488 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			488 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2018 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// File: node_hash_set.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// An `absl::node_hash_set<T>` is an unordered associative container designed to
 | 
						|
// be a more efficient replacement for `std::unordered_set`. Like
 | 
						|
// `unordered_set`, search, insertion, and deletion of map elements can be done
 | 
						|
// as an `O(1)` operation. However, `node_hash_set` (and other unordered
 | 
						|
// associative containers known as the collection of Abseil "Swiss tables")
 | 
						|
// contain other optimizations that result in both memory and computation
 | 
						|
// advantages.
 | 
						|
//
 | 
						|
// In most cases, your default choice for a hash table should be a map of type
 | 
						|
// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
 | 
						|
// pointer stability, a `node_hash_set` should be your preferred choice. As
 | 
						|
// well, if you are migrating your code from using `std::unordered_set`, a
 | 
						|
// `node_hash_set` should be an easy migration. Consider migrating to
 | 
						|
// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
 | 
						|
// upon further review.
 | 
						|
 | 
						|
#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
 | 
						|
#define ABSL_CONTAINER_NODE_HASH_SET_H_
 | 
						|
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "absl/algorithm/container.h"
 | 
						|
#include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
 | 
						|
#include "absl/container/internal/node_hash_policy.h"
 | 
						|
#include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
 | 
						|
#include "absl/memory/memory.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
namespace container_internal {
 | 
						|
template <typename T>
 | 
						|
struct NodeHashSetPolicy;
 | 
						|
}  // namespace container_internal
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::node_hash_set
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// An `absl::node_hash_set<T>` is an unordered associative container which
 | 
						|
// has been optimized for both speed and memory footprint in most common use
 | 
						|
// cases. Its interface is similar to that of `std::unordered_set<T>` with the
 | 
						|
// following notable differences:
 | 
						|
//
 | 
						|
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
 | 
						|
//   `insert()`, provided that the map is provided a compatible heterogeneous
 | 
						|
//   hashing function and equality operator.
 | 
						|
// * Contains a `capacity()` member function indicating the number of element
 | 
						|
//   slots (open, deleted, and empty) within the hash set.
 | 
						|
// * Returns `void` from the `erase(iterator)` overload.
 | 
						|
//
 | 
						|
// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
 | 
						|
// All fundamental and Abseil types that support the `absl::Hash` framework have
 | 
						|
// a compatible equality operator for comparing insertions into `node_hash_set`.
 | 
						|
// If your type is not yet supported by the `absl::Hash` framework, see
 | 
						|
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
 | 
						|
// types.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   // Create a node hash set of three strings
 | 
						|
//   absl::node_hash_map<std::string, std::string> ducks =
 | 
						|
//     {"huey", "dewey"}, "louie"};
 | 
						|
//
 | 
						|
//  // Insert a new element into the node hash map
 | 
						|
//  ducks.insert("donald"};
 | 
						|
//
 | 
						|
//  // Force a rehash of the node hash map
 | 
						|
//  ducks.rehash(0);
 | 
						|
//
 | 
						|
//  // See if "dewey" is present
 | 
						|
//  if (ducks.contains("dewey")) {
 | 
						|
//    std::cout << "We found dewey!" << std::endl;
 | 
						|
//  }
 | 
						|
template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
 | 
						|
          class Eq = absl::container_internal::hash_default_eq<T>,
 | 
						|
          class Alloc = std::allocator<T>>
 | 
						|
class node_hash_set
 | 
						|
    : public absl::container_internal::raw_hash_set<
 | 
						|
          absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
 | 
						|
  using Base = typename node_hash_set::raw_hash_set;
 | 
						|
 | 
						|
 public:
 | 
						|
  // Constructors and Assignment Operators
 | 
						|
  //
 | 
						|
  // A node_hash_set supports the same overload set as `std::unordered_map`
 | 
						|
  // for construction and assignment:
 | 
						|
  //
 | 
						|
  // *  Default constructor
 | 
						|
  //
 | 
						|
  //    // No allocation for the table's elements is made.
 | 
						|
  //    absl::node_hash_set<std::string> set1;
 | 
						|
  //
 | 
						|
  // * Initializer List constructor
 | 
						|
  //
 | 
						|
  //   absl::node_hash_set<std::string> set2 =
 | 
						|
  //       {{"huey"}, {"dewey"}, {"louie"},};
 | 
						|
  //
 | 
						|
  // * Copy constructor
 | 
						|
  //
 | 
						|
  //   absl::node_hash_set<std::string> set3(set2);
 | 
						|
  //
 | 
						|
  // * Copy assignment operator
 | 
						|
  //
 | 
						|
  //  // Hash functor and Comparator are copied as well
 | 
						|
  //  absl::node_hash_set<std::string> set4;
 | 
						|
  //  set4 = set3;
 | 
						|
  //
 | 
						|
  // * Move constructor
 | 
						|
  //
 | 
						|
  //   // Move is guaranteed efficient
 | 
						|
  //   absl::node_hash_set<std::string> set5(std::move(set4));
 | 
						|
  //
 | 
						|
  // * Move assignment operator
 | 
						|
  //
 | 
						|
  //   // May be efficient if allocators are compatible
 | 
						|
  //   absl::node_hash_set<std::string> set6;
 | 
						|
  //   set6 = std::move(set5);
 | 
						|
  //
 | 
						|
  // * Range constructor
 | 
						|
  //
 | 
						|
  //   std::vector<std::string> v = {"a", "b"};
 | 
						|
  //   absl::node_hash_set<std::string> set7(v.begin(), v.end());
 | 
						|
  node_hash_set() {}
 | 
						|
  using Base::Base;
 | 
						|
 | 
						|
  // node_hash_set::begin()
 | 
						|
  //
 | 
						|
  // Returns an iterator to the beginning of the `node_hash_set`.
 | 
						|
  using Base::begin;
 | 
						|
 | 
						|
  // node_hash_set::cbegin()
 | 
						|
  //
 | 
						|
  // Returns a const iterator to the beginning of the `node_hash_set`.
 | 
						|
  using Base::cbegin;
 | 
						|
 | 
						|
  // node_hash_set::cend()
 | 
						|
  //
 | 
						|
  // Returns a const iterator to the end of the `node_hash_set`.
 | 
						|
  using Base::cend;
 | 
						|
 | 
						|
  // node_hash_set::end()
 | 
						|
  //
 | 
						|
  // Returns an iterator to the end of the `node_hash_set`.
 | 
						|
  using Base::end;
 | 
						|
 | 
						|
  // node_hash_set::capacity()
 | 
						|
  //
 | 
						|
  // Returns the number of element slots (assigned, deleted, and empty)
 | 
						|
  // available within the `node_hash_set`.
 | 
						|
  //
 | 
						|
  // NOTE: this member function is particular to `absl::node_hash_set` and is
 | 
						|
  // not provided in the `std::unordered_map` API.
 | 
						|
  using Base::capacity;
 | 
						|
 | 
						|
  // node_hash_set::empty()
 | 
						|
  //
 | 
						|
  // Returns whether or not the `node_hash_set` is empty.
 | 
						|
  using Base::empty;
 | 
						|
 | 
						|
  // node_hash_set::max_size()
 | 
						|
  //
 | 
						|
  // Returns the largest theoretical possible number of elements within a
 | 
						|
  // `node_hash_set` under current memory constraints. This value can be thought
 | 
						|
  // of the largest value of `std::distance(begin(), end())` for a
 | 
						|
  // `node_hash_set<T>`.
 | 
						|
  using Base::max_size;
 | 
						|
 | 
						|
  // node_hash_set::size()
 | 
						|
  //
 | 
						|
  // Returns the number of elements currently within the `node_hash_set`.
 | 
						|
  using Base::size;
 | 
						|
 | 
						|
  // node_hash_set::clear()
 | 
						|
  //
 | 
						|
  // Removes all elements from the `node_hash_set`. Invalidates any references,
 | 
						|
  // pointers, or iterators referring to contained elements.
 | 
						|
  //
 | 
						|
  // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
 | 
						|
  // the underlying buffer call `erase(begin(), end())`.
 | 
						|
  using Base::clear;
 | 
						|
 | 
						|
  // node_hash_set::erase()
 | 
						|
  //
 | 
						|
  // Erases elements within the `node_hash_set`. Erasing does not trigger a
 | 
						|
  // rehash. Overloads are listed below.
 | 
						|
  //
 | 
						|
  // void erase(const_iterator pos):
 | 
						|
  //
 | 
						|
  //   Erases the element at `position` of the `node_hash_set`, returning
 | 
						|
  //   `void`.
 | 
						|
  //
 | 
						|
  //   NOTE: this return behavior is different than that of STL containers in
 | 
						|
  //   general and `std::unordered_map` in particular.
 | 
						|
  //
 | 
						|
  // iterator erase(const_iterator first, const_iterator last):
 | 
						|
  //
 | 
						|
  //   Erases the elements in the open interval [`first`, `last`), returning an
 | 
						|
  //   iterator pointing to `last`.
 | 
						|
  //
 | 
						|
  // size_type erase(const key_type& key):
 | 
						|
  //
 | 
						|
  //   Erases the element with the matching key, if it exists.
 | 
						|
  using Base::erase;
 | 
						|
 | 
						|
  // node_hash_set::insert()
 | 
						|
  //
 | 
						|
  // Inserts an element of the specified value into the `node_hash_set`,
 | 
						|
  // returning an iterator pointing to the newly inserted element, provided that
 | 
						|
  // an element with the given key does not already exist. If rehashing occurs
 | 
						|
  // due to the insertion, all iterators are invalidated. Overloads are listed
 | 
						|
  // below.
 | 
						|
  //
 | 
						|
  // std::pair<iterator,bool> insert(const T& value):
 | 
						|
  //
 | 
						|
  //   Inserts a value into the `node_hash_set`. Returns a pair consisting of an
 | 
						|
  //   iterator to the inserted element (or to the element that prevented the
 | 
						|
  //   insertion) and a bool denoting whether the insertion took place.
 | 
						|
  //
 | 
						|
  // std::pair<iterator,bool> insert(T&& value):
 | 
						|
  //
 | 
						|
  //   Inserts a moveable value into the `node_hash_set`. Returns a pair
 | 
						|
  //   consisting of an iterator to the inserted element (or to the element that
 | 
						|
  //   prevented the insertion) and a bool denoting whether the insertion took
 | 
						|
  //   place.
 | 
						|
  //
 | 
						|
  // iterator insert(const_iterator hint, const T& value):
 | 
						|
  // iterator insert(const_iterator hint, T&& value):
 | 
						|
  //
 | 
						|
  //   Inserts a value, using the position of `hint` as a non-binding suggestion
 | 
						|
  //   for where to begin the insertion search. Returns an iterator to the
 | 
						|
  //   inserted element, or to the existing element that prevented the
 | 
						|
  //   insertion.
 | 
						|
  //
 | 
						|
  // void insert(InputIterator first, InputIterator last):
 | 
						|
  //
 | 
						|
  //   Inserts a range of values [`first`, `last`).
 | 
						|
  //
 | 
						|
  //   NOTE: Although the STL does not specify which element may be inserted if
 | 
						|
  //   multiple keys compare equivalently, for `node_hash_set` we guarantee the
 | 
						|
  //   first match is inserted.
 | 
						|
  //
 | 
						|
  // void insert(std::initializer_list<T> ilist):
 | 
						|
  //
 | 
						|
  //   Inserts the elements within the initializer list `ilist`.
 | 
						|
  //
 | 
						|
  //   NOTE: Although the STL does not specify which element may be inserted if
 | 
						|
  //   multiple keys compare equivalently within the initializer list, for
 | 
						|
  //   `node_hash_set` we guarantee the first match is inserted.
 | 
						|
  using Base::insert;
 | 
						|
 | 
						|
  // node_hash_set::emplace()
 | 
						|
  //
 | 
						|
  // Inserts an element of the specified value by constructing it in-place
 | 
						|
  // within the `node_hash_set`, provided that no element with the given key
 | 
						|
  // already exists.
 | 
						|
  //
 | 
						|
  // The element may be constructed even if there already is an element with the
 | 
						|
  // key in the container, in which case the newly constructed element will be
 | 
						|
  // destroyed immediately.
 | 
						|
  //
 | 
						|
  // If rehashing occurs due to the insertion, all iterators are invalidated.
 | 
						|
  using Base::emplace;
 | 
						|
 | 
						|
  // node_hash_set::emplace_hint()
 | 
						|
  //
 | 
						|
  // Inserts an element of the specified value by constructing it in-place
 | 
						|
  // within the `node_hash_set`, using the position of `hint` as a non-binding
 | 
						|
  // suggestion for where to begin the insertion search, and only inserts
 | 
						|
  // provided that no element with the given key already exists.
 | 
						|
  //
 | 
						|
  // The element may be constructed even if there already is an element with the
 | 
						|
  // key in the container, in which case the newly constructed element will be
 | 
						|
  // destroyed immediately.
 | 
						|
  //
 | 
						|
  // If rehashing occurs due to the insertion, all iterators are invalidated.
 | 
						|
  using Base::emplace_hint;
 | 
						|
 | 
						|
  // node_hash_set::extract()
 | 
						|
  //
 | 
						|
  // Extracts the indicated element, erasing it in the process, and returns it
 | 
						|
  // as a C++17-compatible node handle. Overloads are listed below.
 | 
						|
  //
 | 
						|
  // node_type extract(const_iterator position):
 | 
						|
  //
 | 
						|
  //   Extracts the element at the indicated position and returns a node handle
 | 
						|
  //   owning that extracted data.
 | 
						|
  //
 | 
						|
  // node_type extract(const key_type& x):
 | 
						|
  //
 | 
						|
  //   Extracts the element with the key matching the passed key value and
 | 
						|
  //   returns a node handle owning that extracted data. If the `node_hash_set`
 | 
						|
  //   does not contain an element with a matching key, this function returns an
 | 
						|
  // empty node handle.
 | 
						|
  using Base::extract;
 | 
						|
 | 
						|
  // node_hash_set::merge()
 | 
						|
  //
 | 
						|
  // Extracts elements from a given `source` flat hash map into this
 | 
						|
  // `node_hash_set`. If the destination `node_hash_set` already contains an
 | 
						|
  // element with an equivalent key, that element is not extracted.
 | 
						|
  using Base::merge;
 | 
						|
 | 
						|
  // node_hash_set::swap(node_hash_set& other)
 | 
						|
  //
 | 
						|
  // Exchanges the contents of this `node_hash_set` with those of the `other`
 | 
						|
  // flat hash map, avoiding invocation of any move, copy, or swap operations on
 | 
						|
  // individual elements.
 | 
						|
  //
 | 
						|
  // All iterators and references on the `node_hash_set` remain valid, excepting
 | 
						|
  // for the past-the-end iterator, which is invalidated.
 | 
						|
  //
 | 
						|
  // `swap()` requires that the flat hash set's hashing and key equivalence
 | 
						|
  // functions be Swappable, and are exchaged using unqualified calls to
 | 
						|
  // non-member `swap()`. If the map's allocator has
 | 
						|
  // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
 | 
						|
  // set to `true`, the allocators are also exchanged using an unqualified call
 | 
						|
  // to non-member `swap()`; otherwise, the allocators are not swapped.
 | 
						|
  using Base::swap;
 | 
						|
 | 
						|
  // node_hash_set::rehash(count)
 | 
						|
  //
 | 
						|
  // Rehashes the `node_hash_set`, setting the number of slots to be at least
 | 
						|
  // the passed value. If the new number of slots increases the load factor more
 | 
						|
  // than the current maximum load factor
 | 
						|
  // (`count` < `size()` / `max_load_factor()`), then the new number of slots
 | 
						|
  // will be at least `size()` / `max_load_factor()`.
 | 
						|
  //
 | 
						|
  // To force a rehash, pass rehash(0).
 | 
						|
  //
 | 
						|
  // NOTE: unlike behavior in `std::unordered_set`, references are also
 | 
						|
  // invalidated upon a `rehash()`.
 | 
						|
  using Base::rehash;
 | 
						|
 | 
						|
  // node_hash_set::reserve(count)
 | 
						|
  //
 | 
						|
  // Sets the number of slots in the `node_hash_set` to the number needed to
 | 
						|
  // accommodate at least `count` total elements without exceeding the current
 | 
						|
  // maximum load factor, and may rehash the container if needed.
 | 
						|
  using Base::reserve;
 | 
						|
 | 
						|
  // node_hash_set::contains()
 | 
						|
  //
 | 
						|
  // Determines whether an element comparing equal to the given `key` exists
 | 
						|
  // within the `node_hash_set`, returning `true` if so or `false` otherwise.
 | 
						|
  using Base::contains;
 | 
						|
 | 
						|
  // node_hash_set::count(const Key& key) const
 | 
						|
  //
 | 
						|
  // Returns the number of elements comparing equal to the given `key` within
 | 
						|
  // the `node_hash_set`. note that this function will return either `1` or `0`
 | 
						|
  // since duplicate elements are not allowed within a `node_hash_set`.
 | 
						|
  using Base::count;
 | 
						|
 | 
						|
  // node_hash_set::equal_range()
 | 
						|
  //
 | 
						|
  // Returns a closed range [first, last], defined by a `std::pair` of two
 | 
						|
  // iterators, containing all elements with the passed key in the
 | 
						|
  // `node_hash_set`.
 | 
						|
  using Base::equal_range;
 | 
						|
 | 
						|
  // node_hash_set::find()
 | 
						|
  //
 | 
						|
  // Finds an element with the passed `key` within the `node_hash_set`.
 | 
						|
  using Base::find;
 | 
						|
 | 
						|
  // node_hash_set::bucket_count()
 | 
						|
  //
 | 
						|
  // Returns the number of "buckets" within the `node_hash_set`. Note that
 | 
						|
  // because a flat hash map contains all elements within its internal storage,
 | 
						|
  // this value simply equals the current capacity of the `node_hash_set`.
 | 
						|
  using Base::bucket_count;
 | 
						|
 | 
						|
  // node_hash_set::load_factor()
 | 
						|
  //
 | 
						|
  // Returns the current load factor of the `node_hash_set` (the average number
 | 
						|
  // of slots occupied with a value within the hash map).
 | 
						|
  using Base::load_factor;
 | 
						|
 | 
						|
  // node_hash_set::max_load_factor()
 | 
						|
  //
 | 
						|
  // Manages the maximum load factor of the `node_hash_set`. Overloads are
 | 
						|
  // listed below.
 | 
						|
  //
 | 
						|
  // float node_hash_set::max_load_factor()
 | 
						|
  //
 | 
						|
  //   Returns the current maximum load factor of the `node_hash_set`.
 | 
						|
  //
 | 
						|
  // void node_hash_set::max_load_factor(float ml)
 | 
						|
  //
 | 
						|
  //   Sets the maximum load factor of the `node_hash_set` to the passed value.
 | 
						|
  //
 | 
						|
  //   NOTE: This overload is provided only for API compatibility with the STL;
 | 
						|
  //   `node_hash_set` will ignore any set load factor and manage its rehashing
 | 
						|
  //   internally as an implementation detail.
 | 
						|
  using Base::max_load_factor;
 | 
						|
 | 
						|
  // node_hash_set::get_allocator()
 | 
						|
  //
 | 
						|
  // Returns the allocator function associated with this `node_hash_set`.
 | 
						|
  using Base::get_allocator;
 | 
						|
 | 
						|
  // node_hash_set::hash_function()
 | 
						|
  //
 | 
						|
  // Returns the hashing function used to hash the keys within this
 | 
						|
  // `node_hash_set`.
 | 
						|
  using Base::hash_function;
 | 
						|
 | 
						|
  // node_hash_set::key_eq()
 | 
						|
  //
 | 
						|
  // Returns the function used for comparing keys equality.
 | 
						|
  using Base::key_eq;
 | 
						|
 | 
						|
  ABSL_DEPRECATED("Call `hash_function()` instead.")
 | 
						|
  typename Base::hasher hash_funct() { return this->hash_function(); }
 | 
						|
 | 
						|
  ABSL_DEPRECATED("Call `rehash()` instead.")
 | 
						|
  void resize(typename Base::size_type hint) { this->rehash(hint); }
 | 
						|
};
 | 
						|
 | 
						|
namespace container_internal {
 | 
						|
 | 
						|
template <class T>
 | 
						|
struct NodeHashSetPolicy
 | 
						|
    : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
 | 
						|
  using key_type = T;
 | 
						|
  using init_type = T;
 | 
						|
  using constant_iterators = std::true_type;
 | 
						|
 | 
						|
  template <class Allocator, class... Args>
 | 
						|
  static T* new_element(Allocator* alloc, Args&&... args) {
 | 
						|
    using ValueAlloc =
 | 
						|
        typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
 | 
						|
    ValueAlloc value_alloc(*alloc);
 | 
						|
    T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
 | 
						|
    absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
 | 
						|
                                                  std::forward<Args>(args)...);
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  template <class Allocator>
 | 
						|
  static void delete_element(Allocator* alloc, T* elem) {
 | 
						|
    using ValueAlloc =
 | 
						|
        typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
 | 
						|
    ValueAlloc value_alloc(*alloc);
 | 
						|
    absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
 | 
						|
    absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  template <class F, class... Args>
 | 
						|
  static decltype(absl::container_internal::DecomposeValue(
 | 
						|
      std::declval<F>(), std::declval<Args>()...))
 | 
						|
  apply(F&& f, Args&&... args) {
 | 
						|
    return absl::container_internal::DecomposeValue(
 | 
						|
        std::forward<F>(f), std::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  static size_t element_space_used(const T*) { return sizeof(T); }
 | 
						|
};
 | 
						|
}  // namespace container_internal
 | 
						|
 | 
						|
namespace container_algorithm_internal {
 | 
						|
 | 
						|
// Specialization of trait in absl/algorithm/container.h
 | 
						|
template <class Key, class Hash, class KeyEqual, class Allocator>
 | 
						|
struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
 | 
						|
    : std::true_type {};
 | 
						|
 | 
						|
}  // namespace container_algorithm_internal
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_CONTAINER_NODE_HASH_SET_H_
 |