-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			275 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			275 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: uniform_int_distribution.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // This header defines a class for representing a uniform integer distribution
 | |
| // over the closed (inclusive) interval [a,b]. You use this distribution in
 | |
| // combination with an Abseil random bit generator to produce random values
 | |
| // according to the rules of the distribution.
 | |
| //
 | |
| // `absl::uniform_int_distribution` is a drop-in replacement for the C++11
 | |
| // `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably
 | |
| // faster than the libstdc++ implementation.
 | |
| 
 | |
| #ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
 | |
| #define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
 | |
| 
 | |
| #include <cassert>
 | |
| #include <istream>
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/base/optimization.h"
 | |
| #include "absl/random/internal/fast_uniform_bits.h"
 | |
| #include "absl/random/internal/iostream_state_saver.h"
 | |
| #include "absl/random/internal/traits.h"
 | |
| #include "absl/random/internal/wide_multiply.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| // absl::uniform_int_distribution<T>
 | |
| //
 | |
| // This distribution produces random integer values uniformly distributed in the
 | |
| // closed (inclusive) interval [a, b].
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //   absl::BitGen gen;
 | |
| //
 | |
| //   // Use the distribution to produce a value between 1 and 6, inclusive.
 | |
| //   int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen);
 | |
| //
 | |
| template <typename IntType = int>
 | |
| class uniform_int_distribution {
 | |
|  private:
 | |
|   using unsigned_type =
 | |
|       typename random_internal::make_unsigned_bits<IntType>::type;
 | |
| 
 | |
|  public:
 | |
|   using result_type = IntType;
 | |
| 
 | |
|   class param_type {
 | |
|    public:
 | |
|     using distribution_type = uniform_int_distribution;
 | |
| 
 | |
|     explicit param_type(
 | |
|         result_type lo = 0,
 | |
|         result_type hi = (std::numeric_limits<result_type>::max)())
 | |
|         : lo_(lo),
 | |
|           range_(static_cast<unsigned_type>(hi) -
 | |
|                  static_cast<unsigned_type>(lo)) {
 | |
|       // [rand.dist.uni.int] precondition 2
 | |
|       assert(lo <= hi);
 | |
|     }
 | |
| 
 | |
|     result_type a() const { return lo_; }
 | |
|     result_type b() const {
 | |
|       return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_);
 | |
|     }
 | |
| 
 | |
|     friend bool operator==(const param_type& a, const param_type& b) {
 | |
|       return a.lo_ == b.lo_ && a.range_ == b.range_;
 | |
|     }
 | |
| 
 | |
|     friend bool operator!=(const param_type& a, const param_type& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     friend class uniform_int_distribution;
 | |
|     unsigned_type range() const { return range_; }
 | |
| 
 | |
|     result_type lo_;
 | |
|     unsigned_type range_;
 | |
| 
 | |
|     static_assert(std::is_integral<result_type>::value,
 | |
|                   "Class-template absl::uniform_int_distribution<> must be "
 | |
|                   "parameterized using an integral type.");
 | |
|   };  // param_type
 | |
| 
 | |
|   uniform_int_distribution() : uniform_int_distribution(0) {}
 | |
| 
 | |
|   explicit uniform_int_distribution(
 | |
|       result_type lo,
 | |
|       result_type hi = (std::numeric_limits<result_type>::max)())
 | |
|       : param_(lo, hi) {}
 | |
| 
 | |
|   explicit uniform_int_distribution(const param_type& param) : param_(param) {}
 | |
| 
 | |
|   // uniform_int_distribution<T>::reset()
 | |
|   //
 | |
|   // Resets the uniform int distribution. Note that this function has no effect
 | |
|   // because the distribution already produces independent values.
 | |
|   void reset() {}
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& gen) {  // NOLINT(runtime/references)
 | |
|     return (*this)(gen, param());
 | |
|   }
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(
 | |
|       URBG& gen, const param_type& param) {  // NOLINT(runtime/references)
 | |
|     return param.a() + Generate(gen, param.range());
 | |
|   }
 | |
| 
 | |
|   result_type a() const { return param_.a(); }
 | |
|   result_type b() const { return param_.b(); }
 | |
| 
 | |
|   param_type param() const { return param_; }
 | |
|   void param(const param_type& params) { param_ = params; }
 | |
| 
 | |
|   result_type(min)() const { return a(); }
 | |
|   result_type(max)() const { return b(); }
 | |
| 
 | |
|   friend bool operator==(const uniform_int_distribution& a,
 | |
|                          const uniform_int_distribution& b) {
 | |
|     return a.param_ == b.param_;
 | |
|   }
 | |
|   friend bool operator!=(const uniform_int_distribution& a,
 | |
|                          const uniform_int_distribution& b) {
 | |
|     return !(a == b);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Generates a value in the *closed* interval [0, R]
 | |
|   template <typename URBG>
 | |
|   unsigned_type Generate(URBG& g,  // NOLINT(runtime/references)
 | |
|                          unsigned_type R);
 | |
|   param_type param_;
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Implementation details follow
 | |
| // -----------------------------------------------------------------------------
 | |
| template <typename CharT, typename Traits, typename IntType>
 | |
| std::basic_ostream<CharT, Traits>& operator<<(
 | |
|     std::basic_ostream<CharT, Traits>& os,
 | |
|     const uniform_int_distribution<IntType>& x) {
 | |
|   using stream_type =
 | |
|       typename random_internal::stream_format_type<IntType>::type;
 | |
|   auto saver = random_internal::make_ostream_state_saver(os);
 | |
|   os << static_cast<stream_type>(x.a()) << os.fill()
 | |
|      << static_cast<stream_type>(x.b());
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename IntType>
 | |
| std::basic_istream<CharT, Traits>& operator>>(
 | |
|     std::basic_istream<CharT, Traits>& is,
 | |
|     uniform_int_distribution<IntType>& x) {
 | |
|   using param_type = typename uniform_int_distribution<IntType>::param_type;
 | |
|   using result_type = typename uniform_int_distribution<IntType>::result_type;
 | |
|   using stream_type =
 | |
|       typename random_internal::stream_format_type<IntType>::type;
 | |
| 
 | |
|   stream_type a;
 | |
|   stream_type b;
 | |
| 
 | |
|   auto saver = random_internal::make_istream_state_saver(is);
 | |
|   is >> a >> b;
 | |
|   if (!is.fail()) {
 | |
|     x.param(
 | |
|         param_type(static_cast<result_type>(a), static_cast<result_type>(b)));
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| template <typename URBG>
 | |
| typename random_internal::make_unsigned_bits<IntType>::type
 | |
| uniform_int_distribution<IntType>::Generate(
 | |
|     URBG& g,  // NOLINT(runtime/references)
 | |
|     typename random_internal::make_unsigned_bits<IntType>::type R) {
 | |
|     random_internal::FastUniformBits<unsigned_type> fast_bits;
 | |
|   unsigned_type bits = fast_bits(g);
 | |
|   const unsigned_type Lim = R + 1;
 | |
|   if ((R & Lim) == 0) {
 | |
|     // If the interval's length is a power of two range, just take the low bits.
 | |
|     return bits & R;
 | |
|   }
 | |
| 
 | |
|   // Generates a uniform variate on [0, Lim) using fixed-point multiplication.
 | |
|   // The above fast-path guarantees that Lim is representable in unsigned_type.
 | |
|   //
 | |
|   // Algorithm adapted from
 | |
|   // http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added
 | |
|   // explanation.
 | |
|   //
 | |
|   // The algorithm creates a uniform variate `bits` in the interval [0, 2^N),
 | |
|   // and treats it as the fractional part of a fixed-point real value in [0, 1),
 | |
|   // multiplied by 2^N.  For example, 0.25 would be represented as 2^(N - 2),
 | |
|   // because 2^N * 0.25 == 2^(N - 2).
 | |
|   //
 | |
|   // Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the
 | |
|   // value into the range [0, Lim).  The integral part (the high word of the
 | |
|   // multiplication result) is then very nearly the desired result.  However,
 | |
|   // this is not quite accurate; viewing the multiplication result as one
 | |
|   // double-width integer, the resulting values for the sample are mapped as
 | |
|   // follows:
 | |
|   //
 | |
|   // If the result lies in this interval:       Return this value:
 | |
|   //        [0, 2^N)                                    0
 | |
|   //        [2^N, 2 * 2^N)                              1
 | |
|   //        ...                                         ...
 | |
|   //        [K * 2^N, (K + 1) * 2^N)                    K
 | |
|   //        ...                                         ...
 | |
|   //        [(Lim - 1) * 2^N, Lim * 2^N)                Lim - 1
 | |
|   //
 | |
|   // While all of these intervals have the same size, the result of `bits * Lim`
 | |
|   // must be a multiple of `Lim`, and not all of these intervals contain the
 | |
|   // same number of multiples of `Lim`.  In particular, some contain
 | |
|   // `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`.  This
 | |
|   // difference produces a small nonuniformity, which is corrected by applying
 | |
|   // rejection sampling to one of the values in the "larger intervals" (i.e.,
 | |
|   // the intervals containing `F + 1` multiples of `Lim`.
 | |
|   //
 | |
|   // An interval contains `F + 1` multiples of `Lim` if and only if its smallest
 | |
|   // value modulo 2^N is less than `2^N % Lim`.  The unique value satisfying
 | |
|   // this property is used as the one for rejection.  That is, a value of
 | |
|   // `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`.
 | |
| 
 | |
|   using helper = random_internal::wide_multiply<unsigned_type>;
 | |
|   auto product = helper::multiply(bits, Lim);
 | |
| 
 | |
|   // Two optimizations here:
 | |
|   // * Rejection occurs with some probability less than 1/2, and for reasonable
 | |
|   //   ranges considerably less (in particular, less than 1/(F+1)), so
 | |
|   //   ABSL_PREDICT_FALSE is apt.
 | |
|   // * `Lim` is an overestimate of `threshold`, and doesn't require a divide.
 | |
|   if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) {
 | |
|     // This quantity is exactly equal to `2^N % Lim`, but does not require high
 | |
|     // precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`.
 | |
|     // Ideally this could be expressed simply as `-X` rather than `2^N - X`, but
 | |
|     // for types smaller than int, this calculation is incorrect due to integer
 | |
|     // promotion rules.
 | |
|     const unsigned_type threshold =
 | |
|         ((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim;
 | |
|     while (helper::lo(product) < threshold) {
 | |
|       bits = fast_bits(g);
 | |
|       product = helper::multiply(bits, Lim);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return helper::hi(product);
 | |
| }
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
 |