-- ea0cfebeb69b25bec343652bbe1a203f5476c51a by Mark Barolak <mbar@google.com>: Change "std::string" to "string" in places where a "std::" qualification was incorrectly inserted by automation. PiperOrigin-RevId: 300108520 GitOrigin-RevId: ea0cfebeb69b25bec343652bbe1a203f5476c51a Change-Id: Ie3621e63a6ebad67b9fe56a3ebe33e1d50dac602
		
			
				
	
	
		
			213 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/bernoulli_distribution.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstddef>
 | |
| #include <random>
 | |
| #include <sstream>
 | |
| #include <utility>
 | |
| 
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/random/internal/sequence_urbg.h"
 | |
| #include "absl/random/random.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> {
 | |
| };
 | |
| 
 | |
| TEST_P(BernoulliTest, Serialize) {
 | |
|   const double d = GetParam().first;
 | |
|   absl::bernoulli_distribution before(d);
 | |
| 
 | |
|   {
 | |
|     absl::bernoulli_distribution via_param{
 | |
|         absl::bernoulli_distribution::param_type(d)};
 | |
|     EXPECT_EQ(via_param, before);
 | |
|   }
 | |
| 
 | |
|   std::stringstream ss;
 | |
|   ss << before;
 | |
|   absl::bernoulli_distribution after(0.6789);
 | |
| 
 | |
|   EXPECT_NE(before.p(), after.p());
 | |
|   EXPECT_NE(before.param(), after.param());
 | |
|   EXPECT_NE(before, after);
 | |
| 
 | |
|   ss >> after;
 | |
| 
 | |
|   EXPECT_EQ(before.p(), after.p());
 | |
|   EXPECT_EQ(before.param(), after.param());
 | |
|   EXPECT_EQ(before, after);
 | |
| }
 | |
| 
 | |
| TEST_P(BernoulliTest, Accuracy) {
 | |
|   // Sadly, the claim to fame for this implementation is precise accuracy, which
 | |
|   // is very, very hard to measure, the improvements come as trials approach the
 | |
|   // limit of double accuracy; thus the outcome differs from the
 | |
|   // std::bernoulli_distribution with a probability of approximately 1 in 2^-53.
 | |
|   const std::pair<double, size_t> para = GetParam();
 | |
|   size_t trials = para.second;
 | |
|   double p = para.first;
 | |
| 
 | |
|   absl::InsecureBitGen rng;
 | |
| 
 | |
|   size_t yes = 0;
 | |
|   absl::bernoulli_distribution dist(p);
 | |
|   for (size_t i = 0; i < trials; ++i) {
 | |
|     if (dist(rng)) yes++;
 | |
|   }
 | |
| 
 | |
|   // Compute the distribution parameters for a binomial test, using a normal
 | |
|   // approximation for the confidence interval, as there are a sufficiently
 | |
|   // large number of trials that the central limit theorem applies.
 | |
|   const double stddev_p = std::sqrt((p * (1.0 - p)) / trials);
 | |
|   const double expected = trials * p;
 | |
|   const double stddev = trials * stddev_p;
 | |
| 
 | |
|   // 5 sigma, approved by Richard Feynman
 | |
|   EXPECT_NEAR(yes, expected, 5 * stddev)
 | |
|       << "@" << p << ", "
 | |
|       << std::abs(static_cast<double>(yes) - expected) / stddev << " stddev";
 | |
| }
 | |
| 
 | |
| // There must be many more trials to make the mean approximately normal for `p`
 | |
| // closes to 0 or 1.
 | |
| INSTANTIATE_TEST_SUITE_P(
 | |
|     All, BernoulliTest,
 | |
|     ::testing::Values(
 | |
|         // Typical values.
 | |
|         std::make_pair(0, 30000), std::make_pair(1e-3, 30000000),
 | |
|         std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000),
 | |
|         std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000),
 | |
|         std::make_pair(1, 30000),
 | |
|         // Boundary cases.
 | |
|         std::make_pair(std::nextafter(1.0, 0.0), 1),  // ~1 - epsilon
 | |
|         std::make_pair(std::numeric_limits<double>::epsilon(), 1),
 | |
|         std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
 | |
|                                       1.0),  // min + epsilon
 | |
|                        1),
 | |
|         std::make_pair(std::numeric_limits<double>::min(),  // smallest normal
 | |
|                        1),
 | |
|         std::make_pair(
 | |
|             std::numeric_limits<double>::denorm_min(),  // smallest denorm
 | |
|             1),
 | |
|         std::make_pair(std::numeric_limits<double>::min() / 2, 1),  // denorm
 | |
|         std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
 | |
|                                       0.0),  // denorm_max
 | |
|                        1)));
 | |
| 
 | |
| // NOTE: absl::bernoulli_distribution is not guaranteed to be stable.
 | |
| TEST(BernoulliTest, StabilityTest) {
 | |
|   // absl::bernoulli_distribution stability relies on FastUniformBits and
 | |
|   // integer arithmetic.
 | |
|   absl::random_internal::sequence_urbg urbg({
 | |
|       0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
 | |
|       0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
 | |
|       0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
 | |
|       0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
 | |
|       0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
 | |
|       0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
 | |
|       0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
 | |
|       0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
 | |
|       0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
 | |
|       0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull,
 | |
|       0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull,
 | |
|   });
 | |
| 
 | |
|   // Generate a string of '0' and '1' for the distribution output.
 | |
|   auto generate = [&urbg](absl::bernoulli_distribution& dist) {
 | |
|     std::string output;
 | |
|     output.reserve(36);
 | |
|     urbg.reset();
 | |
|     for (int i = 0; i < 35; i++) {
 | |
|       output.append(dist(urbg) ? "1" : "0");
 | |
|     }
 | |
|     return output;
 | |
|   };
 | |
| 
 | |
|   const double kP = 0.0331289862362;
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(kP);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(35, urbg.invocations());
 | |
|     EXPECT_EQ(v, "00000000000010000000000010000000000") << dist;
 | |
|   }
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(kP * 10.0);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(35, urbg.invocations());
 | |
|     EXPECT_EQ(v, "00000100010010010010000011000011010") << dist;
 | |
|   }
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(kP * 20.0);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(35, urbg.invocations());
 | |
|     EXPECT_EQ(v, "00011110010110110011011111110111011") << dist;
 | |
|   }
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(1.0 - kP);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(35, urbg.invocations());
 | |
|     EXPECT_EQ(v, "11111111111111111111011111111111111") << dist;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(BernoulliTest, StabilityTest2) {
 | |
|   absl::random_internal::sequence_urbg urbg(
 | |
|       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
 | |
|        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
 | |
|        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
 | |
|        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
 | |
| 
 | |
|   // Generate a string of '0' and '1' for the distribution output.
 | |
|   auto generate = [&urbg](absl::bernoulli_distribution& dist) {
 | |
|     std::string output;
 | |
|     output.reserve(13);
 | |
|     urbg.reset();
 | |
|     for (int i = 0; i < 12; i++) {
 | |
|       output.append(dist(urbg) ? "1" : "0");
 | |
|     }
 | |
|     return output;
 | |
|   };
 | |
| 
 | |
|   constexpr double b0 = 1.0 / 13.0 / 0.2;
 | |
|   constexpr double b1 = 2.0 / 13.0 / 0.2;
 | |
|   constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(b0);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(12, urbg.invocations());
 | |
|     EXPECT_EQ(v, "000011100101") << dist;
 | |
|   }
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(b1);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(12, urbg.invocations());
 | |
|     EXPECT_EQ(v, "001111101101") << dist;
 | |
|   }
 | |
|   {
 | |
|     absl::bernoulli_distribution dist(b3);
 | |
|     auto v = generate(dist);
 | |
|     EXPECT_EQ(12, urbg.invocations());
 | |
|     EXPECT_EQ(v, "001111101111") << dist;
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace
 |