|   unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
 | |
|   std::memset(buffer1, 0, sizeof(buffer1));
 | |
|   auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);
 | |
| 
 | |
|   unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
 | |
|   std::memset(buffer2, 255, sizeof(buffer2));
 | |
|   auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
 | |
|   for (int i = 0; i < kNumStructs; ++i) {
 | |
|     SCOPED_TRACE(i);
 | |
|     s1[i].c = s2[i].c = '0' + i;
 | |
|     s1[i].i = s2[i].i = i;
 | |
|     ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
 | |
|                         buffer2 + i * sizeof(StructWithPadding),
 | |
|                         sizeof(StructWithPadding)) == 0)
 | |
|         << "Bug in test code: objects do not have unequal"
 | |
|         << " object representations";
 | |
|   }
 | |
| 
 | |
|   EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
 | |
|   EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
 | |
|             Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
 | |
| }
 | |
| 
 | |
| TEST(HashTest, StandardHashContainerUsage) {
 | |
|   std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},
 | |
|                                                          {42, "bar"}};
 | |
| 
 | |
|   EXPECT_NE(map.find(0), map.end());
 | |
|   EXPECT_EQ(map.find(1), map.end());
 | |
|   EXPECT_NE(map.find(0u), map.end());
 | |
| }
 | |
| 
 | |
| struct ConvertibleFromNoOp {
 | |
|   ConvertibleFromNoOp(NoOp) {}  // NOLINT(runtime/explicit)
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
 | |
|     return H::combine(std::move(hash_state), 1);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(HashTest, HeterogeneousCall) {
 | |
|   EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
 | |
|             Hash<NoOp>()(NoOp()));
 | |
| }
 | |
| 
 | |
| TEST(IsUniquelyRepresentedTest, SanityTest) {
 | |
|   using absl::hash_internal::is_uniquely_represented;
 | |
| 
 | |
|   EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
 | |
|   EXPECT_TRUE(is_uniquely_represented<int>::value);
 | |
|   EXPECT_FALSE(is_uniquely_represented<bool>::value);
 | |
|   EXPECT_FALSE(is_uniquely_represented<int*>::value);
 | |
| }
 | |
| 
 | |
| struct IntAndString {
 | |
|   int i;
 | |
|   std::string s;
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
 | |
|     return H::combine(std::move(hash_state), int_and_string.s,
 | |
|                       int_and_string.i);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(HashTest, SmallValueOn64ByteBoundary) {
 | |
|   Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
 | |
| }
 | |
| 
 | |
| struct TypeErased {
 | |
|   size_t n;
 | |
| 
 | |
|   template <typename H>
 | |
|   friend H AbslHashValue(H hash_state, const TypeErased& v) {
 | |
|     v.HashValue(absl::HashState::Create(&hash_state));
 | |
|     return hash_state;
 | |
|   }
 | |
| 
 | |
|   void HashValue(absl::HashState state) const {
 | |
|     absl::HashState::combine(std::move(state), n);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(HashTest, TypeErased) {
 | |
|   EXPECT_TRUE((is_hashable<TypeErased>::value));
 | |
|   EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value));
 | |
| 
 | |
|   EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7}));
 | |
|   EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13}));
 | |
| 
 | |
|   EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)),
 | |
|             SpyHash(std::make_pair(size_t{7}, 17)));
 | |
| }
 | |
| 
 | |
| struct ValueWithBoolConversion {
 | |
|   operator bool() const { return false; }
 | |
|   int i;
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| namespace std {
 | |
| template <>
 | |
| struct hash<ValueWithBoolConversion> {
 | |
|   size_t operator()(ValueWithBoolConversion v) { return v.i; }
 | |
| };
 | |
| }  // namespace std
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| TEST(HashTest, DoesNotUseImplicitConversionsToBool) {
 | |
|   EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),
 | |
|             absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));
 | |
| }
 | |
| 
 | |
| }  // namespace
 |