-- 1c1d6e2404dfc6caa022b335df5acdac6da50fe1 by Derek Mauro <dmauro@google.com>: Fix the internal namespacing in unaligned_access.h PiperOrigin-RevId: 215434506 -- 17d4400aebf025a230690fc1c7a968ef8d85bbba by Eric Fiselier <ericwf@google.com>: gtest depends on the GCC extension allowing variadic macros to be passed a empty parameter pack for ..., but LLVM diagnoses this as a GNU extension. This patch suppresses the warning when building the absl tests. PiperOrigin-RevId: 215426161 -- f2c49dde23a9f445b9de963f1bbe840ebb568b30 by Eric Fiselier <ericwf@google.com>: Use EXPECT_DEATH_IF_SUPPORTED instead of EXPECT_DEATH. This avoids breaking the test when gtest doesn't support death tests. PiperOrigin-RevId: 215423849 -- cd687c1e121709603f4fc3726b534f6a9c52cc89 by Eric Fiselier <ericwf@google.com>: Disable LLVM's -Wmissing-variable-declarations in tests. GCC's configuration already disables this via -Wno-missing-declarations, this change makes LLVM do the same. The warning would otherwise flag most tests which use ABSL_FLAG. PiperOrigin-RevId: 215407429 -- d14098824c84e3a8c8f6fb920e0335fb48fe2010 by Eric Fiselier <ericwf@google.com>: Fix local variable shadowing in city hash implementation. PiperOrigin-RevId: 215407249 -- 4b5e140ba743f0d231790a26c49083abb4329e2c by Abseil Team <absl-team@google.com>: Make raw_hash_set::reserve 2X fast when reserve doesn't do any allocation. Make raw_hash_set::reserve ~1% faster when reserve does some (128~4k) allocation. PiperOrigin-RevId: 215348727 -- 461161e65e04b801480aa117af2534c594654ccf by Eric Fiselier <ericwf@google.com>: Internal change PiperOrigin-RevId: 215272283 -- 50413ae31ad3d3a177257416acd8ede47a17bff2 by Eric Fiselier <ericwf@google.com>: Internal Change PiperOrigin-RevId: 215233183 -- 477be54c43d61019a8fe4e190e340eb52737d383 by Abseil Team <absl-team@google.com>: Clarify misleading comment on ABSL_ATTRIBUTE_UNUSED PiperOrigin-RevId: 215185496 -- 2cafa2b5287507d3a946682aee9ab13af6d471c9 by Matt Kulukundis <kfm@google.com>: Add support for absl::Hash to various absl in types. PiperOrigin-RevId: 215039569 -- 082248901991aa3d29be0ea3689c7f213cf0fd83 by Derek Mauro <dmauro@google.com>: Remove an instance of HAS_GLOBAL_STRING from hash_function_defaults.h PiperOrigin-RevId: 214989094 -- b929f61907f0786a6133e3a9d7287e339c0a0acb by Derek Mauro <dmauro@google.com>: Internal import of Github #174 Fix code snippet in comment https://github.com/abseil/abseil-cpp/pull/174 PiperOrigin-RevId: 214958849 -- f2c5e829eca11c352e121f56eefbf87083305023 by Derek Mauro <dmauro@google.com>: Internal import of GitHub #173 Fix CMake build for absl::container. https://github.com/abseil/abseil-cpp/pull/173 PiperOrigin-RevId: 214957796 -- d704f860f9fddafb99e34e6c5032e49f73874e10 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 214828181 GitOrigin-RevId: 1c1d6e2404dfc6caa022b335df5acdac6da50fe1 Change-Id: I551de2b1ba0cbaf6856cd5959358cf6651179dea
		
			
				
	
	
		
			872 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/container/fixed_array.h"
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <cstring>
 | |
| #include <list>
 | |
| #include <memory>
 | |
| #include <numeric>
 | |
| #include <scoped_allocator>
 | |
| #include <stdexcept>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/internal/exception_testing.h"
 | |
| #include "absl/hash/hash_testing.h"
 | |
| #include "absl/memory/memory.h"
 | |
| 
 | |
| using ::testing::ElementsAreArray;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Helper routine to determine if a absl::FixedArray used stack allocation.
 | |
| template <typename ArrayType>
 | |
| static bool IsOnStack(const ArrayType& a) {
 | |
|   return a.size() <= ArrayType::inline_elements;
 | |
| }
 | |
| 
 | |
| class ConstructionTester {
 | |
|  public:
 | |
|   ConstructionTester()
 | |
|       : self_ptr_(this),
 | |
|         value_(0) {
 | |
|     constructions++;
 | |
|   }
 | |
|   ~ConstructionTester() {
 | |
|     assert(self_ptr_ == this);
 | |
|     self_ptr_ = nullptr;
 | |
|     destructions++;
 | |
|   }
 | |
| 
 | |
|   // These are incremented as elements are constructed and destructed so we can
 | |
|   // be sure all elements are properly cleaned up.
 | |
|   static int constructions;
 | |
|   static int destructions;
 | |
| 
 | |
|   void CheckConstructed() {
 | |
|     assert(self_ptr_ == this);
 | |
|   }
 | |
| 
 | |
|   void set(int value) { value_ = value; }
 | |
|   int get() { return value_; }
 | |
| 
 | |
|  private:
 | |
|   // self_ptr_ should always point to 'this' -- that's how we can be sure the
 | |
|   // constructor has been called.
 | |
|   ConstructionTester* self_ptr_;
 | |
|   int value_;
 | |
| };
 | |
| 
 | |
| int ConstructionTester::constructions = 0;
 | |
| int ConstructionTester::destructions = 0;
 | |
| 
 | |
| // ThreeInts will initialize its three ints to the value stored in
 | |
| // ThreeInts::counter. The constructor increments counter so that each object
 | |
| // in an array of ThreeInts will have different values.
 | |
| class ThreeInts {
 | |
|  public:
 | |
|   ThreeInts() {
 | |
|     x_ = counter;
 | |
|     y_ = counter;
 | |
|     z_ = counter;
 | |
|     ++counter;
 | |
|   }
 | |
| 
 | |
|   static int counter;
 | |
| 
 | |
|   int x_, y_, z_;
 | |
| };
 | |
| 
 | |
| int ThreeInts::counter = 0;
 | |
| 
 | |
| TEST(FixedArrayTest, CopyCtor) {
 | |
|   absl::FixedArray<int, 10> on_stack(5);
 | |
|   std::iota(on_stack.begin(), on_stack.end(), 0);
 | |
|   absl::FixedArray<int, 10> stack_copy = on_stack;
 | |
|   EXPECT_THAT(stack_copy, ElementsAreArray(on_stack));
 | |
|   EXPECT_TRUE(IsOnStack(stack_copy));
 | |
| 
 | |
|   absl::FixedArray<int, 10> allocated(15);
 | |
|   std::iota(allocated.begin(), allocated.end(), 0);
 | |
|   absl::FixedArray<int, 10> alloced_copy = allocated;
 | |
|   EXPECT_THAT(alloced_copy, ElementsAreArray(allocated));
 | |
|   EXPECT_FALSE(IsOnStack(alloced_copy));
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, MoveCtor) {
 | |
|   absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5);
 | |
|   for (int i = 0; i < 5; ++i) {
 | |
|     on_stack[i] = absl::make_unique<int>(i);
 | |
|   }
 | |
| 
 | |
|   absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack);
 | |
|   for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i);
 | |
|   EXPECT_EQ(stack_copy.size(), on_stack.size());
 | |
| 
 | |
|   absl::FixedArray<std::unique_ptr<int>, 10> allocated(15);
 | |
|   for (int i = 0; i < 15; ++i) {
 | |
|     allocated[i] = absl::make_unique<int>(i);
 | |
|   }
 | |
| 
 | |
|   absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy =
 | |
|       std::move(allocated);
 | |
|   for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i);
 | |
|   EXPECT_EQ(allocated.size(), alloced_copy.size());
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, SmallObjects) {
 | |
|   // Small object arrays
 | |
|   {
 | |
|     // Short arrays should be on the stack
 | |
|     absl::FixedArray<int> array(4);
 | |
|     EXPECT_TRUE(IsOnStack(array));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // Large arrays should be on the heap
 | |
|     absl::FixedArray<int> array(1048576);
 | |
|     EXPECT_FALSE(IsOnStack(array));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // Arrays of <= default size should be on the stack
 | |
|     absl::FixedArray<int, 100> array(100);
 | |
|     EXPECT_TRUE(IsOnStack(array));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // Arrays of > default size should be on the stack
 | |
|     absl::FixedArray<int, 100> array(101);
 | |
|     EXPECT_FALSE(IsOnStack(array));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // Arrays with different size elements should use approximately
 | |
|     // same amount of stack space
 | |
|     absl::FixedArray<int> array1(0);
 | |
|     absl::FixedArray<char> array2(0);
 | |
|     EXPECT_LE(sizeof(array1), sizeof(array2)+100);
 | |
|     EXPECT_LE(sizeof(array2), sizeof(array1)+100);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // Ensure that vectors are properly constructed inside a fixed array.
 | |
|     absl::FixedArray<std::vector<int> > array(2);
 | |
|     EXPECT_EQ(0, array[0].size());
 | |
|     EXPECT_EQ(0, array[1].size());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     // Regardless of absl::FixedArray implementation, check that a type with a
 | |
|     // low alignment requirement and a non power-of-two size is initialized
 | |
|     // correctly.
 | |
|     ThreeInts::counter = 1;
 | |
|     absl::FixedArray<ThreeInts> array(2);
 | |
|     EXPECT_EQ(1, array[0].x_);
 | |
|     EXPECT_EQ(1, array[0].y_);
 | |
|     EXPECT_EQ(1, array[0].z_);
 | |
|     EXPECT_EQ(2, array[1].x_);
 | |
|     EXPECT_EQ(2, array[1].y_);
 | |
|     EXPECT_EQ(2, array[1].z_);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, AtThrows) {
 | |
|   absl::FixedArray<int> a = {1, 2, 3};
 | |
|   EXPECT_EQ(a.at(2), 3);
 | |
|   ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range,
 | |
|                                  "failed bounds check");
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayRelationalsTest, EqualArrays) {
 | |
|   for (int i = 0; i < 10; ++i) {
 | |
|     absl::FixedArray<int, 5> a1(i);
 | |
|     std::iota(a1.begin(), a1.end(), 0);
 | |
|     absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
 | |
| 
 | |
|     EXPECT_TRUE(a1 == a2);
 | |
|     EXPECT_FALSE(a1 != a2);
 | |
|     EXPECT_TRUE(a2 == a1);
 | |
|     EXPECT_FALSE(a2 != a1);
 | |
|     EXPECT_FALSE(a1 < a2);
 | |
|     EXPECT_FALSE(a1 > a2);
 | |
|     EXPECT_FALSE(a2 < a1);
 | |
|     EXPECT_FALSE(a2 > a1);
 | |
|     EXPECT_TRUE(a1 <= a2);
 | |
|     EXPECT_TRUE(a1 >= a2);
 | |
|     EXPECT_TRUE(a2 <= a1);
 | |
|     EXPECT_TRUE(a2 >= a1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayRelationalsTest, UnequalArrays) {
 | |
|   for (int i = 1; i < 10; ++i) {
 | |
|     absl::FixedArray<int, 5> a1(i);
 | |
|     std::iota(a1.begin(), a1.end(), 0);
 | |
|     absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
 | |
|     --a2[i / 2];
 | |
| 
 | |
|     EXPECT_FALSE(a1 == a2);
 | |
|     EXPECT_TRUE(a1 != a2);
 | |
|     EXPECT_FALSE(a2 == a1);
 | |
|     EXPECT_TRUE(a2 != a1);
 | |
|     EXPECT_FALSE(a1 < a2);
 | |
|     EXPECT_TRUE(a1 > a2);
 | |
|     EXPECT_TRUE(a2 < a1);
 | |
|     EXPECT_FALSE(a2 > a1);
 | |
|     EXPECT_FALSE(a1 <= a2);
 | |
|     EXPECT_TRUE(a1 >= a2);
 | |
|     EXPECT_TRUE(a2 <= a1);
 | |
|     EXPECT_FALSE(a2 >= a1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <int stack_elements>
 | |
| static void TestArray(int n) {
 | |
|   SCOPED_TRACE(n);
 | |
|   SCOPED_TRACE(stack_elements);
 | |
|   ConstructionTester::constructions = 0;
 | |
|   ConstructionTester::destructions = 0;
 | |
|   {
 | |
|     absl::FixedArray<ConstructionTester, stack_elements> array(n);
 | |
| 
 | |
|     EXPECT_THAT(array.size(), n);
 | |
|     EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n);
 | |
|     EXPECT_THAT(array.begin() + n, array.end());
 | |
| 
 | |
|     // Check that all elements were constructed
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       array[i].CheckConstructed();
 | |
|     }
 | |
|     // Check that no other elements were constructed
 | |
|     EXPECT_THAT(ConstructionTester::constructions, n);
 | |
| 
 | |
|     // Test operator[]
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       array[i].set(i);
 | |
|     }
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       EXPECT_THAT(array[i].get(), i);
 | |
|       EXPECT_THAT(array.data()[i].get(), i);
 | |
|     }
 | |
| 
 | |
|     // Test data()
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       array.data()[i].set(i + 1);
 | |
|     }
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       EXPECT_THAT(array[i].get(), i+1);
 | |
|       EXPECT_THAT(array.data()[i].get(), i+1);
 | |
|     }
 | |
|   }  // Close scope containing 'array'.
 | |
| 
 | |
|   // Check that all constructed elements were destructed.
 | |
|   EXPECT_EQ(ConstructionTester::constructions,
 | |
|             ConstructionTester::destructions);
 | |
| }
 | |
| 
 | |
| template <int elements_per_inner_array, int inline_elements>
 | |
| static void TestArrayOfArrays(int n) {
 | |
|   SCOPED_TRACE(n);
 | |
|   SCOPED_TRACE(inline_elements);
 | |
|   SCOPED_TRACE(elements_per_inner_array);
 | |
|   ConstructionTester::constructions = 0;
 | |
|   ConstructionTester::destructions = 0;
 | |
|   {
 | |
|     using InnerArray = ConstructionTester[elements_per_inner_array];
 | |
|     // Heap-allocate the FixedArray to avoid blowing the stack frame.
 | |
|     auto array_ptr =
 | |
|         absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n);
 | |
|     auto& array = *array_ptr;
 | |
| 
 | |
|     ASSERT_EQ(array.size(), n);
 | |
|     ASSERT_EQ(array.memsize(),
 | |
|              sizeof(ConstructionTester) * elements_per_inner_array * n);
 | |
|     ASSERT_EQ(array.begin() + n, array.end());
 | |
| 
 | |
|     // Check that all elements were constructed
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       for (int j = 0; j < elements_per_inner_array; j++) {
 | |
|         (array[i])[j].CheckConstructed();
 | |
|       }
 | |
|     }
 | |
|     // Check that no other elements were constructed
 | |
|     ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array);
 | |
| 
 | |
|     // Test operator[]
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       for (int j = 0; j < elements_per_inner_array; j++) {
 | |
|         (array[i])[j].set(i * elements_per_inner_array + j);
 | |
|       }
 | |
|     }
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       for (int j = 0; j < elements_per_inner_array; j++) {
 | |
|         ASSERT_EQ((array[i])[j].get(),  i * elements_per_inner_array + j);
 | |
|         ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Test data()
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       for (int j = 0; j < elements_per_inner_array; j++) {
 | |
|         (array.data()[i])[j].set((i + 1) * elements_per_inner_array + j);
 | |
|       }
 | |
|     }
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       for (int j = 0; j < elements_per_inner_array; j++) {
 | |
|         ASSERT_EQ((array[i])[j].get(),
 | |
|                   (i + 1) * elements_per_inner_array + j);
 | |
|         ASSERT_EQ((array.data()[i])[j].get(),
 | |
|                   (i + 1) * elements_per_inner_array + j);
 | |
|       }
 | |
|     }
 | |
|   }  // Close scope containing 'array'.
 | |
| 
 | |
|   // Check that all constructed elements were destructed.
 | |
|   EXPECT_EQ(ConstructionTester::constructions,
 | |
|             ConstructionTester::destructions);
 | |
| }
 | |
| 
 | |
| TEST(IteratorConstructorTest, NonInline) {
 | |
|   int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
 | |
|   absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed(
 | |
|       kInput, kInput + ABSL_ARRAYSIZE(kInput));
 | |
|   ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
 | |
|   for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
 | |
|     ASSERT_EQ(kInput[i], fixed[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(IteratorConstructorTest, Inline) {
 | |
|   int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
 | |
|   absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed(
 | |
|       kInput, kInput + ABSL_ARRAYSIZE(kInput));
 | |
|   ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
 | |
|   for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
 | |
|     ASSERT_EQ(kInput[i], fixed[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(IteratorConstructorTest, NonPod) {
 | |
|   char const* kInput[] =
 | |
|       { "red", "orange", "yellow", "green", "blue", "indigo", "violet" };
 | |
|   absl::FixedArray<std::string> const fixed(kInput, kInput + ABSL_ARRAYSIZE(kInput));
 | |
|   ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
 | |
|   for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
 | |
|     ASSERT_EQ(kInput[i], fixed[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(IteratorConstructorTest, FromEmptyVector) {
 | |
|   std::vector<int> const empty;
 | |
|   absl::FixedArray<int> const fixed(empty.begin(), empty.end());
 | |
|   EXPECT_EQ(0, fixed.size());
 | |
|   EXPECT_EQ(empty.size(), fixed.size());
 | |
| }
 | |
| 
 | |
| TEST(IteratorConstructorTest, FromNonEmptyVector) {
 | |
|   int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
 | |
|   std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
 | |
|   absl::FixedArray<int> const fixed(items.begin(), items.end());
 | |
|   ASSERT_EQ(items.size(), fixed.size());
 | |
|   for (size_t i = 0; i < items.size(); ++i) {
 | |
|     ASSERT_EQ(items[i], fixed[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) {
 | |
|   int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
 | |
|   std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
 | |
|   absl::FixedArray<int> const fixed(items.begin(), items.end());
 | |
|   EXPECT_THAT(fixed, testing::ElementsAreArray(kInput));
 | |
| }
 | |
| 
 | |
| TEST(InitListConstructorTest, InitListConstruction) {
 | |
|   absl::FixedArray<int> fixed = {1, 2, 3};
 | |
|   EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3}));
 | |
| }
 | |
| 
 | |
| TEST(FillConstructorTest, NonEmptyArrays) {
 | |
|   absl::FixedArray<int> stack_array(4, 1);
 | |
|   EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
 | |
| 
 | |
|   absl::FixedArray<int, 0> heap_array(4, 1);
 | |
|   EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
 | |
| }
 | |
| 
 | |
| TEST(FillConstructorTest, EmptyArray) {
 | |
|   absl::FixedArray<int> empty_fill(0, 1);
 | |
|   absl::FixedArray<int> empty_size(0);
 | |
|   EXPECT_EQ(empty_fill, empty_size);
 | |
| }
 | |
| 
 | |
| TEST(FillConstructorTest, NotTriviallyCopyable) {
 | |
|   std::string str = "abcd";
 | |
|   absl::FixedArray<std::string> strings = {str, str, str, str};
 | |
| 
 | |
|   absl::FixedArray<std::string> array(4, str);
 | |
|   EXPECT_EQ(array, strings);
 | |
| }
 | |
| 
 | |
| TEST(FillConstructorTest, Disambiguation) {
 | |
|   absl::FixedArray<size_t> a(1, 2);
 | |
|   EXPECT_THAT(a, testing::ElementsAre(2));
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, ManySizedArrays) {
 | |
|   std::vector<int> sizes;
 | |
|   for (int i = 1; i < 100; i++) sizes.push_back(i);
 | |
|   for (int i = 100; i <= 1000; i += 100) sizes.push_back(i);
 | |
|   for (int n : sizes) {
 | |
|     TestArray<0>(n);
 | |
|     TestArray<1>(n);
 | |
|     TestArray<64>(n);
 | |
|     TestArray<1000>(n);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) {
 | |
|   for (int n = 1; n < 1000; n++) {
 | |
|     ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n)));
 | |
|     ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n)));
 | |
|     ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n)));
 | |
|     ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) {
 | |
|   for (int n = 1; n < 1000; n++) {
 | |
|     TestArrayOfArrays<2, 0>(n);
 | |
|     TestArrayOfArrays<2, 1>(n);
 | |
|     TestArrayOfArrays<2, 64>(n);
 | |
|     TestArrayOfArrays<2, 1000>(n);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If value_type is put inside of a struct container,
 | |
| // we might evoke this error in a hardened build unless data() is carefully
 | |
| // written, so check on that.
 | |
| //     error: call to int __builtin___sprintf_chk(etc...)
 | |
| //     will always overflow destination buffer [-Werror]
 | |
| TEST(FixedArrayTest, AvoidParanoidDiagnostics) {
 | |
|   absl::FixedArray<char, 32> buf(32);
 | |
|   sprintf(buf.data(), "foo");  // NOLINT(runtime/printf)
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, TooBigInlinedSpace) {
 | |
|   struct TooBig {
 | |
|     char c[1 << 20];
 | |
|   };  // too big for even one on the stack
 | |
| 
 | |
|   // Simulate the data members of absl::FixedArray, a pointer and a size_t.
 | |
|   struct Data {
 | |
|     TooBig* p;
 | |
|     size_t size;
 | |
|   };
 | |
| 
 | |
|   // Make sure TooBig objects are not inlined for 0 or default size.
 | |
|   static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data),
 | |
|                 "0-sized absl::FixedArray should have same size as Data.");
 | |
|   static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data),
 | |
|                 "0-sized absl::FixedArray should have same alignment as Data.");
 | |
|   static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data),
 | |
|                 "default-sized absl::FixedArray should have same size as Data");
 | |
|   static_assert(
 | |
|       alignof(absl::FixedArray<TooBig>) == alignof(Data),
 | |
|       "default-sized absl::FixedArray should have same alignment as Data.");
 | |
| }
 | |
| 
 | |
| // PickyDelete EXPECTs its class-scope deallocation funcs are unused.
 | |
| struct PickyDelete {
 | |
|   PickyDelete() {}
 | |
|   ~PickyDelete() {}
 | |
|   void operator delete(void* p) {
 | |
|     EXPECT_TRUE(false) << __FUNCTION__;
 | |
|     ::operator delete(p);
 | |
|   }
 | |
|   void operator delete[](void* p) {
 | |
|     EXPECT_TRUE(false) << __FUNCTION__;
 | |
|     ::operator delete[](p);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); }
 | |
| 
 | |
| 
 | |
| TEST(FixedArrayTest, Data) {
 | |
|   static const int kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
 | |
|   absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput));
 | |
|   EXPECT_EQ(fa.data(), &*fa.begin());
 | |
|   EXPECT_EQ(fa.data(), &fa[0]);
 | |
| 
 | |
|   const absl::FixedArray<int>& cfa = fa;
 | |
|   EXPECT_EQ(cfa.data(), &*cfa.begin());
 | |
|   EXPECT_EQ(cfa.data(), &cfa[0]);
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, Empty) {
 | |
|   absl::FixedArray<int> empty(0);
 | |
|   absl::FixedArray<int> inline_filled(1);
 | |
|   absl::FixedArray<int, 0> heap_filled(1);
 | |
|   EXPECT_TRUE(empty.empty());
 | |
|   EXPECT_FALSE(inline_filled.empty());
 | |
|   EXPECT_FALSE(heap_filled.empty());
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, FrontAndBack) {
 | |
|   absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3};
 | |
|   EXPECT_EQ(inlined.front(), 1);
 | |
|   EXPECT_EQ(inlined.back(), 3);
 | |
| 
 | |
|   absl::FixedArray<int, 0> allocated = {1, 2, 3};
 | |
|   EXPECT_EQ(allocated.front(), 1);
 | |
|   EXPECT_EQ(allocated.back(), 3);
 | |
| 
 | |
|   absl::FixedArray<int> one_element = {1};
 | |
|   EXPECT_EQ(one_element.front(), one_element.back());
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, ReverseIteratorInlined) {
 | |
|   absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4};
 | |
| 
 | |
|   int counter = 5;
 | |
|   for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
 | |
|        iter != a.rend(); ++iter) {
 | |
|     counter--;
 | |
|     EXPECT_EQ(counter, *iter);
 | |
|   }
 | |
|   EXPECT_EQ(counter, 0);
 | |
| 
 | |
|   counter = 5;
 | |
|   for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
 | |
|        iter != a.rend(); ++iter) {
 | |
|     counter--;
 | |
|     EXPECT_EQ(counter, *iter);
 | |
|   }
 | |
|   EXPECT_EQ(counter, 0);
 | |
| 
 | |
|   counter = 5;
 | |
|   for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
 | |
|     counter--;
 | |
|     EXPECT_EQ(counter, *iter);
 | |
|   }
 | |
|   EXPECT_EQ(counter, 0);
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, ReverseIteratorAllocated) {
 | |
|   absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4};
 | |
| 
 | |
|   int counter = 5;
 | |
|   for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
 | |
|        iter != a.rend(); ++iter) {
 | |
|     counter--;
 | |
|     EXPECT_EQ(counter, *iter);
 | |
|   }
 | |
|   EXPECT_EQ(counter, 0);
 | |
| 
 | |
|   counter = 5;
 | |
|   for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
 | |
|        iter != a.rend(); ++iter) {
 | |
|     counter--;
 | |
|     EXPECT_EQ(counter, *iter);
 | |
|   }
 | |
|   EXPECT_EQ(counter, 0);
 | |
| 
 | |
|   counter = 5;
 | |
|   for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
 | |
|     counter--;
 | |
|     EXPECT_EQ(counter, *iter);
 | |
|   }
 | |
|   EXPECT_EQ(counter, 0);
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, Fill) {
 | |
|   absl::FixedArray<int, 5 * sizeof(int)> inlined(5);
 | |
|   int fill_val = 42;
 | |
|   inlined.fill(fill_val);
 | |
|   for (int i : inlined) EXPECT_EQ(i, fill_val);
 | |
| 
 | |
|   absl::FixedArray<int, 0> allocated(5);
 | |
|   allocated.fill(fill_val);
 | |
|   for (int i : allocated) EXPECT_EQ(i, fill_val);
 | |
| 
 | |
|   // It doesn't do anything, just make sure this compiles.
 | |
|   absl::FixedArray<int> empty(0);
 | |
|   empty.fill(fill_val);
 | |
| }
 | |
| 
 | |
| // TODO(johnsoncj): Investigate InlinedStorage default initialization in GCC 4.x
 | |
| #ifndef __GNUC__
 | |
| TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) {
 | |
|   using T = char;
 | |
|   constexpr auto capacity = 10;
 | |
|   using FixedArrType = absl::FixedArray<T, capacity>;
 | |
|   using FixedArrBuffType =
 | |
|       absl::aligned_storage_t<sizeof(FixedArrType), alignof(FixedArrType)>;
 | |
|   constexpr auto scrubbed_bits = 0x95;
 | |
|   constexpr auto length = capacity / 2;
 | |
| 
 | |
|   FixedArrBuffType buff;
 | |
|   std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrBuffType));
 | |
| 
 | |
|   FixedArrType* arr =
 | |
|       ::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length);
 | |
|   EXPECT_THAT(*arr, testing::Each(scrubbed_bits));
 | |
|   arr->~FixedArrType();
 | |
| }
 | |
| #endif  // __GNUC__
 | |
| 
 | |
| // This is a stateful allocator, but the state lives outside of the
 | |
| // allocator (in whatever test is using the allocator). This is odd
 | |
| // but helps in tests where the allocator is propagated into nested
 | |
| // containers - that chain of allocators uses the same state and is
 | |
| // thus easier to query for aggregate allocation information.
 | |
| template <typename T>
 | |
| class CountingAllocator : public std::allocator<T> {
 | |
|  public:
 | |
|   using Alloc = std::allocator<T>;
 | |
|   using pointer = typename Alloc::pointer;
 | |
|   using size_type = typename Alloc::size_type;
 | |
| 
 | |
|   CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {}
 | |
|   explicit CountingAllocator(int64_t* b)
 | |
|       : bytes_used_(b), instance_count_(nullptr) {}
 | |
|   CountingAllocator(int64_t* b, int64_t* a)
 | |
|       : bytes_used_(b), instance_count_(a) {}
 | |
| 
 | |
|   template <typename U>
 | |
|   explicit CountingAllocator(const CountingAllocator<U>& x)
 | |
|       : Alloc(x),
 | |
|         bytes_used_(x.bytes_used_),
 | |
|         instance_count_(x.instance_count_) {}
 | |
| 
 | |
|   pointer allocate(size_type n, const void* const hint = nullptr) {
 | |
|     assert(bytes_used_ != nullptr);
 | |
|     *bytes_used_ += n * sizeof(T);
 | |
|     return Alloc::allocate(n, hint);
 | |
|   }
 | |
| 
 | |
|   void deallocate(pointer p, size_type n) {
 | |
|     Alloc::deallocate(p, n);
 | |
|     assert(bytes_used_ != nullptr);
 | |
|     *bytes_used_ -= n * sizeof(T);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   void construct(pointer p, Args&&... args) {
 | |
|     Alloc::construct(p, absl::forward<Args>(args)...);
 | |
|     if (instance_count_) {
 | |
|       *instance_count_ += 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void destroy(pointer p) {
 | |
|     Alloc::destroy(p);
 | |
|     if (instance_count_) {
 | |
|       *instance_count_ -= 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename U>
 | |
|   class rebind {
 | |
|    public:
 | |
|     using other = CountingAllocator<U>;
 | |
|   };
 | |
| 
 | |
|   int64_t* bytes_used_;
 | |
|   int64_t* instance_count_;
 | |
| };
 | |
| 
 | |
| TEST(AllocatorSupportTest, CountInlineAllocations) {
 | |
|   constexpr size_t inlined_size = 4;
 | |
|   using Alloc = CountingAllocator<int>;
 | |
|   using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
 | |
| 
 | |
|   int64_t allocated = 0;
 | |
|   int64_t active_instances = 0;
 | |
| 
 | |
|   {
 | |
|     const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
 | |
| 
 | |
|     Alloc alloc(&allocated, &active_instances);
 | |
| 
 | |
|     AllocFxdArr arr(ia, ia + inlined_size, alloc);
 | |
|     static_cast<void>(arr);
 | |
|   }
 | |
| 
 | |
|   EXPECT_EQ(allocated, 0);
 | |
|   EXPECT_EQ(active_instances, 0);
 | |
| }
 | |
| 
 | |
| TEST(AllocatorSupportTest, CountOutoflineAllocations) {
 | |
|   constexpr size_t inlined_size = 4;
 | |
|   using Alloc = CountingAllocator<int>;
 | |
|   using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
 | |
| 
 | |
|   int64_t allocated = 0;
 | |
|   int64_t active_instances = 0;
 | |
| 
 | |
|   {
 | |
|     const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
 | |
|     Alloc alloc(&allocated, &active_instances);
 | |
| 
 | |
|     AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
 | |
| 
 | |
|     EXPECT_EQ(allocated, arr.size() * sizeof(int));
 | |
|     static_cast<void>(arr);
 | |
|   }
 | |
| 
 | |
|   EXPECT_EQ(active_instances, 0);
 | |
| }
 | |
| 
 | |
| TEST(AllocatorSupportTest, CountCopyInlineAllocations) {
 | |
|   constexpr size_t inlined_size = 4;
 | |
|   using Alloc = CountingAllocator<int>;
 | |
|   using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
 | |
| 
 | |
|   int64_t allocated1 = 0;
 | |
|   int64_t allocated2 = 0;
 | |
|   int64_t active_instances = 0;
 | |
|   Alloc alloc(&allocated1, &active_instances);
 | |
|   Alloc alloc2(&allocated2, &active_instances);
 | |
| 
 | |
|   {
 | |
|     int initial_value = 1;
 | |
| 
 | |
|     AllocFxdArr arr1(inlined_size / 2, initial_value, alloc);
 | |
| 
 | |
|     EXPECT_EQ(allocated1, 0);
 | |
| 
 | |
|     AllocFxdArr arr2(arr1, alloc2);
 | |
| 
 | |
|     EXPECT_EQ(allocated2, 0);
 | |
|     static_cast<void>(arr1);
 | |
|     static_cast<void>(arr2);
 | |
|   }
 | |
| 
 | |
|   EXPECT_EQ(active_instances, 0);
 | |
| }
 | |
| 
 | |
| TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) {
 | |
|   constexpr size_t inlined_size = 4;
 | |
|   using Alloc = CountingAllocator<int>;
 | |
|   using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
 | |
| 
 | |
|   int64_t allocated1 = 0;
 | |
|   int64_t allocated2 = 0;
 | |
|   int64_t active_instances = 0;
 | |
|   Alloc alloc(&allocated1, &active_instances);
 | |
|   Alloc alloc2(&allocated2, &active_instances);
 | |
| 
 | |
|   {
 | |
|     int initial_value = 1;
 | |
| 
 | |
|     AllocFxdArr arr1(inlined_size * 2, initial_value, alloc);
 | |
| 
 | |
|     EXPECT_EQ(allocated1, arr1.size() * sizeof(int));
 | |
| 
 | |
|     AllocFxdArr arr2(arr1, alloc2);
 | |
| 
 | |
|     EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int));
 | |
|     static_cast<void>(arr1);
 | |
|     static_cast<void>(arr2);
 | |
|   }
 | |
| 
 | |
|   EXPECT_EQ(active_instances, 0);
 | |
| }
 | |
| 
 | |
| TEST(AllocatorSupportTest, SizeValAllocConstructor) {
 | |
|   using testing::AllOf;
 | |
|   using testing::Each;
 | |
|   using testing::SizeIs;
 | |
| 
 | |
|   constexpr size_t inlined_size = 4;
 | |
|   using Alloc = CountingAllocator<int>;
 | |
|   using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
 | |
| 
 | |
|   {
 | |
|     auto len = inlined_size / 2;
 | |
|     auto val = 0;
 | |
|     int64_t allocated = 0;
 | |
|     AllocFxdArr arr(len, val, Alloc(&allocated));
 | |
| 
 | |
|     EXPECT_EQ(allocated, 0);
 | |
|     EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto len = inlined_size * 2;
 | |
|     auto val = 0;
 | |
|     int64_t allocated = 0;
 | |
|     AllocFxdArr arr(len, val, Alloc(&allocated));
 | |
| 
 | |
|     EXPECT_EQ(allocated, len * sizeof(int));
 | |
|     EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef ADDRESS_SANITIZER
 | |
| TEST(FixedArrayTest, AddressSanitizerAnnotations1) {
 | |
|   absl::FixedArray<int, 32> a(10);
 | |
|   int *raw = a.data();
 | |
|   raw[0] = 0;
 | |
|   raw[9] = 0;
 | |
|   EXPECT_DEATH(raw[-2] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[-1] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[10] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[31] = 0, "container-overflow");
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, AddressSanitizerAnnotations2) {
 | |
|   absl::FixedArray<char, 17> a(12);
 | |
|   char *raw = a.data();
 | |
|   raw[0] = 0;
 | |
|   raw[11] = 0;
 | |
|   EXPECT_DEATH(raw[-7] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[-1] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[12] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[17] = 0, "container-overflow");
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, AddressSanitizerAnnotations3) {
 | |
|   absl::FixedArray<uint64_t, 20> a(20);
 | |
|   uint64_t *raw = a.data();
 | |
|   raw[0] = 0;
 | |
|   raw[19] = 0;
 | |
|   EXPECT_DEATH(raw[-1] = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[20] = 0, "container-overflow");
 | |
| }
 | |
| 
 | |
| TEST(FixedArrayTest, AddressSanitizerAnnotations4) {
 | |
|   absl::FixedArray<ThreeInts> a(10);
 | |
|   ThreeInts *raw = a.data();
 | |
|   raw[0] = ThreeInts();
 | |
|   raw[9] = ThreeInts();
 | |
|   // Note: raw[-1] is pointing to 12 bytes before the container range. However,
 | |
|   // there is only a 8-byte red zone before the container range, so we only
 | |
|   // access the last 4 bytes of the struct to make sure it stays within the red
 | |
|   // zone.
 | |
|   EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow");
 | |
|   EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow");
 | |
|   // The actual size of storage is kDefaultBytes=256, 21*12 = 252,
 | |
|   // so reading raw[21] should still trigger the correct warning.
 | |
|   EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow");
 | |
| }
 | |
| #endif  // ADDRESS_SANITIZER
 | |
| 
 | |
| }  // namespace
 |