-- 20b3acaff75d05315f272747956b01405adccafb by Greg Falcon <gfalcon@google.com>: Re-import of CCTZ from GitHub, with new ABSL_NAMESPACE_ transform applied. PiperOrigin-RevId: 285564474 -- 4d9e3fcabcea33c8b0b69f094ad2eddc0fa19557 by Derek Mauro <dmauro@google.com>: Moves the disabling of a warning to before the function begins. MSVC apparently requires this for warnings in the range 4700-4999. https://docs.microsoft.com/en-us/cpp/preprocessor/warning?redirectedfrom=MSDN&view=vs-2019 PiperOrigin-RevId: 285516232 -- 4a060cbeda76e89693c50276ae5b62cbf0fff39a by Derek Mauro <dmauro@google.com>: MSVC: Fixes uniform_real_distribution_test in opt mode Disables a constant arithmetic overflow warning in a test that tests the behavior on overflow. This should be tested because a user might have this warning disabled. PiperOrigin-RevId: 285452242 -- 548ab2f4cbe59bd6f6bf493af4f9ea765c4fa949 by Andy Soffer <asoffer@google.com>: Release absl::bind_front, a C++11-compliant work-alike type for the C++20 std::bind_front. PiperOrigin-RevId: 285247872 GitOrigin-RevId: 20b3acaff75d05315f272747956b01405adccafb Change-Id: I00fe45939246cba9bfc7be375d67787d2eb57cd3
		
			
				
	
	
		
			334 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			334 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/uniform_real_distribution.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <random>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/random/internal/chi_square.h"
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| #include "absl/random/internal/sequence_urbg.h"
 | |
| #include "absl/random/random.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| 
 | |
| // NOTES:
 | |
| // * Some documentation on generating random real values suggests that
 | |
| //   it is possible to use std::nextafter(b, DBL_MAX) to generate a value on
 | |
| //   the closed range [a, b]. Unfortunately, that technique is not universally
 | |
| //   reliable due to floating point quantization.
 | |
| //
 | |
| // * absl::uniform_real_distribution<float> generates between 2^28 and 2^29
 | |
| //   distinct floating point values in the range [0, 1).
 | |
| //
 | |
| // * absl::uniform_real_distribution<float> generates at least 2^23 distinct
 | |
| //   floating point values in the range [1, 2). This should be the same as
 | |
| //   any other range covered by a single exponent in IEEE 754.
 | |
| //
 | |
| // * absl::uniform_real_distribution<double> generates more than 2^52 distinct
 | |
| //   values in the range [0, 1), and should generate at least 2^52 distinct
 | |
| //   values in the range of [1, 2).
 | |
| //
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| template <typename RealType>
 | |
| class UniformRealDistributionTest : public ::testing::Test {};
 | |
| 
 | |
| #if defined(__EMSCRIPTEN__)
 | |
| using RealTypes = ::testing::Types<float, double>;
 | |
| #else
 | |
| using RealTypes = ::testing::Types<float, double, long double>;
 | |
| #endif  // defined(__EMSCRIPTEN__)
 | |
| 
 | |
| TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);
 | |
| 
 | |
| TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {
 | |
|   using param_type =
 | |
|       typename absl::uniform_real_distribution<TypeParam>::param_type;
 | |
| 
 | |
|   constexpr const TypeParam a{1152921504606846976};
 | |
| 
 | |
|   constexpr int kCount = 1000;
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (const auto& param : {
 | |
|            param_type(),
 | |
|            param_type(TypeParam(2.0), TypeParam(2.0)),  // Same
 | |
|            param_type(TypeParam(-0.1), TypeParam(0.1)),
 | |
|            param_type(TypeParam(0.05), TypeParam(0.12)),
 | |
|            param_type(TypeParam(-0.05), TypeParam(0.13)),
 | |
|            param_type(TypeParam(-0.05), TypeParam(-0.02)),
 | |
|            // double range = 0
 | |
|            // 2^60 , 2^60 + 2^6
 | |
|            param_type(a, TypeParam(1152921504606847040)),
 | |
|            // 2^60 , 2^60 + 2^7
 | |
|            param_type(a, TypeParam(1152921504606847104)),
 | |
|            // double range = 2^8
 | |
|            // 2^60 , 2^60 + 2^8
 | |
|            param_type(a, TypeParam(1152921504606847232)),
 | |
|            // float range = 0
 | |
|            // 2^60 , 2^60 + 2^36
 | |
|            param_type(a, TypeParam(1152921573326323712)),
 | |
|            // 2^60 , 2^60 + 2^37
 | |
|            param_type(a, TypeParam(1152921642045800448)),
 | |
|            // float range = 2^38
 | |
|            // 2^60 , 2^60 + 2^38
 | |
|            param_type(a, TypeParam(1152921779484753920)),
 | |
|            // Limits
 | |
|            param_type(0, std::numeric_limits<TypeParam>::max()),
 | |
|            param_type(std::numeric_limits<TypeParam>::lowest(), 0),
 | |
|            param_type(0, std::numeric_limits<TypeParam>::epsilon()),
 | |
|            param_type(-std::numeric_limits<TypeParam>::epsilon(),
 | |
|                       std::numeric_limits<TypeParam>::epsilon()),
 | |
|            param_type(std::numeric_limits<TypeParam>::epsilon(),
 | |
|                       2 * std::numeric_limits<TypeParam>::epsilon()),
 | |
|        }) {
 | |
|     // Validate parameters.
 | |
|     const auto a = param.a();
 | |
|     const auto b = param.b();
 | |
|     absl::uniform_real_distribution<TypeParam> before(a, b);
 | |
|     EXPECT_EQ(before.a(), param.a());
 | |
|     EXPECT_EQ(before.b(), param.b());
 | |
| 
 | |
|     {
 | |
|       absl::uniform_real_distribution<TypeParam> via_param(param);
 | |
|       EXPECT_EQ(via_param, before);
 | |
|     }
 | |
| 
 | |
|     std::stringstream ss;
 | |
|     ss << before;
 | |
|     absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0),
 | |
|                                                      TypeParam(3.1));
 | |
| 
 | |
|     EXPECT_NE(before.a(), after.a());
 | |
|     EXPECT_NE(before.b(), after.b());
 | |
|     EXPECT_NE(before.param(), after.param());
 | |
|     EXPECT_NE(before, after);
 | |
| 
 | |
|     ss >> after;
 | |
| 
 | |
|     EXPECT_EQ(before.a(), after.a());
 | |
|     EXPECT_EQ(before.b(), after.b());
 | |
|     EXPECT_EQ(before.param(), after.param());
 | |
|     EXPECT_EQ(before, after);
 | |
| 
 | |
|     // Smoke test.
 | |
|     auto sample_min = after.max();
 | |
|     auto sample_max = after.min();
 | |
|     for (int i = 0; i < kCount; i++) {
 | |
|       auto sample = after(gen);
 | |
|       // Failure here indicates a bug in uniform_real_distribution::operator(),
 | |
|       // or bad parameters--range too large, etc.
 | |
|       if (after.min() == after.max()) {
 | |
|         EXPECT_EQ(sample, after.min());
 | |
|       } else {
 | |
|         EXPECT_GE(sample, after.min());
 | |
|         EXPECT_LT(sample, after.max());
 | |
|       }
 | |
|       if (sample > sample_max) {
 | |
|         sample_max = sample;
 | |
|       }
 | |
|       if (sample < sample_min) {
 | |
|         sample_min = sample;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!std::is_same<TypeParam, long double>::value) {
 | |
|       // static_cast<double>(long double) can overflow.
 | |
|       std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min),
 | |
|                                      ", ", static_cast<double>(sample_max));
 | |
|       ABSL_RAW_LOG(INFO, "%s", msg.c_str());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4756)  // Constant arithmetic overflow.
 | |
| #endif
 | |
| TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {
 | |
| #if GTEST_HAS_DEATH_TEST
 | |
|   // Hi < Lo
 | |
|   EXPECT_DEBUG_DEATH(
 | |
|       { absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, "");
 | |
| 
 | |
|   // Hi - Lo > numeric_limits<>::max()
 | |
|   EXPECT_DEBUG_DEATH(
 | |
|       {
 | |
|         absl::uniform_real_distribution<TypeParam> dist(
 | |
|             std::numeric_limits<TypeParam>::lowest(),
 | |
|             std::numeric_limits<TypeParam>::max());
 | |
|       },
 | |
|       "");
 | |
| #endif  // GTEST_HAS_DEATH_TEST
 | |
| #if defined(NDEBUG)
 | |
|   // opt-mode, for invalid parameters, will generate a garbage value,
 | |
|   // but should not enter an infinite loop.
 | |
|   absl::InsecureBitGen gen;
 | |
|   {
 | |
|     absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0);
 | |
|     auto x = dist(gen);
 | |
|     EXPECT_FALSE(std::isnan(x)) << x;
 | |
|   }
 | |
|   {
 | |
|     absl::uniform_real_distribution<TypeParam> dist(
 | |
|         std::numeric_limits<TypeParam>::lowest(),
 | |
|         std::numeric_limits<TypeParam>::max());
 | |
|     auto x = dist(gen);
 | |
|     // Infinite result.
 | |
|     EXPECT_FALSE(std::isfinite(x)) << x;
 | |
|   }
 | |
| #endif  // NDEBUG
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)  // warning(disable:4756)
 | |
| #endif
 | |
| 
 | |
| TYPED_TEST(UniformRealDistributionTest, TestMoments) {
 | |
|   constexpr int kSize = 1000000;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen rng;
 | |
|   absl::uniform_real_distribution<TypeParam> dist;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = dist(rng);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.5, moments.mean, 0.01);
 | |
|   EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);
 | |
|   EXPECT_NEAR(0.0, moments.skewness, 0.02);
 | |
|   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);
 | |
| }
 | |
| 
 | |
| TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {
 | |
|   using absl::random_internal::kChiSquared;
 | |
|   using param_type =
 | |
|       typename absl::uniform_real_distribution<TypeParam>::param_type;
 | |
| 
 | |
|   constexpr size_t kTrials = 100000;
 | |
|   constexpr int kBuckets = 50;
 | |
|   constexpr double kExpected =
 | |
|       static_cast<double>(kTrials) / static_cast<double>(kBuckets);
 | |
| 
 | |
|   // 1-in-100000 threshold, but remember, there are about 8 tests
 | |
|   // in this file. And the test could fail for other reasons.
 | |
|   // Empirically validated with --runs_per_test=10000.
 | |
|   const int kThreshold =
 | |
|       absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);
 | |
| 
 | |
|   absl::InsecureBitGen rng;
 | |
|   for (const auto& param : {param_type(0, 1), param_type(5, 12),
 | |
|                             param_type(-5, 13), param_type(-5, -2)}) {
 | |
|     const double min_val = param.a();
 | |
|     const double max_val = param.b();
 | |
|     const double factor = kBuckets / (max_val - min_val);
 | |
| 
 | |
|     std::vector<int32_t> counts(kBuckets, 0);
 | |
|     absl::uniform_real_distribution<TypeParam> dist(param);
 | |
|     for (size_t i = 0; i < kTrials; i++) {
 | |
|       auto x = dist(rng);
 | |
|       auto bucket = static_cast<size_t>((x - min_val) * factor);
 | |
|       counts[bucket]++;
 | |
|     }
 | |
| 
 | |
|     double chi_square = absl::random_internal::ChiSquareWithExpected(
 | |
|         std::begin(counts), std::end(counts), kExpected);
 | |
|     if (chi_square > kThreshold) {
 | |
|       double p_value =
 | |
|           absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
 | |
| 
 | |
|       // Chi-squared test failed. Output does not appear to be uniform.
 | |
|       std::string msg;
 | |
|       for (const auto& a : counts) {
 | |
|         absl::StrAppend(&msg, a, "\n");
 | |
|       }
 | |
|       absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
 | |
|       absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
 | |
|                       kThreshold);
 | |
|       ABSL_RAW_LOG(INFO, "%s", msg.c_str());
 | |
|       FAIL() << msg;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TYPED_TEST(UniformRealDistributionTest, StabilityTest) {
 | |
|   // absl::uniform_real_distribution stability relies only on
 | |
|   // random_internal::RandU64ToDouble and random_internal::RandU64ToFloat.
 | |
|   absl::random_internal::sequence_urbg urbg(
 | |
|       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 | |
| 
 | |
|   std::vector<int> output(12);
 | |
| 
 | |
|   absl::uniform_real_distribution<TypeParam> dist;
 | |
|   std::generate(std::begin(output), std::end(output), [&] {
 | |
|     return static_cast<int>(TypeParam(1000000) * dist(urbg));
 | |
|   });
 | |
| 
 | |
|   EXPECT_THAT(
 | |
|       output,  //
 | |
|       testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,
 | |
|                            77341, 12527, 708791, 834451, 932808));
 | |
| }
 | |
| 
 | |
| TEST(UniformRealDistributionTest, AlgorithmBounds) {
 | |
|   absl::uniform_real_distribution<double> dist;
 | |
| 
 | |
|   {
 | |
|     // This returns the smallest value >0 from absl::uniform_real_distribution.
 | |
|     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 5.42101086242752217004e-20);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // This returns a value very near 0.5 from absl::uniform_real_distribution.
 | |
|     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 0.499999999999999944489);
 | |
|   }
 | |
|   {
 | |
|     // This returns a value very near 0.5 from absl::uniform_real_distribution.
 | |
|     absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 0.5);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // This returns the largest value <1 from absl::uniform_real_distribution.
 | |
|     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 0.999999999999999888978);
 | |
|   }
 | |
|   {
 | |
|     // This *ALSO* returns the largest value <1.
 | |
|     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
 | |
|     double a = dist(urbg);
 | |
|     EXPECT_EQ(a, 0.999999999999999888978);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 |