-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			695 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			695 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: memory.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // This header file contains utility functions for managing the creation and
 | |
| // conversion of smart pointers. This file is an extension to the C++
 | |
| // standard <memory> library header file.
 | |
| 
 | |
| #ifndef ABSL_MEMORY_MEMORY_H_
 | |
| #define ABSL_MEMORY_MEMORY_H_
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <new>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/meta/type_traits.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Function Template: WrapUnique()
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Adopts ownership from a raw pointer and transfers it to the returned
 | |
| // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*
 | |
| // specify the template type `T` when calling `WrapUnique`.
 | |
| //
 | |
| // Example:
 | |
| //   X* NewX(int, int);
 | |
| //   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.
 | |
| //
 | |
| // Do not call WrapUnique with an explicit type, as in
 | |
| // `WrapUnique<X>(NewX(1, 2))`.  The purpose of WrapUnique is to automatically
 | |
| // deduce the pointer type. If you wish to make the type explicit, just use
 | |
| // `std::unique_ptr` directly.
 | |
| //
 | |
| //   auto x = std::unique_ptr<X>(NewX(1, 2));
 | |
| //                  - or -
 | |
| //   std::unique_ptr<X> x(NewX(1, 2));
 | |
| //
 | |
| // While `absl::WrapUnique` is useful for capturing the output of a raw
 | |
| // pointer factory, prefer 'absl::make_unique<T>(args...)' over
 | |
| // 'absl::WrapUnique(new T(args...))'.
 | |
| //
 | |
| //   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.
 | |
| //   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.
 | |
| //
 | |
| // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
 | |
| // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
 | |
| // arrays, functions or void, and it must not be used to capture pointers
 | |
| // obtained from array-new expressions (even though that would compile!).
 | |
| template <typename T>
 | |
| std::unique_ptr<T> WrapUnique(T* ptr) {
 | |
|   static_assert(!std::is_array<T>::value, "array types are unsupported");
 | |
|   static_assert(std::is_object<T>::value, "non-object types are unsupported");
 | |
|   return std::unique_ptr<T>(ptr);
 | |
| }
 | |
| 
 | |
| namespace memory_internal {
 | |
| 
 | |
| // Traits to select proper overload and return type for `absl::make_unique<>`.
 | |
| template <typename T>
 | |
| struct MakeUniqueResult {
 | |
|   using scalar = std::unique_ptr<T>;
 | |
| };
 | |
| template <typename T>
 | |
| struct MakeUniqueResult<T[]> {
 | |
|   using array = std::unique_ptr<T[]>;
 | |
| };
 | |
| template <typename T, size_t N>
 | |
| struct MakeUniqueResult<T[N]> {
 | |
|   using invalid = void;
 | |
| };
 | |
| 
 | |
| }  // namespace memory_internal
 | |
| 
 | |
| // gcc 4.8 has __cplusplus at 201301 but the libstdc++ shipped with it doesn't
 | |
| // define make_unique.  Other supported compilers either just define __cplusplus
 | |
| // as 201103 but have make_unique (msvc), or have make_unique whenever
 | |
| // __cplusplus > 201103 (clang).
 | |
| #if (__cplusplus > 201103L || defined(_MSC_VER)) && \
 | |
|     !(defined(__GLIBCXX__) && !defined(__cpp_lib_make_unique))
 | |
| using std::make_unique;
 | |
| #else
 | |
| // -----------------------------------------------------------------------------
 | |
| // Function Template: make_unique<T>()
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
 | |
| // during the construction process. `absl::make_unique<>` also avoids redundant
 | |
| // type declarations, by avoiding the need to explicitly use the `new` operator.
 | |
| //
 | |
| // This implementation of `absl::make_unique<>` is designed for C++11 code and
 | |
| // will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction.
 | |
| // `absl::make_unique<>` is designed to be 100% compatible with
 | |
| // `std::make_unique<>` so that the eventual migration will involve a simple
 | |
| // rename operation.
 | |
| //
 | |
| // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
 | |
| // see Herb Sutter's explanation on
 | |
| // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].
 | |
| // (In general, reviewers should treat `new T(a,b)` with scrutiny.)
 | |
| //
 | |
| // Example usage:
 | |
| //
 | |
| //    auto p = make_unique<X>(args...);  // 'p'  is a std::unique_ptr<X>
 | |
| //    auto pa = make_unique<X[]>(5);     // 'pa' is a std::unique_ptr<X[]>
 | |
| //
 | |
| // Three overloads of `absl::make_unique` are required:
 | |
| //
 | |
| //   - For non-array T:
 | |
| //
 | |
| //       Allocates a T with `new T(std::forward<Args> args...)`,
 | |
| //       forwarding all `args` to T's constructor.
 | |
| //       Returns a `std::unique_ptr<T>` owning that object.
 | |
| //
 | |
| //   - For an array of unknown bounds T[]:
 | |
| //
 | |
| //       `absl::make_unique<>` will allocate an array T of type U[] with
 | |
| //       `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array.
 | |
| //
 | |
| //       Note that 'U[n]()' is different from 'U[n]', and elements will be
 | |
| //       value-initialized. Note as well that `std::unique_ptr` will perform its
 | |
| //       own destruction of the array elements upon leaving scope, even though
 | |
| //       the array [] does not have a default destructor.
 | |
| //
 | |
| //       NOTE: an array of unknown bounds T[] may still be (and often will be)
 | |
| //       initialized to have a size, and will still use this overload. E.g:
 | |
| //
 | |
| //         auto my_array = absl::make_unique<int[]>(10);
 | |
| //
 | |
| //   - For an array of known bounds T[N]:
 | |
| //
 | |
| //       `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as
 | |
| //       this overload is not useful.
 | |
| //
 | |
| //       NOTE: an array of known bounds T[N] is not considered a useful
 | |
| //       construction, and may cause undefined behavior in templates. E.g:
 | |
| //
 | |
| //         auto my_array = absl::make_unique<int[10]>();
 | |
| //
 | |
| //       In those cases, of course, you can still use the overload above and
 | |
| //       simply initialize it to its desired size:
 | |
| //
 | |
| //         auto my_array = absl::make_unique<int[]>(10);
 | |
| 
 | |
| // `absl::make_unique` overload for non-array types.
 | |
| template <typename T, typename... Args>
 | |
| typename memory_internal::MakeUniqueResult<T>::scalar make_unique(
 | |
|     Args&&... args) {
 | |
|   return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
 | |
| }
 | |
| 
 | |
| // `absl::make_unique` overload for an array T[] of unknown bounds.
 | |
| // The array allocation needs to use the `new T[size]` form and cannot take
 | |
| // element constructor arguments. The `std::unique_ptr` will manage destructing
 | |
| // these array elements.
 | |
| template <typename T>
 | |
| typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) {
 | |
|   return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]());
 | |
| }
 | |
| 
 | |
| // `absl::make_unique` overload for an array T[N] of known bounds.
 | |
| // This construction will be rejected.
 | |
| template <typename T, typename... Args>
 | |
| typename memory_internal::MakeUniqueResult<T>::invalid make_unique(
 | |
|     Args&&... /* args */) = delete;
 | |
| #endif
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Function Template: RawPtr()
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is
 | |
| // useful within templates that need to handle a complement of raw pointers,
 | |
| // `std::nullptr_t`, and smart pointers.
 | |
| template <typename T>
 | |
| auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {
 | |
|   // ptr is a forwarding reference to support Ts with non-const operators.
 | |
|   return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;
 | |
| }
 | |
| inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Function Template: ShareUniquePtr()
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced
 | |
| // type. Ownership (if any) of the held value is transferred to the returned
 | |
| // shared pointer.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //     auto up = absl::make_unique<int>(10);
 | |
| //     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>
 | |
| //     CHECK_EQ(*sp, 10);
 | |
| //     CHECK(up == nullptr);
 | |
| //
 | |
| // Note that this conversion is correct even when T is an array type, and more
 | |
| // generally it works for *any* deleter of the `unique_ptr` (single-object
 | |
| // deleter, array deleter, or any custom deleter), since the deleter is adopted
 | |
| // by the shared pointer as well. The deleter is copied (unless it is a
 | |
| // reference).
 | |
| //
 | |
| // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
 | |
| // null shared pointer does not attempt to call the deleter.
 | |
| template <typename T, typename D>
 | |
| std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
 | |
|   return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Function Template: WeakenPtr()
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Creates a weak pointer associated with a given shared pointer. The returned
 | |
| // value is a `std::weak_ptr` of deduced type.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //    auto sp = std::make_shared<int>(10);
 | |
| //    auto wp = absl::WeakenPtr(sp);
 | |
| //    CHECK_EQ(sp.get(), wp.lock().get());
 | |
| //    sp.reset();
 | |
| //    CHECK(wp.lock() == nullptr);
 | |
| //
 | |
| template <typename T>
 | |
| std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
 | |
|   return std::weak_ptr<T>(ptr);
 | |
| }
 | |
| 
 | |
| namespace memory_internal {
 | |
| 
 | |
| // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
 | |
| template <template <typename> class Extract, typename Obj, typename Default,
 | |
|           typename>
 | |
| struct ExtractOr {
 | |
|   using type = Default;
 | |
| };
 | |
| 
 | |
| template <template <typename> class Extract, typename Obj, typename Default>
 | |
| struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
 | |
|   using type = Extract<Obj>;
 | |
| };
 | |
| 
 | |
| template <template <typename> class Extract, typename Obj, typename Default>
 | |
| using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
 | |
| 
 | |
| // Extractors for the features of allocators.
 | |
| template <typename T>
 | |
| using GetPointer = typename T::pointer;
 | |
| 
 | |
| template <typename T>
 | |
| using GetConstPointer = typename T::const_pointer;
 | |
| 
 | |
| template <typename T>
 | |
| using GetVoidPointer = typename T::void_pointer;
 | |
| 
 | |
| template <typename T>
 | |
| using GetConstVoidPointer = typename T::const_void_pointer;
 | |
| 
 | |
| template <typename T>
 | |
| using GetDifferenceType = typename T::difference_type;
 | |
| 
 | |
| template <typename T>
 | |
| using GetSizeType = typename T::size_type;
 | |
| 
 | |
| template <typename T>
 | |
| using GetPropagateOnContainerCopyAssignment =
 | |
|     typename T::propagate_on_container_copy_assignment;
 | |
| 
 | |
| template <typename T>
 | |
| using GetPropagateOnContainerMoveAssignment =
 | |
|     typename T::propagate_on_container_move_assignment;
 | |
| 
 | |
| template <typename T>
 | |
| using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap;
 | |
| 
 | |
| template <typename T>
 | |
| using GetIsAlwaysEqual = typename T::is_always_equal;
 | |
| 
 | |
| template <typename T>
 | |
| struct GetFirstArg;
 | |
| 
 | |
| template <template <typename...> class Class, typename T, typename... Args>
 | |
| struct GetFirstArg<Class<T, Args...>> {
 | |
|   using type = T;
 | |
| };
 | |
| 
 | |
| template <typename Ptr, typename = void>
 | |
| struct ElementType {
 | |
|   using type = typename GetFirstArg<Ptr>::type;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct ElementType<T, void_t<typename T::element_type>> {
 | |
|   using type = typename T::element_type;
 | |
| };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| struct RebindFirstArg;
 | |
| 
 | |
| template <template <typename...> class Class, typename T, typename... Args,
 | |
|           typename U>
 | |
| struct RebindFirstArg<Class<T, Args...>, U> {
 | |
|   using type = Class<U, Args...>;
 | |
| };
 | |
| 
 | |
| template <typename T, typename U, typename = void>
 | |
| struct RebindPtr {
 | |
|   using type = typename RebindFirstArg<T, U>::type;
 | |
| };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> {
 | |
|   using type = typename T::template rebind<U>;
 | |
| };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| constexpr bool HasRebindAlloc(...) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)>
 | |
| struct RebindAlloc {
 | |
|   using type = typename RebindFirstArg<T, U>::type;
 | |
| };
 | |
| 
 | |
| template <typename T, typename U>
 | |
| struct RebindAlloc<T, U, true> {
 | |
|   using type = typename T::template rebind<U>::other;
 | |
| };
 | |
| 
 | |
| }  // namespace memory_internal
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Class Template: pointer_traits
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // An implementation of C++11's std::pointer_traits.
 | |
| //
 | |
| // Provided for portability on toolchains that have a working C++11 compiler,
 | |
| // but the standard library is lacking in C++11 support. For example, some
 | |
| // version of the Android NDK.
 | |
| //
 | |
| 
 | |
| template <typename Ptr>
 | |
| struct pointer_traits {
 | |
|   using pointer = Ptr;
 | |
| 
 | |
|   // element_type:
 | |
|   // Ptr::element_type if present. Otherwise T if Ptr is a template
 | |
|   // instantiation Template<T, Args...>
 | |
|   using element_type = typename memory_internal::ElementType<Ptr>::type;
 | |
| 
 | |
|   // difference_type:
 | |
|   // Ptr::difference_type if present, otherwise std::ptrdiff_t
 | |
|   using difference_type =
 | |
|       memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr,
 | |
|                                   std::ptrdiff_t>;
 | |
| 
 | |
|   // rebind:
 | |
|   // Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a
 | |
|   // template instantiation Template<T, Args...>
 | |
|   template <typename U>
 | |
|   using rebind = typename memory_internal::RebindPtr<Ptr, U>::type;
 | |
| 
 | |
|   // pointer_to:
 | |
|   // Calls Ptr::pointer_to(r)
 | |
|   static pointer pointer_to(element_type& r) {  // NOLINT(runtime/references)
 | |
|     return Ptr::pointer_to(r);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Specialization for T*.
 | |
| template <typename T>
 | |
| struct pointer_traits<T*> {
 | |
|   using pointer = T*;
 | |
|   using element_type = T;
 | |
|   using difference_type = std::ptrdiff_t;
 | |
| 
 | |
|   template <typename U>
 | |
|   using rebind = U*;
 | |
| 
 | |
|   // pointer_to:
 | |
|   // Calls std::addressof(r)
 | |
|   static pointer pointer_to(
 | |
|       element_type& r) noexcept {  // NOLINT(runtime/references)
 | |
|     return std::addressof(r);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Class Template: allocator_traits
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // A C++11 compatible implementation of C++17's std::allocator_traits.
 | |
| //
 | |
| template <typename Alloc>
 | |
| struct allocator_traits {
 | |
|   using allocator_type = Alloc;
 | |
| 
 | |
|   // value_type:
 | |
|   // Alloc::value_type
 | |
|   using value_type = typename Alloc::value_type;
 | |
| 
 | |
|   // pointer:
 | |
|   // Alloc::pointer if present, otherwise value_type*
 | |
|   using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer,
 | |
|                                               Alloc, value_type*>;
 | |
| 
 | |
|   // const_pointer:
 | |
|   // Alloc::const_pointer if present, otherwise
 | |
|   // absl::pointer_traits<pointer>::rebind<const value_type>
 | |
|   using const_pointer =
 | |
|       memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc,
 | |
|                                   typename absl::pointer_traits<pointer>::
 | |
|                                       template rebind<const value_type>>;
 | |
| 
 | |
|   // void_pointer:
 | |
|   // Alloc::void_pointer if present, otherwise
 | |
|   // absl::pointer_traits<pointer>::rebind<void>
 | |
|   using void_pointer = memory_internal::ExtractOrT<
 | |
|       memory_internal::GetVoidPointer, Alloc,
 | |
|       typename absl::pointer_traits<pointer>::template rebind<void>>;
 | |
| 
 | |
|   // const_void_pointer:
 | |
|   // Alloc::const_void_pointer if present, otherwise
 | |
|   // absl::pointer_traits<pointer>::rebind<const void>
 | |
|   using const_void_pointer = memory_internal::ExtractOrT<
 | |
|       memory_internal::GetConstVoidPointer, Alloc,
 | |
|       typename absl::pointer_traits<pointer>::template rebind<const void>>;
 | |
| 
 | |
|   // difference_type:
 | |
|   // Alloc::difference_type if present, otherwise
 | |
|   // absl::pointer_traits<pointer>::difference_type
 | |
|   using difference_type = memory_internal::ExtractOrT<
 | |
|       memory_internal::GetDifferenceType, Alloc,
 | |
|       typename absl::pointer_traits<pointer>::difference_type>;
 | |
| 
 | |
|   // size_type:
 | |
|   // Alloc::size_type if present, otherwise
 | |
|   // std::make_unsigned<difference_type>::type
 | |
|   using size_type = memory_internal::ExtractOrT<
 | |
|       memory_internal::GetSizeType, Alloc,
 | |
|       typename std::make_unsigned<difference_type>::type>;
 | |
| 
 | |
|   // propagate_on_container_copy_assignment:
 | |
|   // Alloc::propagate_on_container_copy_assignment if present, otherwise
 | |
|   // std::false_type
 | |
|   using propagate_on_container_copy_assignment = memory_internal::ExtractOrT<
 | |
|       memory_internal::GetPropagateOnContainerCopyAssignment, Alloc,
 | |
|       std::false_type>;
 | |
| 
 | |
|   // propagate_on_container_move_assignment:
 | |
|   // Alloc::propagate_on_container_move_assignment if present, otherwise
 | |
|   // std::false_type
 | |
|   using propagate_on_container_move_assignment = memory_internal::ExtractOrT<
 | |
|       memory_internal::GetPropagateOnContainerMoveAssignment, Alloc,
 | |
|       std::false_type>;
 | |
| 
 | |
|   // propagate_on_container_swap:
 | |
|   // Alloc::propagate_on_container_swap if present, otherwise std::false_type
 | |
|   using propagate_on_container_swap =
 | |
|       memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap,
 | |
|                                   Alloc, std::false_type>;
 | |
| 
 | |
|   // is_always_equal:
 | |
|   // Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type
 | |
|   using is_always_equal =
 | |
|       memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc,
 | |
|                                   typename std::is_empty<Alloc>::type>;
 | |
| 
 | |
|   // rebind_alloc:
 | |
|   // Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc
 | |
|   // is Alloc<U, Args>
 | |
|   template <typename T>
 | |
|   using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type;
 | |
| 
 | |
|   // rebind_traits:
 | |
|   // absl::allocator_traits<rebind_alloc<T>>
 | |
|   template <typename T>
 | |
|   using rebind_traits = absl::allocator_traits<rebind_alloc<T>>;
 | |
| 
 | |
|   // allocate(Alloc& a, size_type n):
 | |
|   // Calls a.allocate(n)
 | |
|   static pointer allocate(Alloc& a,  // NOLINT(runtime/references)
 | |
|                           size_type n) {
 | |
|     return a.allocate(n);
 | |
|   }
 | |
| 
 | |
|   // allocate(Alloc& a, size_type n, const_void_pointer hint):
 | |
|   // Calls a.allocate(n, hint) if possible.
 | |
|   // If not possible, calls a.allocate(n)
 | |
|   static pointer allocate(Alloc& a, size_type n,  // NOLINT(runtime/references)
 | |
|                           const_void_pointer hint) {
 | |
|     return allocate_impl(0, a, n, hint);
 | |
|   }
 | |
| 
 | |
|   // deallocate(Alloc& a, pointer p, size_type n):
 | |
|   // Calls a.deallocate(p, n)
 | |
|   static void deallocate(Alloc& a, pointer p,  // NOLINT(runtime/references)
 | |
|                          size_type n) {
 | |
|     a.deallocate(p, n);
 | |
|   }
 | |
| 
 | |
|   // construct(Alloc& a, T* p, Args&&... args):
 | |
|   // Calls a.construct(p, std::forward<Args>(args)...) if possible.
 | |
|   // If not possible, calls
 | |
|   //   ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...)
 | |
|   template <typename T, typename... Args>
 | |
|   static void construct(Alloc& a, T* p,  // NOLINT(runtime/references)
 | |
|                         Args&&... args) {
 | |
|     construct_impl(0, a, p, std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   // destroy(Alloc& a, T* p):
 | |
|   // Calls a.destroy(p) if possible. If not possible, calls p->~T().
 | |
|   template <typename T>
 | |
|   static void destroy(Alloc& a, T* p) {  // NOLINT(runtime/references)
 | |
|     destroy_impl(0, a, p);
 | |
|   }
 | |
| 
 | |
|   // max_size(const Alloc& a):
 | |
|   // Returns a.max_size() if possible. If not possible, returns
 | |
|   //   std::numeric_limits<size_type>::max() / sizeof(value_type)
 | |
|   static size_type max_size(const Alloc& a) { return max_size_impl(0, a); }
 | |
| 
 | |
|   // select_on_container_copy_construction(const Alloc& a):
 | |
|   // Returns a.select_on_container_copy_construction() if possible.
 | |
|   // If not possible, returns a.
 | |
|   static Alloc select_on_container_copy_construction(const Alloc& a) {
 | |
|     return select_on_container_copy_construction_impl(0, a);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename A>
 | |
|   static auto allocate_impl(int, A& a,  // NOLINT(runtime/references)
 | |
|                             size_type n, const_void_pointer hint)
 | |
|       -> decltype(a.allocate(n, hint)) {
 | |
|     return a.allocate(n, hint);
 | |
|   }
 | |
|   static pointer allocate_impl(char, Alloc& a,  // NOLINT(runtime/references)
 | |
|                                size_type n, const_void_pointer) {
 | |
|     return a.allocate(n);
 | |
|   }
 | |
| 
 | |
|   template <typename A, typename... Args>
 | |
|   static auto construct_impl(int, A& a,  // NOLINT(runtime/references)
 | |
|                              Args&&... args)
 | |
|       -> decltype(a.construct(std::forward<Args>(args)...)) {
 | |
|     a.construct(std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename T, typename... Args>
 | |
|   static void construct_impl(char, Alloc&, T* p, Args&&... args) {
 | |
|     ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename A, typename T>
 | |
|   static auto destroy_impl(int, A& a,  // NOLINT(runtime/references)
 | |
|                            T* p) -> decltype(a.destroy(p)) {
 | |
|     a.destroy(p);
 | |
|   }
 | |
|   template <typename T>
 | |
|   static void destroy_impl(char, Alloc&, T* p) {
 | |
|     p->~T();
 | |
|   }
 | |
| 
 | |
|   template <typename A>
 | |
|   static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) {
 | |
|     return a.max_size();
 | |
|   }
 | |
|   static size_type max_size_impl(char, const Alloc&) {
 | |
|     return (std::numeric_limits<size_type>::max)() / sizeof(value_type);
 | |
|   }
 | |
| 
 | |
|   template <typename A>
 | |
|   static auto select_on_container_copy_construction_impl(int, const A& a)
 | |
|       -> decltype(a.select_on_container_copy_construction()) {
 | |
|     return a.select_on_container_copy_construction();
 | |
|   }
 | |
|   static Alloc select_on_container_copy_construction_impl(char,
 | |
|                                                           const Alloc& a) {
 | |
|     return a;
 | |
|   }
 | |
| };
 | |
| 
 | |
| namespace memory_internal {
 | |
| 
 | |
| // This template alias transforms Alloc::is_nothrow into a metafunction with
 | |
| // Alloc as a parameter so it can be used with ExtractOrT<>.
 | |
| template <typename Alloc>
 | |
| using GetIsNothrow = typename Alloc::is_nothrow;
 | |
| 
 | |
| }  // namespace memory_internal
 | |
| 
 | |
| // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
 | |
| // specify whether the default allocation function can throw or never throws.
 | |
| // If the allocation function never throws, user should define it to a non-zero
 | |
| // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
 | |
| // If the allocation function can throw, user should leave it undefined or
 | |
| // define it to zero.
 | |
| //
 | |
| // allocator_is_nothrow<Alloc> is a traits class that derives from
 | |
| // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
 | |
| // for Alloc = std::allocator<T> for any type T according to the state of
 | |
| // ABSL_ALLOCATOR_NOTHROW.
 | |
| //
 | |
| // default_allocator_is_nothrow is a class that derives from std::true_type
 | |
| // when the default allocator (global operator new) never throws, and
 | |
| // std::false_type when it can throw. It is a convenience shorthand for writing
 | |
| // allocator_is_nothrow<std::allocator<T>> (T can be any type).
 | |
| // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
 | |
| // the same type for all T, because users should specialize neither
 | |
| // allocator_is_nothrow nor std::allocator.
 | |
| template <typename Alloc>
 | |
| struct allocator_is_nothrow
 | |
|     : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
 | |
|                                   std::false_type> {};
 | |
| 
 | |
| #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
 | |
| template <typename T>
 | |
| struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
 | |
| struct default_allocator_is_nothrow : std::true_type {};
 | |
| #else
 | |
| struct default_allocator_is_nothrow : std::false_type {};
 | |
| #endif
 | |
| 
 | |
| namespace memory_internal {
 | |
| template <typename Allocator, typename Iterator, typename... Args>
 | |
| void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
 | |
|                     const Args&... args) {
 | |
|   for (Iterator cur = first; cur != last; ++cur) {
 | |
|     ABSL_INTERNAL_TRY {
 | |
|       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
 | |
|                                                   args...);
 | |
|     }
 | |
|     ABSL_INTERNAL_CATCH_ANY {
 | |
|       while (cur != first) {
 | |
|         --cur;
 | |
|         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
 | |
|       }
 | |
|       ABSL_INTERNAL_RETHROW;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Allocator, typename Iterator, typename InputIterator>
 | |
| void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
 | |
|                InputIterator last) {
 | |
|   for (Iterator cur = destination; first != last;
 | |
|        static_cast<void>(++cur), static_cast<void>(++first)) {
 | |
|     ABSL_INTERNAL_TRY {
 | |
|       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
 | |
|                                                   *first);
 | |
|     }
 | |
|     ABSL_INTERNAL_CATCH_ANY {
 | |
|       while (cur != destination) {
 | |
|         --cur;
 | |
|         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
 | |
|       }
 | |
|       ABSL_INTERNAL_RETHROW;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| }  // namespace memory_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_MEMORY_MEMORY_H_
 |