git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			98 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "absl/random/discrete_distribution.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace random_internal {
 | 
						|
 | 
						|
// Initializes the distribution table for Walker's Aliasing algorithm, described
 | 
						|
// in Knuth, Vol 2. as well as in https://en.wikipedia.org/wiki/Alias_method
 | 
						|
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
 | 
						|
    std::vector<double>* probabilities) {
 | 
						|
  // The empty-case should already be handled by the constructor.
 | 
						|
  assert(probabilities);
 | 
						|
  assert(!probabilities->empty());
 | 
						|
 | 
						|
  // Step 1. Normalize the input probabilities to 1.0.
 | 
						|
  double sum = std::accumulate(std::begin(*probabilities),
 | 
						|
                               std::end(*probabilities), 0.0);
 | 
						|
  if (std::fabs(sum - 1.0) > 1e-6) {
 | 
						|
    // Scale `probabilities` only when the sum is too far from 1.0.  Scaling
 | 
						|
    // unconditionally will alter the probabilities slightly.
 | 
						|
    for (double& item : *probabilities) {
 | 
						|
      item = item / sum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 2. At this point `probabilities` is set to the conditional
 | 
						|
  // probabilities of each element which sum to 1.0, to within reasonable error.
 | 
						|
  // These values are used to construct the proportional probability tables for
 | 
						|
  // the selection phases of Walker's Aliasing algorithm.
 | 
						|
  //
 | 
						|
  // To construct the table, pick an element which is under-full (i.e., an
 | 
						|
  // element for which `(*probabilities)[i] < 1.0/n`), and pair it with an
 | 
						|
  // element which is over-full (i.e., an element for which
 | 
						|
  // `(*probabilities)[i] > 1.0/n`). The smaller value can always be retired.
 | 
						|
  // The larger may still be greater than 1.0/n, or may now be less than 1.0/n,
 | 
						|
  // and put back onto the appropriate collection.
 | 
						|
  const size_t n = probabilities->size();
 | 
						|
  std::vector<std::pair<double, size_t>> q;
 | 
						|
  q.reserve(n);
 | 
						|
 | 
						|
  std::vector<size_t> over;
 | 
						|
  std::vector<size_t> under;
 | 
						|
  size_t idx = 0;
 | 
						|
  for (const double item : *probabilities) {
 | 
						|
    assert(item >= 0);
 | 
						|
    const double v = item * n;
 | 
						|
    q.emplace_back(v, 0);
 | 
						|
    if (v < 1.0) {
 | 
						|
      under.push_back(idx++);
 | 
						|
    } else {
 | 
						|
      over.push_back(idx++);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  while (!over.empty() && !under.empty()) {
 | 
						|
    auto lo = under.back();
 | 
						|
    under.pop_back();
 | 
						|
    auto hi = over.back();
 | 
						|
    over.pop_back();
 | 
						|
 | 
						|
    q[lo].second = hi;
 | 
						|
    const double r = q[hi].first - (1.0 - q[lo].first);
 | 
						|
    q[hi].first = r;
 | 
						|
    if (r < 1.0) {
 | 
						|
      under.push_back(hi);
 | 
						|
    } else {
 | 
						|
      over.push_back(hi);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Due to rounding errors, there may be un-paired elements in either
 | 
						|
  // collection; these should all be values near 1.0.  For these values, set `q`
 | 
						|
  // to 1.0 and set the alternate to the identity.
 | 
						|
  for (auto i : over) {
 | 
						|
    q[i] = {1.0, i};
 | 
						|
  }
 | 
						|
  for (auto i : under) {
 | 
						|
    q[i] = {1.0, i};
 | 
						|
  }
 | 
						|
  return q;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace random_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 |