-- 2aa4544070113a4943f93464df74759f043bab92 by CJ Johnson <johnsoncj@google.com>: Spelling fix in InlinedVector PiperOrigin-RevId: 308241764 -- 0d8a8ff71023df845c490c73811da598a42f12d9 by Todd Jackson <tjackson@google.com>: Fix CMake warnings on absl/types/CMakeLists.txt. PiperOrigin-RevId: 308123331 -- f35fbd79437ba999097b1499770103b7865078e5 by Samuel Benzaquen <sbenza@google.com>: Speed up the integral printer. PiperOrigin-RevId: 308081531 -- b1676b869ed0547e1cca23c83bb370f459bdf2cb by Samuel Benzaquen <sbenza@google.com>: Collapse the template arguments to enums earlier to reduce the number of instantiations of FormatSpecTemplate. This doesn't affect opt builds much, but reduces the bloat in non-opt builds. PiperOrigin-RevId: 308066155 -- edda0c227adad392cfff2af6ed532822c481f013 by Abseil Team <absl-team@google.com>: Minor documentation fix for `absl::Status` CTOR. PiperOrigin-RevId: 308037725 -- 8326b85569f0fdb15632b0076e38baba4c69794b by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 307914168 GitOrigin-RevId: 2aa4544070113a4943f93464df74759f043bab92 Change-Id: I553ce3838c5e35d04954f560dc75ec24033919af
		
			
				
	
	
		
			845 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			845 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2019 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // -----------------------------------------------------------------------------
 | |
| // File: inlined_vector.h
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // This header file contains the declaration and definition of an "inlined
 | |
| // vector" which behaves in an equivalent fashion to a `std::vector`, except
 | |
| // that storage for small sequences of the vector are provided inline without
 | |
| // requiring any heap allocation.
 | |
| //
 | |
| // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
 | |
| // its template parameters. Instances where `size() <= N` hold contained
 | |
| // elements in inline space. Typically `N` is very small so that sequences that
 | |
| // are expected to be short do not require allocations.
 | |
| //
 | |
| // An `absl::InlinedVector` does not usually require a specific allocator. If
 | |
| // the inlined vector grows beyond its initial constraints, it will need to
 | |
| // allocate (as any normal `std::vector` would). This is usually performed with
 | |
| // the default allocator (defined as `std::allocator<T>`). Optionally, a custom
 | |
| // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
 | |
| 
 | |
| #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
 | |
| #define ABSL_CONTAINER_INLINED_VECTOR_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <initializer_list>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #include "absl/algorithm/algorithm.h"
 | |
| #include "absl/base/internal/throw_delegate.h"
 | |
| #include "absl/base/macros.h"
 | |
| #include "absl/base/optimization.h"
 | |
| #include "absl/base/port.h"
 | |
| #include "absl/container/internal/inlined_vector.h"
 | |
| #include "absl/memory/memory.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| // -----------------------------------------------------------------------------
 | |
| // InlinedVector
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // An `absl::InlinedVector` is designed to be a drop-in replacement for
 | |
| // `std::vector` for use cases where the vector's size is sufficiently small
 | |
| // that it can be inlined. If the inlined vector does grow beyond its estimated
 | |
| // capacity, it will trigger an initial allocation on the heap, and will behave
 | |
| // as a `std:vector`. The API of the `absl::InlinedVector` within this file is
 | |
| // designed to cover the same API footprint as covered by `std::vector`.
 | |
| template <typename T, size_t N, typename A = std::allocator<T>>
 | |
| class InlinedVector {
 | |
|   static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
 | |
| 
 | |
|   using Storage = inlined_vector_internal::Storage<T, N, A>;
 | |
| 
 | |
|   using AllocatorTraits = typename Storage::AllocatorTraits;
 | |
|   using RValueReference = typename Storage::RValueReference;
 | |
|   using MoveIterator = typename Storage::MoveIterator;
 | |
|   using IsMemcpyOk = typename Storage::IsMemcpyOk;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using IteratorValueAdapter =
 | |
|       typename Storage::template IteratorValueAdapter<Iterator>;
 | |
|   using CopyValueAdapter = typename Storage::CopyValueAdapter;
 | |
|   using DefaultValueAdapter = typename Storage::DefaultValueAdapter;
 | |
| 
 | |
|   template <typename Iterator>
 | |
|   using EnableIfAtLeastForwardIterator = absl::enable_if_t<
 | |
|       inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
 | |
|   template <typename Iterator>
 | |
|   using DisableIfAtLeastForwardIterator = absl::enable_if_t<
 | |
|       !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
 | |
| 
 | |
|  public:
 | |
|   using allocator_type = typename Storage::allocator_type;
 | |
|   using value_type = typename Storage::value_type;
 | |
|   using pointer = typename Storage::pointer;
 | |
|   using const_pointer = typename Storage::const_pointer;
 | |
|   using size_type = typename Storage::size_type;
 | |
|   using difference_type = typename Storage::difference_type;
 | |
|   using reference = typename Storage::reference;
 | |
|   using const_reference = typename Storage::const_reference;
 | |
|   using iterator = typename Storage::iterator;
 | |
|   using const_iterator = typename Storage::const_iterator;
 | |
|   using reverse_iterator = typename Storage::reverse_iterator;
 | |
|   using const_reverse_iterator = typename Storage::const_reverse_iterator;
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // InlinedVector Constructors and Destructor
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // Creates an empty inlined vector with a value-initialized allocator.
 | |
|   InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
 | |
| 
 | |
|   // Creates an empty inlined vector with a copy of `alloc`.
 | |
|   explicit InlinedVector(const allocator_type& alloc) noexcept
 | |
|       : storage_(alloc) {}
 | |
| 
 | |
|   // Creates an inlined vector with `n` copies of `value_type()`.
 | |
|   explicit InlinedVector(size_type n,
 | |
|                          const allocator_type& alloc = allocator_type())
 | |
|       : storage_(alloc) {
 | |
|     storage_.Initialize(DefaultValueAdapter(), n);
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector with `n` copies of `v`.
 | |
|   InlinedVector(size_type n, const_reference v,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : storage_(alloc) {
 | |
|     storage_.Initialize(CopyValueAdapter(v), n);
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector with copies of the elements of `list`.
 | |
|   InlinedVector(std::initializer_list<value_type> list,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : InlinedVector(list.begin(), list.end(), alloc) {}
 | |
| 
 | |
|   // Creates an inlined vector with elements constructed from the provided
 | |
|   // forward iterator range [`first`, `last`).
 | |
|   //
 | |
|   // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
 | |
|   // this constructor with two integral arguments and a call to the above
 | |
|   // `InlinedVector(size_type, const_reference)` constructor.
 | |
|   template <typename ForwardIterator,
 | |
|             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
 | |
|   InlinedVector(ForwardIterator first, ForwardIterator last,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : storage_(alloc) {
 | |
|     storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),
 | |
|                         std::distance(first, last));
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector with elements constructed from the provided input
 | |
|   // iterator range [`first`, `last`).
 | |
|   template <typename InputIterator,
 | |
|             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
 | |
|   InlinedVector(InputIterator first, InputIterator last,
 | |
|                 const allocator_type& alloc = allocator_type())
 | |
|       : storage_(alloc) {
 | |
|     std::copy(first, last, std::back_inserter(*this));
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector by copying the contents of `other` using
 | |
|   // `other`'s allocator.
 | |
|   InlinedVector(const InlinedVector& other)
 | |
|       : InlinedVector(other, *other.storage_.GetAllocPtr()) {}
 | |
| 
 | |
|   // Creates an inlined vector by copying the contents of `other` using `alloc`.
 | |
|   InlinedVector(const InlinedVector& other, const allocator_type& alloc)
 | |
|       : storage_(alloc) {
 | |
|     if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
 | |
|       storage_.MemcpyFrom(other.storage_);
 | |
|     } else {
 | |
|       storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),
 | |
|                           other.size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector by moving in the contents of `other` without
 | |
|   // allocating. If `other` contains allocated memory, the newly-created inlined
 | |
|   // vector will take ownership of that memory. However, if `other` does not
 | |
|   // contain allocated memory, the newly-created inlined vector will perform
 | |
|   // element-wise move construction of the contents of `other`.
 | |
|   //
 | |
|   // NOTE: since no allocation is performed for the inlined vector in either
 | |
|   // case, the `noexcept(...)` specification depends on whether moving the
 | |
|   // underlying objects can throw. It is assumed assumed that...
 | |
|   //  a) move constructors should only throw due to allocation failure.
 | |
|   //  b) if `value_type`'s move constructor allocates, it uses the same
 | |
|   //     allocation function as the inlined vector's allocator.
 | |
|   // Thus, the move constructor is non-throwing if the allocator is non-throwing
 | |
|   // or `value_type`'s move constructor is specified as `noexcept`.
 | |
|   InlinedVector(InlinedVector&& other) noexcept(
 | |
|       absl::allocator_is_nothrow<allocator_type>::value ||
 | |
|       std::is_nothrow_move_constructible<value_type>::value)
 | |
|       : storage_(*other.storage_.GetAllocPtr()) {
 | |
|     if (IsMemcpyOk::value) {
 | |
|       storage_.MemcpyFrom(other.storage_);
 | |
| 
 | |
|       other.storage_.SetInlinedSize(0);
 | |
|     } else if (other.storage_.GetIsAllocated()) {
 | |
|       storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
 | |
|                                 other.storage_.GetAllocatedCapacity());
 | |
|       storage_.SetAllocatedSize(other.storage_.GetSize());
 | |
| 
 | |
|       other.storage_.SetInlinedSize(0);
 | |
|     } else {
 | |
|       IteratorValueAdapter<MoveIterator> other_values(
 | |
|           MoveIterator(other.storage_.GetInlinedData()));
 | |
| 
 | |
|       inlined_vector_internal::ConstructElements(
 | |
|           storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
 | |
|           other.storage_.GetSize());
 | |
| 
 | |
|       storage_.SetInlinedSize(other.storage_.GetSize());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Creates an inlined vector by moving in the contents of `other` with a copy
 | |
|   // of `alloc`.
 | |
|   //
 | |
|   // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
 | |
|   // contains allocated memory, this move constructor will still allocate. Since
 | |
|   // allocation is performed, this constructor can only be `noexcept` if the
 | |
|   // specified allocator is also `noexcept`.
 | |
|   InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
 | |
|       absl::allocator_is_nothrow<allocator_type>::value)
 | |
|       : storage_(alloc) {
 | |
|     if (IsMemcpyOk::value) {
 | |
|       storage_.MemcpyFrom(other.storage_);
 | |
| 
 | |
|       other.storage_.SetInlinedSize(0);
 | |
|     } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
 | |
|                other.storage_.GetIsAllocated()) {
 | |
|       storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
 | |
|                                 other.storage_.GetAllocatedCapacity());
 | |
|       storage_.SetAllocatedSize(other.storage_.GetSize());
 | |
| 
 | |
|       other.storage_.SetInlinedSize(0);
 | |
|     } else {
 | |
|       storage_.Initialize(
 | |
|           IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),
 | |
|           other.size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ~InlinedVector() {}
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // InlinedVector Member Accessors
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // `InlinedVector::empty()`
 | |
|   //
 | |
|   // Returns whether the inlined vector contains no elements.
 | |
|   bool empty() const noexcept { return !size(); }
 | |
| 
 | |
|   // `InlinedVector::size()`
 | |
|   //
 | |
|   // Returns the number of elements in the inlined vector.
 | |
|   size_type size() const noexcept { return storage_.GetSize(); }
 | |
| 
 | |
|   // `InlinedVector::max_size()`
 | |
|   //
 | |
|   // Returns the maximum number of elements the inlined vector can hold.
 | |
|   size_type max_size() const noexcept {
 | |
|     // One bit of the size storage is used to indicate whether the inlined
 | |
|     // vector contains allocated memory. As a result, the maximum size that the
 | |
|     // inlined vector can express is half of the max for `size_type`.
 | |
|     return (std::numeric_limits<size_type>::max)() / 2;
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::capacity()`
 | |
|   //
 | |
|   // Returns the number of elements that could be stored in the inlined vector
 | |
|   // without requiring a reallocation.
 | |
|   //
 | |
|   // NOTE: for most inlined vectors, `capacity()` should be equal to the
 | |
|   // template parameter `N`. For inlined vectors which exceed this capacity,
 | |
|   // they will no longer be inlined and `capacity()` will equal the capactity of
 | |
|   // the allocated memory.
 | |
|   size_type capacity() const noexcept {
 | |
|     return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
 | |
|                                      : storage_.GetInlinedCapacity();
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::data()`
 | |
|   //
 | |
|   // Returns a `pointer` to the elements of the inlined vector. This pointer
 | |
|   // can be used to access and modify the contained elements.
 | |
|   //
 | |
|   // NOTE: only elements within [`data()`, `data() + size()`) are valid.
 | |
|   pointer data() noexcept {
 | |
|     return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
 | |
|                                      : storage_.GetInlinedData();
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
 | |
|   // elements of the inlined vector. This pointer can be used to access but not
 | |
|   // modify the contained elements.
 | |
|   //
 | |
|   // NOTE: only elements within [`data()`, `data() + size()`) are valid.
 | |
|   const_pointer data() const noexcept {
 | |
|     return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
 | |
|                                      : storage_.GetInlinedData();
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::operator[](...)`
 | |
|   //
 | |
|   // Returns a `reference` to the `i`th element of the inlined vector.
 | |
|   reference operator[](size_type i) {
 | |
|     ABSL_HARDENING_ASSERT(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::operator[](...)` that returns a
 | |
|   // `const_reference` to the `i`th element of the inlined vector.
 | |
|   const_reference operator[](size_type i) const {
 | |
|     ABSL_HARDENING_ASSERT(i < size());
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::at(...)`
 | |
|   //
 | |
|   // Returns a `reference` to the `i`th element of the inlined vector.
 | |
|   //
 | |
|   // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
 | |
|   // in both debug and non-debug builds, `std::out_of_range` will be thrown.
 | |
|   reference at(size_type i) {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange(
 | |
|           "`InlinedVector::at(size_type)` failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
 | |
|   // the `i`th element of the inlined vector.
 | |
|   //
 | |
|   // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
 | |
|   // in both debug and non-debug builds, `std::out_of_range` will be thrown.
 | |
|   const_reference at(size_type i) const {
 | |
|     if (ABSL_PREDICT_FALSE(i >= size())) {
 | |
|       base_internal::ThrowStdOutOfRange(
 | |
|           "`InlinedVector::at(size_type) const` failed bounds check");
 | |
|     }
 | |
|     return data()[i];
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::front()`
 | |
|   //
 | |
|   // Returns a `reference` to the first element of the inlined vector.
 | |
|   reference front() {
 | |
|     ABSL_HARDENING_ASSERT(!empty());
 | |
|     return data()[0];
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::front()` that returns a `const_reference` to
 | |
|   // the first element of the inlined vector.
 | |
|   const_reference front() const {
 | |
|     ABSL_HARDENING_ASSERT(!empty());
 | |
|     return data()[0];
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::back()`
 | |
|   //
 | |
|   // Returns a `reference` to the last element of the inlined vector.
 | |
|   reference back() {
 | |
|     ABSL_HARDENING_ASSERT(!empty());
 | |
|     return data()[size() - 1];
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::back()` that returns a `const_reference` to the
 | |
|   // last element of the inlined vector.
 | |
|   const_reference back() const {
 | |
|     ABSL_HARDENING_ASSERT(!empty());
 | |
|     return data()[size() - 1];
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::begin()`
 | |
|   //
 | |
|   // Returns an `iterator` to the beginning of the inlined vector.
 | |
|   iterator begin() noexcept { return data(); }
 | |
| 
 | |
|   // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
 | |
|   // the beginning of the inlined vector.
 | |
|   const_iterator begin() const noexcept { return data(); }
 | |
| 
 | |
|   // `InlinedVector::end()`
 | |
|   //
 | |
|   // Returns an `iterator` to the end of the inlined vector.
 | |
|   iterator end() noexcept { return data() + size(); }
 | |
| 
 | |
|   // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
 | |
|   // end of the inlined vector.
 | |
|   const_iterator end() const noexcept { return data() + size(); }
 | |
| 
 | |
|   // `InlinedVector::cbegin()`
 | |
|   //
 | |
|   // Returns a `const_iterator` to the beginning of the inlined vector.
 | |
|   const_iterator cbegin() const noexcept { return begin(); }
 | |
| 
 | |
|   // `InlinedVector::cend()`
 | |
|   //
 | |
|   // Returns a `const_iterator` to the end of the inlined vector.
 | |
|   const_iterator cend() const noexcept { return end(); }
 | |
| 
 | |
|   // `InlinedVector::rbegin()`
 | |
|   //
 | |
|   // Returns a `reverse_iterator` from the end of the inlined vector.
 | |
|   reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
 | |
| 
 | |
|   // Overload of `InlinedVector::rbegin()` that returns a
 | |
|   // `const_reverse_iterator` from the end of the inlined vector.
 | |
|   const_reverse_iterator rbegin() const noexcept {
 | |
|     return const_reverse_iterator(end());
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::rend()`
 | |
|   //
 | |
|   // Returns a `reverse_iterator` from the beginning of the inlined vector.
 | |
|   reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
 | |
| 
 | |
|   // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
 | |
|   // from the beginning of the inlined vector.
 | |
|   const_reverse_iterator rend() const noexcept {
 | |
|     return const_reverse_iterator(begin());
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::crbegin()`
 | |
|   //
 | |
|   // Returns a `const_reverse_iterator` from the end of the inlined vector.
 | |
|   const_reverse_iterator crbegin() const noexcept { return rbegin(); }
 | |
| 
 | |
|   // `InlinedVector::crend()`
 | |
|   //
 | |
|   // Returns a `const_reverse_iterator` from the beginning of the inlined
 | |
|   // vector.
 | |
|   const_reverse_iterator crend() const noexcept { return rend(); }
 | |
| 
 | |
|   // `InlinedVector::get_allocator()`
 | |
|   //
 | |
|   // Returns a copy of the inlined vector's allocator.
 | |
|   allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
 | |
| 
 | |
|   // ---------------------------------------------------------------------------
 | |
|   // InlinedVector Member Mutators
 | |
|   // ---------------------------------------------------------------------------
 | |
| 
 | |
|   // `InlinedVector::operator=(...)`
 | |
|   //
 | |
|   // Replaces the elements of the inlined vector with copies of the elements of
 | |
|   // `list`.
 | |
|   InlinedVector& operator=(std::initializer_list<value_type> list) {
 | |
|     assign(list.begin(), list.end());
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::operator=(...)` that replaces the elements of
 | |
|   // the inlined vector with copies of the elements of `other`.
 | |
|   InlinedVector& operator=(const InlinedVector& other) {
 | |
|     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
 | |
|       const_pointer other_data = other.data();
 | |
|       assign(other_data, other_data + other.size());
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::operator=(...)` that moves the elements of
 | |
|   // `other` into the inlined vector.
 | |
|   //
 | |
|   // NOTE: as a result of calling this overload, `other` is left in a valid but
 | |
|   // unspecified state.
 | |
|   InlinedVector& operator=(InlinedVector&& other) {
 | |
|     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
 | |
|       if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
 | |
|         inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
 | |
|                                                  size());
 | |
|         storage_.DeallocateIfAllocated();
 | |
|         storage_.MemcpyFrom(other.storage_);
 | |
| 
 | |
|         other.storage_.SetInlinedSize(0);
 | |
|       } else {
 | |
|         storage_.Assign(IteratorValueAdapter<MoveIterator>(
 | |
|                             MoveIterator(other.storage_.GetInlinedData())),
 | |
|                         other.size());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::assign(...)`
 | |
|   //
 | |
|   // Replaces the contents of the inlined vector with `n` copies of `v`.
 | |
|   void assign(size_type n, const_reference v) {
 | |
|     storage_.Assign(CopyValueAdapter(v), n);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::assign(...)` that replaces the contents of the
 | |
|   // inlined vector with copies of the elements of `list`.
 | |
|   void assign(std::initializer_list<value_type> list) {
 | |
|     assign(list.begin(), list.end());
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::assign(...)` to replace the contents of the
 | |
|   // inlined vector with the range [`first`, `last`).
 | |
|   //
 | |
|   // NOTE: this overload is for iterators that are "forward" category or better.
 | |
|   template <typename ForwardIterator,
 | |
|             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
 | |
|   void assign(ForwardIterator first, ForwardIterator last) {
 | |
|     storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),
 | |
|                     std::distance(first, last));
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::assign(...)` to replace the contents of the
 | |
|   // inlined vector with the range [`first`, `last`).
 | |
|   //
 | |
|   // NOTE: this overload is for iterators that are "input" category.
 | |
|   template <typename InputIterator,
 | |
|             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
 | |
|   void assign(InputIterator first, InputIterator last) {
 | |
|     size_type i = 0;
 | |
|     for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
 | |
|       data()[i] = *first;
 | |
|     }
 | |
| 
 | |
|     erase(data() + i, data() + size());
 | |
|     std::copy(first, last, std::back_inserter(*this));
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::resize(...)`
 | |
|   //
 | |
|   // Resizes the inlined vector to contain `n` elements.
 | |
|   //
 | |
|   // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n`
 | |
|   // is larger than `size()`, new elements are value-initialized.
 | |
|   void resize(size_type n) {
 | |
|     ABSL_HARDENING_ASSERT(n <= max_size());
 | |
|     storage_.Resize(DefaultValueAdapter(), n);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
 | |
|   // contain `n` elements.
 | |
|   //
 | |
|   // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
 | |
|   // is larger than `size()`, new elements are copied-constructed from `v`.
 | |
|   void resize(size_type n, const_reference v) {
 | |
|     ABSL_HARDENING_ASSERT(n <= max_size());
 | |
|     storage_.Resize(CopyValueAdapter(v), n);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::insert(...)`
 | |
|   //
 | |
|   // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
 | |
|   // inserted element.
 | |
|   iterator insert(const_iterator pos, const_reference v) {
 | |
|     return emplace(pos, v);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
 | |
|   // move semantics, returning an `iterator` to the newly inserted element.
 | |
|   iterator insert(const_iterator pos, RValueReference v) {
 | |
|     return emplace(pos, std::move(v));
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
 | |
|   // of `v` starting at `pos`, returning an `iterator` pointing to the first of
 | |
|   // the newly inserted elements.
 | |
|   iterator insert(const_iterator pos, size_type n, const_reference v) {
 | |
|     ABSL_HARDENING_ASSERT(pos >= begin());
 | |
|     ABSL_HARDENING_ASSERT(pos <= end());
 | |
| 
 | |
|     if (ABSL_PREDICT_TRUE(n != 0)) {
 | |
|       value_type dealias = v;
 | |
|       return storage_.Insert(pos, CopyValueAdapter(dealias), n);
 | |
|     } else {
 | |
|       return const_cast<iterator>(pos);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert(...)` that inserts copies of the
 | |
|   // elements of `list` starting at `pos`, returning an `iterator` pointing to
 | |
|   // the first of the newly inserted elements.
 | |
|   iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
 | |
|     return insert(pos, list.begin(), list.end());
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
 | |
|   // `last`) starting at `pos`, returning an `iterator` pointing to the first
 | |
|   // of the newly inserted elements.
 | |
|   //
 | |
|   // NOTE: this overload is for iterators that are "forward" category or better.
 | |
|   template <typename ForwardIterator,
 | |
|             EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
 | |
|   iterator insert(const_iterator pos, ForwardIterator first,
 | |
|                   ForwardIterator last) {
 | |
|     ABSL_HARDENING_ASSERT(pos >= begin());
 | |
|     ABSL_HARDENING_ASSERT(pos <= end());
 | |
| 
 | |
|     if (ABSL_PREDICT_TRUE(first != last)) {
 | |
|       return storage_.Insert(pos, IteratorValueAdapter<ForwardIterator>(first),
 | |
|                              std::distance(first, last));
 | |
|     } else {
 | |
|       return const_cast<iterator>(pos);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
 | |
|   // `last`) starting at `pos`, returning an `iterator` pointing to the first
 | |
|   // of the newly inserted elements.
 | |
|   //
 | |
|   // NOTE: this overload is for iterators that are "input" category.
 | |
|   template <typename InputIterator,
 | |
|             DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
 | |
|   iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
 | |
|     ABSL_HARDENING_ASSERT(pos >= begin());
 | |
|     ABSL_HARDENING_ASSERT(pos <= end());
 | |
| 
 | |
|     size_type index = std::distance(cbegin(), pos);
 | |
|     for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
 | |
|       insert(data() + i, *first);
 | |
|     }
 | |
| 
 | |
|     return iterator(data() + index);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::emplace(...)`
 | |
|   //
 | |
|   // Constructs and inserts an element using `args...` in the inlined vector at
 | |
|   // `pos`, returning an `iterator` pointing to the newly emplaced element.
 | |
|   template <typename... Args>
 | |
|   iterator emplace(const_iterator pos, Args&&... args) {
 | |
|     ABSL_HARDENING_ASSERT(pos >= begin());
 | |
|     ABSL_HARDENING_ASSERT(pos <= end());
 | |
| 
 | |
|     value_type dealias(std::forward<Args>(args)...);
 | |
|     return storage_.Insert(pos,
 | |
|                            IteratorValueAdapter<MoveIterator>(
 | |
|                                MoveIterator(std::addressof(dealias))),
 | |
|                            1);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::emplace_back(...)`
 | |
|   //
 | |
|   // Constructs and inserts an element using `args...` in the inlined vector at
 | |
|   // `end()`, returning a `reference` to the newly emplaced element.
 | |
|   template <typename... Args>
 | |
|   reference emplace_back(Args&&... args) {
 | |
|     return storage_.EmplaceBack(std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::push_back(...)`
 | |
|   //
 | |
|   // Inserts a copy of `v` in the inlined vector at `end()`.
 | |
|   void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
 | |
| 
 | |
|   // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
 | |
|   // using move semantics.
 | |
|   void push_back(RValueReference v) {
 | |
|     static_cast<void>(emplace_back(std::move(v)));
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::pop_back()`
 | |
|   //
 | |
|   // Destroys the element at `back()`, reducing the size by `1`.
 | |
|   void pop_back() noexcept {
 | |
|     ABSL_HARDENING_ASSERT(!empty());
 | |
| 
 | |
|     AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));
 | |
|     storage_.SubtractSize(1);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::erase(...)`
 | |
|   //
 | |
|   // Erases the element at `pos`, returning an `iterator` pointing to where the
 | |
|   // erased element was located.
 | |
|   //
 | |
|   // NOTE: may return `end()`, which is not dereferencable.
 | |
|   iterator erase(const_iterator pos) {
 | |
|     ABSL_HARDENING_ASSERT(pos >= begin());
 | |
|     ABSL_HARDENING_ASSERT(pos < end());
 | |
| 
 | |
|     return storage_.Erase(pos, pos + 1);
 | |
|   }
 | |
| 
 | |
|   // Overload of `InlinedVector::erase(...)` that erases every element in the
 | |
|   // range [`from`, `to`), returning an `iterator` pointing to where the first
 | |
|   // erased element was located.
 | |
|   //
 | |
|   // NOTE: may return `end()`, which is not dereferencable.
 | |
|   iterator erase(const_iterator from, const_iterator to) {
 | |
|     ABSL_HARDENING_ASSERT(from >= begin());
 | |
|     ABSL_HARDENING_ASSERT(from <= to);
 | |
|     ABSL_HARDENING_ASSERT(to <= end());
 | |
| 
 | |
|     if (ABSL_PREDICT_TRUE(from != to)) {
 | |
|       return storage_.Erase(from, to);
 | |
|     } else {
 | |
|       return const_cast<iterator>(from);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::clear()`
 | |
|   //
 | |
|   // Destroys all elements in the inlined vector, setting the size to `0` and
 | |
|   // deallocating any held memory.
 | |
|   void clear() noexcept {
 | |
|     inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
 | |
|                                              size());
 | |
|     storage_.DeallocateIfAllocated();
 | |
| 
 | |
|     storage_.SetInlinedSize(0);
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::reserve(...)`
 | |
|   //
 | |
|   // Ensures that there is enough room for at least `n` elements.
 | |
|   void reserve(size_type n) { storage_.Reserve(n); }
 | |
| 
 | |
|   // `InlinedVector::shrink_to_fit()`
 | |
|   //
 | |
|   // Reduces memory usage by freeing unused memory. After being called, calls to
 | |
|   // `capacity()` will be equal to `max(N, size())`.
 | |
|   //
 | |
|   // If `size() <= N` and the inlined vector contains allocated memory, the
 | |
|   // elements will all be moved to the inlined space and the allocated memory
 | |
|   // will be deallocated.
 | |
|   //
 | |
|   // If `size() > N` and `size() < capacity()`, the elements will be moved to a
 | |
|   // smaller allocation.
 | |
|   void shrink_to_fit() {
 | |
|     if (storage_.GetIsAllocated()) {
 | |
|       storage_.ShrinkToFit();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // `InlinedVector::swap(...)`
 | |
|   //
 | |
|   // Swaps the contents of the inlined vector with `other`.
 | |
|   void swap(InlinedVector& other) {
 | |
|     if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
 | |
|       storage_.Swap(std::addressof(other.storage_));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename H, typename TheT, size_t TheN, typename TheA>
 | |
|   friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
 | |
| 
 | |
|   Storage storage_;
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // InlinedVector Non-Member Functions
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // `swap(...)`
 | |
| //
 | |
| // Swaps the contents of two inlined vectors.
 | |
| template <typename T, size_t N, typename A>
 | |
| void swap(absl::InlinedVector<T, N, A>& a,
 | |
|           absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
 | |
|   a.swap(b);
 | |
| }
 | |
| 
 | |
| // `operator==(...)`
 | |
| //
 | |
| // Tests for value-equality of two inlined vectors.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator==(const absl::InlinedVector<T, N, A>& a,
 | |
|                 const absl::InlinedVector<T, N, A>& b) {
 | |
|   auto a_data = a.data();
 | |
|   auto b_data = b.data();
 | |
|   return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
 | |
| }
 | |
| 
 | |
| // `operator!=(...)`
 | |
| //
 | |
| // Tests for value-inequality of two inlined vectors.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator!=(const absl::InlinedVector<T, N, A>& a,
 | |
|                 const absl::InlinedVector<T, N, A>& b) {
 | |
|   return !(a == b);
 | |
| }
 | |
| 
 | |
| // `operator<(...)`
 | |
| //
 | |
| // Tests whether the value of an inlined vector is less than the value of
 | |
| // another inlined vector using a lexicographical comparison algorithm.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator<(const absl::InlinedVector<T, N, A>& a,
 | |
|                const absl::InlinedVector<T, N, A>& b) {
 | |
|   auto a_data = a.data();
 | |
|   auto b_data = b.data();
 | |
|   return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
 | |
|                                       b_data + b.size());
 | |
| }
 | |
| 
 | |
| // `operator>(...)`
 | |
| //
 | |
| // Tests whether the value of an inlined vector is greater than the value of
 | |
| // another inlined vector using a lexicographical comparison algorithm.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator>(const absl::InlinedVector<T, N, A>& a,
 | |
|                const absl::InlinedVector<T, N, A>& b) {
 | |
|   return b < a;
 | |
| }
 | |
| 
 | |
| // `operator<=(...)`
 | |
| //
 | |
| // Tests whether the value of an inlined vector is less than or equal to the
 | |
| // value of another inlined vector using a lexicographical comparison algorithm.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator<=(const absl::InlinedVector<T, N, A>& a,
 | |
|                 const absl::InlinedVector<T, N, A>& b) {
 | |
|   return !(b < a);
 | |
| }
 | |
| 
 | |
| // `operator>=(...)`
 | |
| //
 | |
| // Tests whether the value of an inlined vector is greater than or equal to the
 | |
| // value of another inlined vector using a lexicographical comparison algorithm.
 | |
| template <typename T, size_t N, typename A>
 | |
| bool operator>=(const absl::InlinedVector<T, N, A>& a,
 | |
|                 const absl::InlinedVector<T, N, A>& b) {
 | |
|   return !(a < b);
 | |
| }
 | |
| 
 | |
| // `AbslHashValue(...)`
 | |
| //
 | |
| // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
 | |
| // call this directly.
 | |
| template <typename H, typename T, size_t N, typename A>
 | |
| H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
 | |
|   auto size = a.size();
 | |
|   return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
 | |
| }
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_CONTAINER_INLINED_VECTOR_H_
 |