-- c99f979ad34f155fbeeea69b88bdc7458d89a21c by Derek Mauro <dmauro@google.com>: Remove a floating point division by zero test. This isn't testing behavior related to the library, and MSVC warns about it in opt mode. PiperOrigin-RevId: 285220804 -- 68b015491f0dbf1ab547994673281abd1f34cd4b by Gennadiy Rozental <rogeeff@google.com>: This CL introduces following changes to the class FlagImpl: * We eliminate the CommandLineFlagLocks struct. Instead callback guard and callback function are combined into a single CallbackData struct, while primary data lock is stored separately. * CallbackData member of class FlagImpl is initially set to be nullptr and is only allocated and initialized when a flag's callback is being set. For most flags we do not pay for the extra space and extra absl::Mutex now. * Primary data guard is stored in data_guard_ data member. This is a properly aligned character buffer of necessary size. During initialization of the flag we construct absl::Mutex in this space using placement new call. * We now avoid extra value copy after successful attempt to parse value out of string. Instead we swap flag's current value with tentative value we just produced. PiperOrigin-RevId: 285132636 -- ed45d118fb818969eb13094cf7827c885dfc562c by Tom Manshreck <shreck@google.com>: Change null-term* (and nul-term*) to NUL-term* in comments PiperOrigin-RevId: 285036610 -- 729619017944db895ce8d6d29c1995aa2e5628a5 by Derek Mauro <dmauro@google.com>: Use the Posix implementation of thread identity on MinGW. Some versions of MinGW suffer from thread_local bugs. PiperOrigin-RevId: 285022920 -- 39a25493503c76885bc3254c28f66a251c5b5bb0 by Greg Falcon <gfalcon@google.com>: Implementation detail change. Add further ABSL_NAMESPACE_BEGIN and _END annotation macros to files in Abseil. PiperOrigin-RevId: 285012012 GitOrigin-RevId: c99f979ad34f155fbeeea69b88bdc7458d89a21c Change-Id: I4c85d3704e45d11a9ac50d562f39640a6adbedc1
		
			
				
	
	
		
			418 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			418 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "absl/random/internal/distribution_test_util.h"
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "absl/base/internal/raw_logging.h"
 | 
						|
#include "absl/base/macros.h"
 | 
						|
#include "absl/strings/str_cat.h"
 | 
						|
#include "absl/strings/str_format.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace random_internal {
 | 
						|
namespace {
 | 
						|
 | 
						|
#if defined(__EMSCRIPTEN__)
 | 
						|
// Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
 | 
						|
inline double fma(double x, double y, double z) { return (x * y) + z; }
 | 
						|
#endif
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
DistributionMoments ComputeDistributionMoments(
 | 
						|
    absl::Span<const double> data_points) {
 | 
						|
  DistributionMoments result;
 | 
						|
 | 
						|
  // Compute m1
 | 
						|
  for (double x : data_points) {
 | 
						|
    result.n++;
 | 
						|
    result.mean += x;
 | 
						|
  }
 | 
						|
  result.mean /= static_cast<double>(result.n);
 | 
						|
 | 
						|
  // Compute m2, m3, m4
 | 
						|
  for (double x : data_points) {
 | 
						|
    double v = x - result.mean;
 | 
						|
    result.variance += v * v;
 | 
						|
    result.skewness += v * v * v;
 | 
						|
    result.kurtosis += v * v * v * v;
 | 
						|
  }
 | 
						|
  result.variance /= static_cast<double>(result.n - 1);
 | 
						|
 | 
						|
  result.skewness /= static_cast<double>(result.n);
 | 
						|
  result.skewness /= std::pow(result.variance, 1.5);
 | 
						|
 | 
						|
  result.kurtosis /= static_cast<double>(result.n);
 | 
						|
  result.kurtosis /= std::pow(result.variance, 2.0);
 | 
						|
  return result;
 | 
						|
 | 
						|
  // When validating the min/max count, the following confidence intervals may
 | 
						|
  // be of use:
 | 
						|
  // 3.291 * stddev = 99.9% CI
 | 
						|
  // 2.576 * stddev = 99% CI
 | 
						|
  // 1.96 * stddev  = 95% CI
 | 
						|
  // 1.65 * stddev  = 90% CI
 | 
						|
}
 | 
						|
 | 
						|
std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
 | 
						|
  return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
 | 
						|
                               moments.mean, std::sqrt(moments.variance),
 | 
						|
                               moments.skewness, moments.kurtosis);
 | 
						|
}
 | 
						|
 | 
						|
double InverseNormalSurvival(double x) {
 | 
						|
  // inv_sf(u) = -sqrt(2) * erfinv(2u-1)
 | 
						|
  static constexpr double kSqrt2 = 1.4142135623730950488;
 | 
						|
  return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);
 | 
						|
}
 | 
						|
 | 
						|
bool Near(absl::string_view msg, double actual, double expected, double bound) {
 | 
						|
  assert(bound > 0.0);
 | 
						|
  double delta = fabs(expected - actual);
 | 
						|
  if (delta < bound) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  std::string formatted = absl::StrCat(
 | 
						|
      msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
 | 
						|
  ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try
 | 
						|
// to use std::beta().  As of this writing P0226R1 is not implemented
 | 
						|
// in libc++: http://libcxx.llvm.org/cxx1z_status.html
 | 
						|
double beta(double p, double q) {
 | 
						|
  // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)
 | 
						|
  double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
 | 
						|
  return std::exp(lbeta);
 | 
						|
}
 | 
						|
 | 
						|
// Approximation to inverse of the Error Function in double precision.
 | 
						|
// (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
 | 
						|
double erfinv(double x) {
 | 
						|
#if !defined(__EMSCRIPTEN__)
 | 
						|
  using std::fma;
 | 
						|
#endif
 | 
						|
 | 
						|
  double w = 0.0;
 | 
						|
  double p = 0.0;
 | 
						|
  w = -std::log((1.0 - x) * (1.0 + x));
 | 
						|
  if (w < 6.250000) {
 | 
						|
    w = w - 3.125000;
 | 
						|
    p = -3.6444120640178196996e-21;
 | 
						|
    p = fma(p, w, -1.685059138182016589e-19);
 | 
						|
    p = fma(p, w, 1.2858480715256400167e-18);
 | 
						|
    p = fma(p, w, 1.115787767802518096e-17);
 | 
						|
    p = fma(p, w, -1.333171662854620906e-16);
 | 
						|
    p = fma(p, w, 2.0972767875968561637e-17);
 | 
						|
    p = fma(p, w, 6.6376381343583238325e-15);
 | 
						|
    p = fma(p, w, -4.0545662729752068639e-14);
 | 
						|
    p = fma(p, w, -8.1519341976054721522e-14);
 | 
						|
    p = fma(p, w, 2.6335093153082322977e-12);
 | 
						|
    p = fma(p, w, -1.2975133253453532498e-11);
 | 
						|
    p = fma(p, w, -5.4154120542946279317e-11);
 | 
						|
    p = fma(p, w, 1.051212273321532285e-09);
 | 
						|
    p = fma(p, w, -4.1126339803469836976e-09);
 | 
						|
    p = fma(p, w, -2.9070369957882005086e-08);
 | 
						|
    p = fma(p, w, 4.2347877827932403518e-07);
 | 
						|
    p = fma(p, w, -1.3654692000834678645e-06);
 | 
						|
    p = fma(p, w, -1.3882523362786468719e-05);
 | 
						|
    p = fma(p, w, 0.0001867342080340571352);
 | 
						|
    p = fma(p, w, -0.00074070253416626697512);
 | 
						|
    p = fma(p, w, -0.0060336708714301490533);
 | 
						|
    p = fma(p, w, 0.24015818242558961693);
 | 
						|
    p = fma(p, w, 1.6536545626831027356);
 | 
						|
  } else if (w < 16.000000) {
 | 
						|
    w = std::sqrt(w) - 3.250000;
 | 
						|
    p = 2.2137376921775787049e-09;
 | 
						|
    p = fma(p, w, 9.0756561938885390979e-08);
 | 
						|
    p = fma(p, w, -2.7517406297064545428e-07);
 | 
						|
    p = fma(p, w, 1.8239629214389227755e-08);
 | 
						|
    p = fma(p, w, 1.5027403968909827627e-06);
 | 
						|
    p = fma(p, w, -4.013867526981545969e-06);
 | 
						|
    p = fma(p, w, 2.9234449089955446044e-06);
 | 
						|
    p = fma(p, w, 1.2475304481671778723e-05);
 | 
						|
    p = fma(p, w, -4.7318229009055733981e-05);
 | 
						|
    p = fma(p, w, 6.8284851459573175448e-05);
 | 
						|
    p = fma(p, w, 2.4031110387097893999e-05);
 | 
						|
    p = fma(p, w, -0.0003550375203628474796);
 | 
						|
    p = fma(p, w, 0.00095328937973738049703);
 | 
						|
    p = fma(p, w, -0.0016882755560235047313);
 | 
						|
    p = fma(p, w, 0.0024914420961078508066);
 | 
						|
    p = fma(p, w, -0.0037512085075692412107);
 | 
						|
    p = fma(p, w, 0.005370914553590063617);
 | 
						|
    p = fma(p, w, 1.0052589676941592334);
 | 
						|
    p = fma(p, w, 3.0838856104922207635);
 | 
						|
  } else {
 | 
						|
    w = std::sqrt(w) - 5.000000;
 | 
						|
    p = -2.7109920616438573243e-11;
 | 
						|
    p = fma(p, w, -2.5556418169965252055e-10);
 | 
						|
    p = fma(p, w, 1.5076572693500548083e-09);
 | 
						|
    p = fma(p, w, -3.7894654401267369937e-09);
 | 
						|
    p = fma(p, w, 7.6157012080783393804e-09);
 | 
						|
    p = fma(p, w, -1.4960026627149240478e-08);
 | 
						|
    p = fma(p, w, 2.9147953450901080826e-08);
 | 
						|
    p = fma(p, w, -6.7711997758452339498e-08);
 | 
						|
    p = fma(p, w, 2.2900482228026654717e-07);
 | 
						|
    p = fma(p, w, -9.9298272942317002539e-07);
 | 
						|
    p = fma(p, w, 4.5260625972231537039e-06);
 | 
						|
    p = fma(p, w, -1.9681778105531670567e-05);
 | 
						|
    p = fma(p, w, 7.5995277030017761139e-05);
 | 
						|
    p = fma(p, w, -0.00021503011930044477347);
 | 
						|
    p = fma(p, w, -0.00013871931833623122026);
 | 
						|
    p = fma(p, w, 1.0103004648645343977);
 | 
						|
    p = fma(p, w, 4.8499064014085844221);
 | 
						|
  }
 | 
						|
  return p * x;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Direct implementation of AS63, BETAIN()
 | 
						|
// https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.
 | 
						|
//
 | 
						|
// BETAIN(x, p, q, beta)
 | 
						|
//  x:     the value of the upper limit x.
 | 
						|
//  p:     the value of the parameter p.
 | 
						|
//  q:     the value of the parameter q.
 | 
						|
//  beta:  the value of ln B(p, q)
 | 
						|
//
 | 
						|
double BetaIncompleteImpl(const double x, const double p, const double q,
 | 
						|
                          const double beta) {
 | 
						|
  if (p < (p + q) * x) {
 | 
						|
    // Incomplete beta function is symmetrical, so return the complement.
 | 
						|
    return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
 | 
						|
  }
 | 
						|
 | 
						|
  double psq = p + q;
 | 
						|
  const double kErr = 1e-14;
 | 
						|
  const double xc = 1. - x;
 | 
						|
  const double pre =
 | 
						|
      std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
 | 
						|
 | 
						|
  double term = 1.;
 | 
						|
  double ai = 1.;
 | 
						|
  double result = 1.;
 | 
						|
  int ns = static_cast<int>(q + xc * psq);
 | 
						|
 | 
						|
  // Use the soper reduction forumla.
 | 
						|
  double rx = (ns == 0) ? x : x / xc;
 | 
						|
  double temp = q - ai;
 | 
						|
  for (;;) {
 | 
						|
    term = term * temp * rx / (p + ai);
 | 
						|
    result = result + term;
 | 
						|
    temp = std::fabs(term);
 | 
						|
    if (temp < kErr && temp < kErr * result) {
 | 
						|
      return result * pre;
 | 
						|
    }
 | 
						|
    ai = ai + 1.;
 | 
						|
    --ns;
 | 
						|
    if (ns >= 0) {
 | 
						|
      temp = q - ai;
 | 
						|
      if (ns == 0) {
 | 
						|
        rx = x;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      temp = psq;
 | 
						|
      psq = psq + 1.;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTE: See also TOMS Alogrithm 708.
 | 
						|
  // http://www.netlib.org/toms/index.html
 | 
						|
  //
 | 
						|
  // NOTE: The NWSC library also includes BRATIO / ISUBX (p87)
 | 
						|
  // https://archive.org/details/DTIC_ADA261511/page/n75
 | 
						|
}
 | 
						|
 | 
						|
// Direct implementation of AS109, XINBTA(p, q, beta, alpha)
 | 
						|
// https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents
 | 
						|
// https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents
 | 
						|
//
 | 
						|
// XINBTA(p, q, beta, alhpa)
 | 
						|
//  p:     the value of the parameter p.
 | 
						|
//  q:     the value of the parameter q.
 | 
						|
//  beta:  the value of ln B(p, q)
 | 
						|
//  alpha: the value of the lower tail area.
 | 
						|
//
 | 
						|
double BetaIncompleteInvImpl(const double p, const double q, const double beta,
 | 
						|
                             const double alpha) {
 | 
						|
  if (alpha < 0.5) {
 | 
						|
    // Inverse Incomplete beta function is symmetrical, return the complement.
 | 
						|
    return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
 | 
						|
  }
 | 
						|
  const double kErr = 1e-14;
 | 
						|
  double value = kErr;
 | 
						|
 | 
						|
  // Compute the initial estimate.
 | 
						|
  {
 | 
						|
    double r = std::sqrt(-std::log(alpha * alpha));
 | 
						|
    double y =
 | 
						|
        r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
 | 
						|
    if (p > 1. && q > 1.) {
 | 
						|
      r = (y * y - 3.) / 6.;
 | 
						|
      double s = 1. / (p + p - 1.);
 | 
						|
      double t = 1. / (q + q - 1.);
 | 
						|
      double h = 2. / s + t;
 | 
						|
      double w =
 | 
						|
          y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
 | 
						|
      value = p / (p + q * std::exp(w + w));
 | 
						|
    } else {
 | 
						|
      r = q + q;
 | 
						|
      double t = 1.0 / (9. * q);
 | 
						|
      double u = 1.0 - t + y * std::sqrt(t);
 | 
						|
      t = r * (u * u * u);
 | 
						|
      if (t <= 0) {
 | 
						|
        value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
 | 
						|
      } else {
 | 
						|
        t = (4.0 * p + r - 2.0) / t;
 | 
						|
        if (t <= 1) {
 | 
						|
          value = std::exp((std::log(alpha * p) + beta) / p);
 | 
						|
        } else {
 | 
						|
          value = 1.0 - 2.0 / (t + 1.0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Solve for x using a modified newton-raphson method using the function
 | 
						|
  // BetaIncomplete.
 | 
						|
  {
 | 
						|
    value = std::max(value, kErr);
 | 
						|
    value = std::min(value, 1.0 - kErr);
 | 
						|
 | 
						|
    const double r = 1.0 - p;
 | 
						|
    const double t = 1.0 - q;
 | 
						|
    double y;
 | 
						|
    double yprev = 0;
 | 
						|
    double sq = 1;
 | 
						|
    double prev = 1;
 | 
						|
    for (;;) {
 | 
						|
      if (value < 0 || value > 1.0) {
 | 
						|
        // Error case; value went infinite.
 | 
						|
        return std::numeric_limits<double>::infinity();
 | 
						|
      } else if (value == 0 || value == 1) {
 | 
						|
        y = value;
 | 
						|
      } else {
 | 
						|
        y = BetaIncompleteImpl(value, p, q, beta);
 | 
						|
        if (!std::isfinite(y)) {
 | 
						|
          return y;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      y = (y - alpha) *
 | 
						|
          std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
 | 
						|
      if (y * yprev <= 0) {
 | 
						|
        prev = std::max(sq, std::numeric_limits<double>::min());
 | 
						|
      }
 | 
						|
      double g = 1.0;
 | 
						|
      for (;;) {
 | 
						|
        const double adj = g * y;
 | 
						|
        const double adj_sq = adj * adj;
 | 
						|
        if (adj_sq >= prev) {
 | 
						|
          g = g / 3.0;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        const double tx = value - adj;
 | 
						|
        if (tx < 0 || tx > 1) {
 | 
						|
          g = g / 3.0;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        if (prev < kErr) {
 | 
						|
          return value;
 | 
						|
        }
 | 
						|
        if (y * y < kErr) {
 | 
						|
          return value;
 | 
						|
        }
 | 
						|
        if (tx == value) {
 | 
						|
          return value;
 | 
						|
        }
 | 
						|
        if (tx == 0 || tx == 1) {
 | 
						|
          g = g / 3.0;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        value = tx;
 | 
						|
        yprev = y;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTES: See also: Asymptotic inversion of the incomplete beta function.
 | 
						|
  // https://core.ac.uk/download/pdf/82140723.pdf
 | 
						|
  //
 | 
						|
  // NOTE: See the Boost library documentation as well:
 | 
						|
  // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
double BetaIncomplete(const double x, const double p, const double q) {
 | 
						|
  // Error cases.
 | 
						|
  if (p < 0 || q < 0 || x < 0 || x > 1.0) {
 | 
						|
    return std::numeric_limits<double>::infinity();
 | 
						|
  }
 | 
						|
  if (x == 0 || x == 1) {
 | 
						|
    return x;
 | 
						|
  }
 | 
						|
  // ln(Beta(p, q))
 | 
						|
  double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
 | 
						|
  return BetaIncompleteImpl(x, p, q, beta);
 | 
						|
}
 | 
						|
 | 
						|
double BetaIncompleteInv(const double p, const double q, const double alpha) {
 | 
						|
  // Error cases.
 | 
						|
  if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
 | 
						|
    return std::numeric_limits<double>::infinity();
 | 
						|
  }
 | 
						|
  if (alpha == 0 || alpha == 1) {
 | 
						|
    return alpha;
 | 
						|
  }
 | 
						|
  // ln(Beta(p, q))
 | 
						|
  double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
 | 
						|
  return BetaIncompleteInvImpl(p, q, beta, alpha);
 | 
						|
}
 | 
						|
 | 
						|
// Given `num_trials` trials each with probability `p` of success, the
 | 
						|
// probability of no failures is `p^k`. To ensure the probability of a failure
 | 
						|
// is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function
 | 
						|
// computes `p` from that equation.
 | 
						|
double RequiredSuccessProbability(const double p_fail, const int num_trials) {
 | 
						|
  double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
 | 
						|
  ABSL_ASSERT(p > 0);
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
double ZScore(double expected_mean, const DistributionMoments& moments) {
 | 
						|
  return (moments.mean - expected_mean) /
 | 
						|
         (std::sqrt(moments.variance) /
 | 
						|
          std::sqrt(static_cast<double>(moments.n)));
 | 
						|
}
 | 
						|
 | 
						|
double MaxErrorTolerance(double acceptance_probability) {
 | 
						|
  double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
 | 
						|
  const double max_err = InverseNormalSurvival(one_sided_pvalue);
 | 
						|
  ABSL_ASSERT(max_err > 0);
 | 
						|
  return max_err;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace random_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 |