git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			346 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // Produce stack trace
 | |
| 
 | |
| #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
 | |
| #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
 | |
| 
 | |
| #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
 | |
| #include <ucontext.h>  // for ucontext_t
 | |
| #endif
 | |
| 
 | |
| #if !defined(_WIN32)
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| 
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/debugging/internal/address_is_readable.h"
 | |
| #include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems
 | |
| #include "absl/debugging/stacktrace.h"
 | |
| 
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| 
 | |
| using absl::debugging_internal::AddressIsReadable;
 | |
| 
 | |
| #if defined(__linux__) && defined(__i386__)
 | |
| // Count "push %reg" instructions in VDSO __kernel_vsyscall(),
 | |
| // preceeding "syscall" or "sysenter".
 | |
| // If __kernel_vsyscall uses frame pointer, answer 0.
 | |
| //
 | |
| // kMaxBytes tells how many instruction bytes of __kernel_vsyscall
 | |
| // to analyze before giving up. Up to kMaxBytes+1 bytes of
 | |
| // instructions could be accessed.
 | |
| //
 | |
| // Here are known __kernel_vsyscall instruction sequences:
 | |
| //
 | |
| // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
 | |
| // Used on Intel.
 | |
| //  0xffffe400 <__kernel_vsyscall+0>:       push   %ecx
 | |
| //  0xffffe401 <__kernel_vsyscall+1>:       push   %edx
 | |
| //  0xffffe402 <__kernel_vsyscall+2>:       push   %ebp
 | |
| //  0xffffe403 <__kernel_vsyscall+3>:       mov    %esp,%ebp
 | |
| //  0xffffe405 <__kernel_vsyscall+5>:       sysenter
 | |
| //
 | |
| // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
 | |
| // Used on AMD.
 | |
| //  0xffffe400 <__kernel_vsyscall+0>:       push   %ebp
 | |
| //  0xffffe401 <__kernel_vsyscall+1>:       mov    %ecx,%ebp
 | |
| //  0xffffe403 <__kernel_vsyscall+3>:       syscall
 | |
| //
 | |
| 
 | |
| // The sequence below isn't actually expected in Google fleet,
 | |
| // here only for completeness. Remove this comment from OSS release.
 | |
| 
 | |
| // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
 | |
| //  0xffffe400 <__kernel_vsyscall+0>:       int $0x80
 | |
| //  0xffffe401 <__kernel_vsyscall+1>:       ret
 | |
| //
 | |
| static const int kMaxBytes = 10;
 | |
| 
 | |
| // We use assert()s instead of DCHECK()s -- this is too low level
 | |
| // for DCHECK().
 | |
| 
 | |
| static int CountPushInstructions(const unsigned char *const addr) {
 | |
|   int result = 0;
 | |
|   for (int i = 0; i < kMaxBytes; ++i) {
 | |
|     if (addr[i] == 0x89) {
 | |
|       // "mov reg,reg"
 | |
|       if (addr[i + 1] == 0xE5) {
 | |
|         // Found "mov %esp,%ebp".
 | |
|         return 0;
 | |
|       }
 | |
|       ++i;  // Skip register encoding byte.
 | |
|     } else if (addr[i] == 0x0F &&
 | |
|                (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
 | |
|       // Found "sysenter" or "syscall".
 | |
|       return result;
 | |
|     } else if ((addr[i] & 0xF0) == 0x50) {
 | |
|       // Found "push %reg".
 | |
|       ++result;
 | |
|     } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
 | |
|       // Found "int $0x80"
 | |
|       assert(result == 0);
 | |
|       return 0;
 | |
|     } else {
 | |
|       // Unexpected instruction.
 | |
|       assert(false && "unexpected instruction in __kernel_vsyscall");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   // Unexpected: didn't find SYSENTER or SYSCALL in
 | |
|   // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
 | |
|   assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Assume stack frames larger than 100,000 bytes are bogus.
 | |
| static const int kMaxFrameBytes = 100000;
 | |
| 
 | |
| // Returns the stack frame pointer from signal context, 0 if unknown.
 | |
| // vuc is a ucontext_t *.  We use void* to avoid the use
 | |
| // of ucontext_t on non-POSIX systems.
 | |
| static uintptr_t GetFP(const void *vuc) {
 | |
| #if !defined(__linux__)
 | |
|   static_cast<void>(vuc);  // Avoid an unused argument compiler warning.
 | |
| #else
 | |
|   if (vuc != nullptr) {
 | |
|     auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
 | |
| #if defined(__i386__)
 | |
|     const auto bp = uc->uc_mcontext.gregs[REG_EBP];
 | |
|     const auto sp = uc->uc_mcontext.gregs[REG_ESP];
 | |
| #elif defined(__x86_64__)
 | |
|     const auto bp = uc->uc_mcontext.gregs[REG_RBP];
 | |
|     const auto sp = uc->uc_mcontext.gregs[REG_RSP];
 | |
| #else
 | |
|     const uintptr_t bp = 0;
 | |
|     const uintptr_t sp = 0;
 | |
| #endif
 | |
|     // Sanity-check that the base pointer is valid.  It should be as long as
 | |
|     // SHRINK_WRAP_FRAME_POINTER is not set, but it's possible that some code in
 | |
|     // the process is compiled with --copt=-fomit-frame-pointer or
 | |
|     // --copt=-momit-leaf-frame-pointer.
 | |
|     //
 | |
|     // TODO(bcmills): -momit-leaf-frame-pointer is currently the default
 | |
|     // behavior when building with clang.  Talk to the C++ toolchain team about
 | |
|     // fixing that.
 | |
|     if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp;
 | |
| 
 | |
|     // If bp isn't a plausible frame pointer, return the stack pointer instead.
 | |
|     // If we're lucky, it points to the start of a stack frame; otherwise, we'll
 | |
|     // get one frame of garbage in the stack trace and fail the sanity check on
 | |
|     // the next iteration.
 | |
|     return sp;
 | |
|   }
 | |
| #endif
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Given a pointer to a stack frame, locate and return the calling
 | |
| // stackframe, or return null if no stackframe can be found. Perform sanity
 | |
| // checks (the strictness of which is controlled by the boolean parameter
 | |
| // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
 | |
| template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
 | |
| ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.
 | |
| ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.
 | |
| static void **NextStackFrame(void **old_fp, const void *uc) {
 | |
|   void **new_fp = (void **)*old_fp;
 | |
| 
 | |
| #if defined(__linux__) && defined(__i386__)
 | |
|   if (WITH_CONTEXT && uc != nullptr) {
 | |
|     // How many "push %reg" instructions are there at __kernel_vsyscall?
 | |
|     // This is constant for a given kernel and processor, so compute
 | |
|     // it only once.
 | |
|     static int num_push_instructions = -1;  // Sentinel: not computed yet.
 | |
|     // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
 | |
|     // be there.
 | |
|     static const unsigned char *kernel_rt_sigreturn_address = nullptr;
 | |
|     static const unsigned char *kernel_vsyscall_address = nullptr;
 | |
|     if (num_push_instructions == -1) {
 | |
| #ifdef ABSL_HAVE_VDSO_SUPPORT
 | |
|       absl::debugging_internal::VDSOSupport vdso;
 | |
|       if (vdso.IsPresent()) {
 | |
|         absl::debugging_internal::VDSOSupport::SymbolInfo
 | |
|             rt_sigreturn_symbol_info;
 | |
|         absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
 | |
|         if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
 | |
|                                &rt_sigreturn_symbol_info) ||
 | |
|             !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
 | |
|                                &vsyscall_symbol_info) ||
 | |
|             rt_sigreturn_symbol_info.address == nullptr ||
 | |
|             vsyscall_symbol_info.address == nullptr) {
 | |
|           // Unexpected: 32-bit VDSO is present, yet one of the expected
 | |
|           // symbols is missing or null.
 | |
|           assert(false && "VDSO is present, but doesn't have expected symbols");
 | |
|           num_push_instructions = 0;
 | |
|         } else {
 | |
|           kernel_rt_sigreturn_address =
 | |
|               reinterpret_cast<const unsigned char *>(
 | |
|                   rt_sigreturn_symbol_info.address);
 | |
|           kernel_vsyscall_address =
 | |
|               reinterpret_cast<const unsigned char *>(
 | |
|                   vsyscall_symbol_info.address);
 | |
|           num_push_instructions =
 | |
|               CountPushInstructions(kernel_vsyscall_address);
 | |
|         }
 | |
|       } else {
 | |
|         num_push_instructions = 0;
 | |
|       }
 | |
| #else  // ABSL_HAVE_VDSO_SUPPORT
 | |
|       num_push_instructions = 0;
 | |
| #endif  // ABSL_HAVE_VDSO_SUPPORT
 | |
|     }
 | |
|     if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
 | |
|         old_fp[1] == kernel_rt_sigreturn_address) {
 | |
|       const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
 | |
|       // This kernel does not use frame pointer in its VDSO code,
 | |
|       // and so %ebp is not suitable for unwinding.
 | |
|       void **const reg_ebp =
 | |
|           reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
 | |
|       const unsigned char *const reg_eip =
 | |
|           reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
 | |
|       if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
 | |
|           reg_eip - kernel_vsyscall_address < kMaxBytes) {
 | |
|         // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
 | |
|         // Restore from 'ucv' instead.
 | |
|         void **const reg_esp =
 | |
|             reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
 | |
|         // Check that alleged %esp is not null and is reasonably aligned.
 | |
|         if (reg_esp &&
 | |
|             ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
 | |
|           // Check that alleged %esp is actually readable. This is to prevent
 | |
|           // "double fault" in case we hit the first fault due to e.g. stack
 | |
|           // corruption.
 | |
|           void *const reg_esp2 = reg_esp[num_push_instructions - 1];
 | |
|           if (AddressIsReadable(reg_esp2)) {
 | |
|             // Alleged %esp is readable, use it for further unwinding.
 | |
|             new_fp = reinterpret_cast<void **>(reg_esp2);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
 | |
|   const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
 | |
| 
 | |
|   // Check that the transition from frame pointer old_fp to frame
 | |
|   // pointer new_fp isn't clearly bogus.  Skip the checks if new_fp
 | |
|   // matches the signal context, so that we don't skip out early when
 | |
|   // using an alternate signal stack.
 | |
|   //
 | |
|   // TODO(bcmills): The GetFP call should be completely unnecessary when
 | |
|   // SHRINK_WRAP_FRAME_POINTER is set (because we should be back in the thread's
 | |
|   // stack by this point), but it is empirically still needed (e.g. when the
 | |
|   // stack includes a call to abort).  unw_get_reg returns UNW_EBADREG for some
 | |
|   // frames.  Figure out why GetValidFrameAddr and/or libunwind isn't doing what
 | |
|   // it's supposed to.
 | |
|   if (STRICT_UNWINDING &&
 | |
|       (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
 | |
|     // With the stack growing downwards, older stack frame must be
 | |
|     // at a greater address that the current one.
 | |
|     if (new_fp_u <= old_fp_u) return nullptr;
 | |
|     if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr;
 | |
|   } else {
 | |
|     if (new_fp == nullptr) return nullptr;  // skip AddressIsReadable() below
 | |
|     // In the non-strict mode, allow discontiguous stack frames.
 | |
|     // (alternate-signal-stacks for example).
 | |
|     if (new_fp == old_fp) return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
 | |
| #ifdef __i386__
 | |
|   // On 32-bit machines, the stack pointer can be very close to
 | |
|   // 0xffffffff, so we explicitly check for a pointer into the
 | |
|   // last two pages in the address space
 | |
|   if (new_fp_u >= 0xffffe000) return nullptr;
 | |
| #endif
 | |
| #if !defined(_WIN32)
 | |
|   if (!STRICT_UNWINDING) {
 | |
|     // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
 | |
|     // on AMD-based machines with VDSO-enabled kernels.
 | |
|     // Make an extra sanity check to insure new_fp is readable.
 | |
|     // Note: NextStackFrame<false>() is only called while the program
 | |
|     //       is already on its last leg, so it's ok to be slow here.
 | |
| 
 | |
|     if (!AddressIsReadable(new_fp)) {
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   return new_fp;
 | |
| }
 | |
| 
 | |
| template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
 | |
| ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.
 | |
| ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.
 | |
| ABSL_ATTRIBUTE_NOINLINE
 | |
| static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
 | |
|                       const void *ucp, int *min_dropped_frames) {
 | |
|   int n = 0;
 | |
|   void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
 | |
| 
 | |
|   while (fp && n < max_depth) {
 | |
|     if (*(fp + 1) == reinterpret_cast<void *>(0)) {
 | |
|       // In 64-bit code, we often see a frame that
 | |
|       // points to itself and has a return address of 0.
 | |
|       break;
 | |
|     }
 | |
|     void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp);
 | |
|     if (skip_count > 0) {
 | |
|       skip_count--;
 | |
|     } else {
 | |
|       result[n] = *(fp + 1);
 | |
|       if (IS_STACK_FRAMES) {
 | |
|         if (next_fp > fp) {
 | |
|           sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp;
 | |
|         } else {
 | |
|           // A frame-size of 0 is used to indicate unknown frame size.
 | |
|           sizes[n] = 0;
 | |
|         }
 | |
|       }
 | |
|       n++;
 | |
|     }
 | |
|     fp = next_fp;
 | |
|   }
 | |
|   if (min_dropped_frames != nullptr) {
 | |
|     // Implementation detail: we clamp the max of frames we are willing to
 | |
|     // count, so as not to spend too much time in the loop below.
 | |
|     const int kMaxUnwind = 1000;
 | |
|     int j = 0;
 | |
|     for (; fp != nullptr && j < kMaxUnwind; j++) {
 | |
|       fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp);
 | |
|     }
 | |
|     *min_dropped_frames = j;
 | |
|   }
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace debugging_internal {
 | |
| bool StackTraceWorksForTest() {
 | |
|   return true;
 | |
| }
 | |
| }  // namespace debugging_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
 |