Moving all of my Emacs-related files into their own directory at the root of this repository.
		
			
				
	
	
		
			171 lines
		
	
	
	
		
			4.9 KiB
		
	
	
	
		
			EmacsLisp
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
	
		
			4.9 KiB
		
	
	
	
		
			EmacsLisp
		
	
	
	
	
	
;;; set.el --- Working with mathematical sets -*- lexical-binding: t -*-
 | 
						|
;; Author: William Carroll <wpcarro@gmail.com>
 | 
						|
 | 
						|
;;; Commentary:
 | 
						|
;; The set data structure is a collection that deduplicates its elements.
 | 
						|
 | 
						|
;;; Code:
 | 
						|
 | 
						|
(require 'ht) ;; friendlier API for hash-tables
 | 
						|
(require 'dotted)
 | 
						|
(require 'struct)
 | 
						|
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
;; Wish List
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
 | 
						|
;; - TODO: Support enum protocol for set.
 | 
						|
;; - TODO: Prefer a different hash-table library that doesn't rely on mutative
 | 
						|
;;   code.
 | 
						|
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
;; Library
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
 | 
						|
(cl-defstruct set xs)
 | 
						|
 | 
						|
(defconst set/enable-testing? t
 | 
						|
  "Run tests when t.")
 | 
						|
 | 
						|
(defun set/from-list (xs)
 | 
						|
  "Create a new set from the list XS."
 | 
						|
  (make-set :xs (->> xs
 | 
						|
                     (list/map #'dotted/new)
 | 
						|
                     ht-from-alist)))
 | 
						|
 | 
						|
(defun set/new (&rest args)
 | 
						|
  "Create a new set from ARGS."
 | 
						|
  (set/from-list args))
 | 
						|
 | 
						|
(defun set/to-list (xs)
 | 
						|
  "Map set XS into a list."
 | 
						|
  (->> xs
 | 
						|
       set-xs
 | 
						|
       ht-keys))
 | 
						|
 | 
						|
(defun set/add (x xs)
 | 
						|
  "Add X to set XS."
 | 
						|
  (struct/update set
 | 
						|
                 xs
 | 
						|
                 (lambda (table)
 | 
						|
                   (let ((table-copy (ht-copy table)))
 | 
						|
                     (ht-set table-copy x nil)
 | 
						|
                     table-copy))
 | 
						|
                 xs))
 | 
						|
 | 
						|
;; TODO: Ensure all `*/reduce' functions share the same API.
 | 
						|
(defun set/reduce (acc f xs)
 | 
						|
  "Return a new set by calling F on each element of XS and ACC."
 | 
						|
  (->> xs
 | 
						|
       set/to-list
 | 
						|
       (list/reduce acc f)))
 | 
						|
 | 
						|
(defun set/intersection (a b)
 | 
						|
  "Return the set intersection between sets A and B."
 | 
						|
  (set/reduce (set/new)
 | 
						|
              (lambda (x acc)
 | 
						|
                (if (set/contains? x b)
 | 
						|
                    (set/add x acc)
 | 
						|
                  acc))
 | 
						|
              a))
 | 
						|
 | 
						|
(defun set/count (xs)
 | 
						|
  "Return the number of elements in XS."
 | 
						|
  (->> xs
 | 
						|
       set-xs
 | 
						|
       ht-size))
 | 
						|
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
;; Predicates
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
 | 
						|
(defun set/empty? (xs)
 | 
						|
  "Return t if XS has no elements in it."
 | 
						|
  (= 0 (set/count xs)))
 | 
						|
 | 
						|
(defun set/contains? (x xs)
 | 
						|
  "Return t if set XS has X."
 | 
						|
  (ht-contains? (set-xs xs) x))
 | 
						|
 | 
						|
;; TODO: Prefer using `ht.el' functions for this.
 | 
						|
(defun set/equal? (a b)
 | 
						|
  "Return t if A and B share the name members."
 | 
						|
  (ht-equal? (set-xs a)
 | 
						|
             (set-xs b)))
 | 
						|
 | 
						|
(defun set/distinct? (a b)
 | 
						|
  "Return t if sets A and B have no shared members."
 | 
						|
  (set/empty? (set/intersection a b)))
 | 
						|
 | 
						|
(defun set/superset? (a b)
 | 
						|
  "Return t if set A contains all of the members of set B."
 | 
						|
  (->> b
 | 
						|
       set/to-list
 | 
						|
       (list/all? (lambda (x) (set/contains? x a)))))
 | 
						|
 | 
						|
(defun set/subset? (a b)
 | 
						|
  "Return t if each member of set A is present in set B."
 | 
						|
  (set/superset? b a))
 | 
						|
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
;; Tests
 | 
						|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
						|
 | 
						|
(when set/enable-testing?
 | 
						|
  ;; set/distinct?
 | 
						|
  (prelude/assert
 | 
						|
   (set/distinct? (set/new 'one 'two 'three)
 | 
						|
                  (set/new 'a 'b 'c)))
 | 
						|
  (prelude/refute
 | 
						|
   (set/distinct? (set/new 1 2 3)
 | 
						|
                  (set/new 3 4 5)))
 | 
						|
  (prelude/refute
 | 
						|
   (set/distinct? (set/new 1 2 3)
 | 
						|
                  (set/new 1 2 3)))
 | 
						|
  ;; set/equal?
 | 
						|
  (prelude/refute
 | 
						|
   (set/equal? (set/new 'a 'b 'c)
 | 
						|
               (set/new 'x 'y 'z)))
 | 
						|
  (prelude/refute
 | 
						|
   (set/equal? (set/new 'a 'b 'c)
 | 
						|
               (set/new 'a 'b)))
 | 
						|
  (prelude/assert
 | 
						|
   (set/equal? (set/new 'a 'b 'c)
 | 
						|
               (set/new 'a 'b 'c)))
 | 
						|
  ;; set/intersection
 | 
						|
  (prelude/assert
 | 
						|
   (set/equal? (set/new 2 3)
 | 
						|
               (set/intersection (set/new 1 2 3)
 | 
						|
                                 (set/new 2 3 4))))
 | 
						|
  ;; set/{from,to}-list
 | 
						|
  (prelude/assert (equal '(1 2 3)
 | 
						|
                         (->> '(1 1 2 2 3 3)
 | 
						|
                              set/from-list
 | 
						|
                              set/to-list)))
 | 
						|
  (let ((primary-colors (set/new "red" "green" "blue")))
 | 
						|
    ;; set/subset?
 | 
						|
    (prelude/refute
 | 
						|
     (set/subset? (set/new "black" "grey")
 | 
						|
                  primary-colors))
 | 
						|
    (prelude/assert
 | 
						|
     (set/subset? (set/new "red")
 | 
						|
                  primary-colors))
 | 
						|
    ;; set/superset?
 | 
						|
    (prelude/refute
 | 
						|
     (set/superset? primary-colors
 | 
						|
                    (set/new "black" "grey")))
 | 
						|
    (prelude/assert
 | 
						|
     (set/superset? primary-colors
 | 
						|
                    (set/new "red" "green" "blue")))
 | 
						|
    (prelude/assert
 | 
						|
     (set/superset? primary-colors
 | 
						|
                    (set/new "red" "blue"))))
 | 
						|
  ;; set/empty?
 | 
						|
  (prelude/assert (set/empty? (set/new)))
 | 
						|
  (prelude/refute (set/empty? (set/new 1 2 3)))
 | 
						|
  ;; set/count
 | 
						|
  (prelude/assert (= 0 (set/count (set/new))))
 | 
						|
  (prelude/assert (= 2 (set/count (set/new 1 1 2 2)))))
 | 
						|
 | 
						|
(provide 'set)
 | 
						|
;;; set.el ends here
 |