git-subtree-dir: users/wpcarro git-subtree-mainline:464bbcb15cgit-subtree-split:24f5a642afChange-Id: I6105b3762b79126b3488359c95978cadb3efa789
		
			
				
	
	
		
			213 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			Haskell
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			Haskell
		
	
	
	
	
	
module ApplicativeScratch where
 | 
						|
 | 
						|
import Data.Function ((&))
 | 
						|
 | 
						|
import Control.Applicative (liftA3)
 | 
						|
import qualified Data.List as List
 | 
						|
import qualified GHC.Base as Base
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
-- xs :: [(Integer, Integer)]
 | 
						|
-- xs = zip [1..3] [4..6]
 | 
						|
 | 
						|
-- added :: Maybe Integer
 | 
						|
-- added =
 | 
						|
--   (+3) <$> (lookup 3 xs)
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
-- y :: Maybe Integer
 | 
						|
-- y = lookup 3 xs
 | 
						|
 | 
						|
-- z :: Maybe Integer
 | 
						|
-- z = lookup 2 xs
 | 
						|
 | 
						|
-- tupled :: Maybe (Integer, Integer)
 | 
						|
-- tupled = Base.liftA2 (,) y z
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
-- x :: Maybe Int
 | 
						|
-- x = List.elemIndex 3 [1..5]
 | 
						|
 | 
						|
-- y :: Maybe Int
 | 
						|
-- y = List.elemIndex 4 [1..5]
 | 
						|
 | 
						|
-- maxed :: Maybe Int
 | 
						|
-- maxed = Base.liftA2 max x y
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
xs = [1..3]
 | 
						|
ys = [4..6]
 | 
						|
 | 
						|
x :: Maybe Integer
 | 
						|
x = lookup 3 $ zip xs ys
 | 
						|
 | 
						|
y :: Maybe Integer
 | 
						|
y = lookup 2 $ zip xs ys
 | 
						|
 | 
						|
summed :: Maybe Integer
 | 
						|
summed = sum <$> Base.liftA2 (,) x y
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
newtype Identity a = Identity a deriving (Eq, Show)
 | 
						|
 | 
						|
instance Functor Identity where
 | 
						|
  fmap f (Identity x) = Identity (f x)
 | 
						|
 | 
						|
instance Applicative Identity where
 | 
						|
  pure = Identity
 | 
						|
  (Identity f) <*> (Identity x) = Identity (f x)
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
newtype Constant a b =
 | 
						|
  Constant { getConstant :: a }
 | 
						|
  deriving (Eq, Ord, Show)
 | 
						|
 | 
						|
instance Functor (Constant a) where
 | 
						|
  fmap _ (Constant x) = Constant x
 | 
						|
 | 
						|
instance Monoid a => Applicative (Constant a) where
 | 
						|
  pure _ = Constant mempty
 | 
						|
  (Constant x) <*> (Constant y) = Constant (x <> y)
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
one = const <$> Just "Hello" <*> Just "World"
 | 
						|
 | 
						|
two :: Maybe (Integer, Integer, String, [Integer])
 | 
						|
two = (,,,) <$> (Just 90)
 | 
						|
            <*> (Just 10)
 | 
						|
            <*> (Just "Tierness")
 | 
						|
            <*> (Just [1..3])
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
data List a = Nil | Cons a (List a) deriving (Eq, Show)
 | 
						|
 | 
						|
instance Semigroup (List a) where
 | 
						|
  Nil <> xs = xs
 | 
						|
  xs <> Nil = xs
 | 
						|
  (Cons x xs) <> ys = Cons x (xs <> ys)
 | 
						|
 | 
						|
instance Functor List where
 | 
						|
  fmap f Nil = Nil
 | 
						|
  fmap f (Cons x xs) = Cons (f x) (fmap f xs)
 | 
						|
 | 
						|
instance Applicative List where
 | 
						|
  pure x = Cons x Nil
 | 
						|
  Nil <*> _ = Nil
 | 
						|
  _ <*> Nil = Nil
 | 
						|
  (Cons f fs) <*> xs =
 | 
						|
    (f <$> xs) <> (fs <*> xs)
 | 
						|
 | 
						|
toList :: List a -> [a]
 | 
						|
toList Nil = []
 | 
						|
toList (Cons x xs) = x : toList xs
 | 
						|
 | 
						|
fromList :: [a] -> List a
 | 
						|
fromList [] = Nil
 | 
						|
fromList (x:xs) = Cons x (fromList xs)
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
newtype ZipList' a =
 | 
						|
  ZipList' [a]
 | 
						|
  deriving (Eq, Show)
 | 
						|
 | 
						|
-- instance Eq a => EqProp (ZipList' a) where
 | 
						|
--   (ZipList' lhs) =-= (ZipList' rhs) =
 | 
						|
--     (take 1000 lhs) `eq` (take 1000 rhs)
 | 
						|
 | 
						|
instance Functor ZipList' where
 | 
						|
  fmap f (ZipList' xs) = ZipList' $ fmap f xs
 | 
						|
 | 
						|
instance Applicative ZipList' where
 | 
						|
  pure x = ZipList' (repeat x)
 | 
						|
  (ZipList' fs) <*> (ZipList' xs) =
 | 
						|
    ZipList' $ zipWith ($) fs xs
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
data Validation e a
 | 
						|
  = Failure e
 | 
						|
  | Success a
 | 
						|
  deriving (Eq, Show)
 | 
						|
 | 
						|
instance Functor (Validation e) where
 | 
						|
  fmap f (Failure x) = Failure x
 | 
						|
  fmap f (Success x) = Success (f x)
 | 
						|
 | 
						|
instance Monoid e => Applicative (Validation e) where
 | 
						|
  pure = undefined
 | 
						|
  (Success f) <*> (Success x) = Success (f x)
 | 
						|
  _ <*> (Failure x) = Failure x
 | 
						|
  (Failure x) <*> _ = Failure x
 | 
						|
 | 
						|
data Error
 | 
						|
  = DivideByZero
 | 
						|
  | StackOverflow
 | 
						|
  deriving (Eq, Show)
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
stops :: String
 | 
						|
stops = "pbtdkg"
 | 
						|
 | 
						|
vowels :: String
 | 
						|
vowels = "aeiou"
 | 
						|
 | 
						|
combos :: [a] -> [b] -> [c] -> [(a, b, c)]
 | 
						|
combos xs ys zs =
 | 
						|
  liftA3 (,,) xs ys zs
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
data Pair a = Pair a a deriving Show
 | 
						|
 | 
						|
instance Functor Pair where
 | 
						|
  fmap f (Pair x y) = Pair (f x) (f y)
 | 
						|
 | 
						|
instance Applicative Pair where
 | 
						|
  pure x = Pair x x
 | 
						|
  (Pair f g) <*> (Pair x y) = Pair (f x) (g x)
 | 
						|
 | 
						|
p :: Pair Integer
 | 
						|
p = Pair 1 2
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
data Two a b = Two a b
 | 
						|
 | 
						|
instance Functor (Two a) where
 | 
						|
  fmap f (Two x y) = Two x (f y)
 | 
						|
 | 
						|
instance Monoid a => Applicative (Two a) where
 | 
						|
  pure x = Two mempty x
 | 
						|
  _ <*> _ = undefined
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
data Three a b c = Three a b c
 | 
						|
 | 
						|
instance Functor (Three a b) where
 | 
						|
  fmap f (Three x y z) = Three x y (f z)
 | 
						|
 | 
						|
instance (Monoid a, Monoid b) => Applicative (Three a b) where
 | 
						|
  pure x = Three mempty mempty x
 | 
						|
  (Three a b f) <*> (Three x y z) = Three (a <> x) (b <> y) (f z)
 | 
						|
 | 
						|
--------------------------------------------------------------------------------
 | 
						|
 | 
						|
data Three' a b = Three' a b b
 | 
						|
 | 
						|
instance Functor (Three' a) where
 | 
						|
  fmap f (Three' x y z) = Three' x (f y) (f z)
 | 
						|
 | 
						|
instance Monoid a => Applicative (Three' a) where
 | 
						|
  pure x = Three' mempty x x
 | 
						|
  (Three' a f g) <*> (Three' x y z) = Three' (a <> x) (f y) (g z)
 |