git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			425 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			425 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "absl/base/internal/sysinfo.h"
 | 
						|
 | 
						|
#include "absl/base/attributes.h"
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
#include <windows.h>
 | 
						|
#else
 | 
						|
#include <fcntl.h>
 | 
						|
#include <pthread.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <unistd.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __linux__
 | 
						|
#include <sys/syscall.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__APPLE__) || defined(__FreeBSD__)
 | 
						|
#include <sys/sysctl.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__myriad2__)
 | 
						|
#include <rtems.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstdlib>
 | 
						|
#include <ctime>
 | 
						|
#include <limits>
 | 
						|
#include <thread>  // NOLINT(build/c++11)
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "absl/base/call_once.h"
 | 
						|
#include "absl/base/internal/raw_logging.h"
 | 
						|
#include "absl/base/internal/spinlock.h"
 | 
						|
#include "absl/base/internal/unscaledcycleclock.h"
 | 
						|
#include "absl/base/thread_annotations.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
namespace base_internal {
 | 
						|
 | 
						|
static int GetNumCPUs() {
 | 
						|
#if defined(__myriad2__)
 | 
						|
  return 1;
 | 
						|
#else
 | 
						|
  // Other possibilities:
 | 
						|
  //  - Read /sys/devices/system/cpu/online and use cpumask_parse()
 | 
						|
  //  - sysconf(_SC_NPROCESSORS_ONLN)
 | 
						|
  return std::thread::hardware_concurrency();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_WIN32)
 | 
						|
 | 
						|
static double GetNominalCPUFrequency() {
 | 
						|
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \
 | 
						|
    !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
 | 
						|
  // UWP apps don't have access to the registry and currently don't provide an
 | 
						|
  // API informing about CPU nominal frequency.
 | 
						|
  return 1.0;
 | 
						|
#else
 | 
						|
#pragma comment(lib, "advapi32.lib")  // For Reg* functions.
 | 
						|
  HKEY key;
 | 
						|
  // Use the Reg* functions rather than the SH functions because shlwapi.dll
 | 
						|
  // pulls in gdi32.dll which makes process destruction much more costly.
 | 
						|
  if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
 | 
						|
                    "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
 | 
						|
                    KEY_READ, &key) == ERROR_SUCCESS) {
 | 
						|
    DWORD type = 0;
 | 
						|
    DWORD data = 0;
 | 
						|
    DWORD data_size = sizeof(data);
 | 
						|
    auto result = RegQueryValueExA(key, "~MHz", 0, &type,
 | 
						|
                                   reinterpret_cast<LPBYTE>(&data), &data_size);
 | 
						|
    RegCloseKey(key);
 | 
						|
    if (result == ERROR_SUCCESS && type == REG_DWORD &&
 | 
						|
        data_size == sizeof(data)) {
 | 
						|
      return data * 1e6;  // Value is MHz.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 1.0;
 | 
						|
#endif  // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(CTL_HW) && defined(HW_CPU_FREQ)
 | 
						|
 | 
						|
static double GetNominalCPUFrequency() {
 | 
						|
  unsigned freq;
 | 
						|
  size_t size = sizeof(freq);
 | 
						|
  int mib[2] = {CTL_HW, HW_CPU_FREQ};
 | 
						|
  if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
 | 
						|
    return static_cast<double>(freq);
 | 
						|
  }
 | 
						|
  return 1.0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
// Helper function for reading a long from a file. Returns true if successful
 | 
						|
// and the memory location pointed to by value is set to the value read.
 | 
						|
static bool ReadLongFromFile(const char *file, long *value) {
 | 
						|
  bool ret = false;
 | 
						|
  int fd = open(file, O_RDONLY);
 | 
						|
  if (fd != -1) {
 | 
						|
    char line[1024];
 | 
						|
    char *err;
 | 
						|
    memset(line, '\0', sizeof(line));
 | 
						|
    int len = read(fd, line, sizeof(line) - 1);
 | 
						|
    if (len <= 0) {
 | 
						|
      ret = false;
 | 
						|
    } else {
 | 
						|
      const long temp_value = strtol(line, &err, 10);
 | 
						|
      if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
 | 
						|
        *value = temp_value;
 | 
						|
        ret = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    close(fd);
 | 
						|
  }
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
 | 
						|
 | 
						|
// Reads a monotonic time source and returns a value in
 | 
						|
// nanoseconds. The returned value uses an arbitrary epoch, not the
 | 
						|
// Unix epoch.
 | 
						|
static int64_t ReadMonotonicClockNanos() {
 | 
						|
  struct timespec t;
 | 
						|
#ifdef CLOCK_MONOTONIC_RAW
 | 
						|
  int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
 | 
						|
#else
 | 
						|
  int rc = clock_gettime(CLOCK_MONOTONIC, &t);
 | 
						|
#endif
 | 
						|
  if (rc != 0) {
 | 
						|
    perror("clock_gettime() failed");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
 | 
						|
}
 | 
						|
 | 
						|
class UnscaledCycleClockWrapperForInitializeFrequency {
 | 
						|
 public:
 | 
						|
  static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
 | 
						|
};
 | 
						|
 | 
						|
struct TimeTscPair {
 | 
						|
  int64_t time;  // From ReadMonotonicClockNanos().
 | 
						|
  int64_t tsc;   // From UnscaledCycleClock::Now().
 | 
						|
};
 | 
						|
 | 
						|
// Returns a pair of values (monotonic kernel time, TSC ticks) that
 | 
						|
// approximately correspond to each other.  This is accomplished by
 | 
						|
// doing several reads and picking the reading with the lowest
 | 
						|
// latency.  This approach is used to minimize the probability that
 | 
						|
// our thread was preempted between clock reads.
 | 
						|
static TimeTscPair GetTimeTscPair() {
 | 
						|
  int64_t best_latency = std::numeric_limits<int64_t>::max();
 | 
						|
  TimeTscPair best;
 | 
						|
  for (int i = 0; i < 10; ++i) {
 | 
						|
    int64_t t0 = ReadMonotonicClockNanos();
 | 
						|
    int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
 | 
						|
    int64_t t1 = ReadMonotonicClockNanos();
 | 
						|
    int64_t latency = t1 - t0;
 | 
						|
    if (latency < best_latency) {
 | 
						|
      best_latency = latency;
 | 
						|
      best.time = t0;
 | 
						|
      best.tsc = tsc;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return best;
 | 
						|
}
 | 
						|
 | 
						|
// Measures and returns the TSC frequency by taking a pair of
 | 
						|
// measurements approximately `sleep_nanoseconds` apart.
 | 
						|
static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
 | 
						|
  auto t0 = GetTimeTscPair();
 | 
						|
  struct timespec ts;
 | 
						|
  ts.tv_sec = 0;
 | 
						|
  ts.tv_nsec = sleep_nanoseconds;
 | 
						|
  while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
 | 
						|
  auto t1 = GetTimeTscPair();
 | 
						|
  double elapsed_ticks = t1.tsc - t0.tsc;
 | 
						|
  double elapsed_time = (t1.time - t0.time) * 1e-9;
 | 
						|
  return elapsed_ticks / elapsed_time;
 | 
						|
}
 | 
						|
 | 
						|
// Measures and returns the TSC frequency by calling
 | 
						|
// MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
 | 
						|
// frequency measurement stabilizes.
 | 
						|
static double MeasureTscFrequency() {
 | 
						|
  double last_measurement = -1.0;
 | 
						|
  int sleep_nanoseconds = 1000000;  // 1 millisecond.
 | 
						|
  for (int i = 0; i < 8; ++i) {
 | 
						|
    double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
 | 
						|
    if (measurement * 0.99 < last_measurement &&
 | 
						|
        last_measurement < measurement * 1.01) {
 | 
						|
      // Use the current measurement if it is within 1% of the
 | 
						|
      // previous measurement.
 | 
						|
      return measurement;
 | 
						|
    }
 | 
						|
    last_measurement = measurement;
 | 
						|
    sleep_nanoseconds *= 2;
 | 
						|
  }
 | 
						|
  return last_measurement;
 | 
						|
}
 | 
						|
 | 
						|
#endif  // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
 | 
						|
 | 
						|
static double GetNominalCPUFrequency() {
 | 
						|
  long freq = 0;
 | 
						|
 | 
						|
  // Google's production kernel has a patch to export the TSC
 | 
						|
  // frequency through sysfs. If the kernel is exporting the TSC
 | 
						|
  // frequency use that. There are issues where cpuinfo_max_freq
 | 
						|
  // cannot be relied on because the BIOS may be exporting an invalid
 | 
						|
  // p-state (on x86) or p-states may be used to put the processor in
 | 
						|
  // a new mode (turbo mode). Essentially, those frequencies cannot
 | 
						|
  // always be relied upon. The same reasons apply to /proc/cpuinfo as
 | 
						|
  // well.
 | 
						|
  if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
 | 
						|
    return freq * 1e3;  // Value is kHz.
 | 
						|
  }
 | 
						|
 | 
						|
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
 | 
						|
  // On these platforms, the TSC frequency is the nominal CPU
 | 
						|
  // frequency.  But without having the kernel export it directly
 | 
						|
  // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
 | 
						|
  // other way to reliably get the TSC frequency, so we have to
 | 
						|
  // measure it ourselves.  Some CPUs abuse cpuinfo_max_freq by
 | 
						|
  // exporting "fake" frequencies for implementing new features. For
 | 
						|
  // example, Intel's turbo mode is enabled by exposing a p-state
 | 
						|
  // value with a higher frequency than that of the real TSC
 | 
						|
  // rate. Because of this, we prefer to measure the TSC rate
 | 
						|
  // ourselves on i386 and x86-64.
 | 
						|
  return MeasureTscFrequency();
 | 
						|
#else
 | 
						|
 | 
						|
  // If CPU scaling is in effect, we want to use the *maximum*
 | 
						|
  // frequency, not whatever CPU speed some random processor happens
 | 
						|
  // to be using now.
 | 
						|
  if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
 | 
						|
                       &freq)) {
 | 
						|
    return freq * 1e3;  // Value is kHz.
 | 
						|
  }
 | 
						|
 | 
						|
  return 1.0;
 | 
						|
#endif  // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
ABSL_CONST_INIT static once_flag init_num_cpus_once;
 | 
						|
ABSL_CONST_INIT static int num_cpus = 0;
 | 
						|
 | 
						|
// NumCPUs() may be called before main() and before malloc is properly
 | 
						|
// initialized, therefore this must not allocate memory.
 | 
						|
int NumCPUs() {
 | 
						|
  base_internal::LowLevelCallOnce(
 | 
						|
      &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
 | 
						|
  return num_cpus;
 | 
						|
}
 | 
						|
 | 
						|
// A default frequency of 0.0 might be dangerous if it is used in division.
 | 
						|
ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
 | 
						|
ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
 | 
						|
 | 
						|
// NominalCPUFrequency() may be called before main() and before malloc is
 | 
						|
// properly initialized, therefore this must not allocate memory.
 | 
						|
double NominalCPUFrequency() {
 | 
						|
  base_internal::LowLevelCallOnce(
 | 
						|
      &init_nominal_cpu_frequency_once,
 | 
						|
      []() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
 | 
						|
  return nominal_cpu_frequency;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_WIN32)
 | 
						|
 | 
						|
pid_t GetTID() {
 | 
						|
  return pid_t{GetCurrentThreadId()};
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(__linux__)
 | 
						|
 | 
						|
#ifndef SYS_gettid
 | 
						|
#define SYS_gettid __NR_gettid
 | 
						|
#endif
 | 
						|
 | 
						|
pid_t GetTID() {
 | 
						|
  return syscall(SYS_gettid);
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(__akaros__)
 | 
						|
 | 
						|
pid_t GetTID() {
 | 
						|
  // Akaros has a concept of "vcore context", which is the state the program
 | 
						|
  // is forced into when we need to make a user-level scheduling decision, or
 | 
						|
  // run a signal handler.  This is analogous to the interrupt context that a
 | 
						|
  // CPU might enter if it encounters some kind of exception.
 | 
						|
  //
 | 
						|
  // There is no current thread context in vcore context, but we need to give
 | 
						|
  // a reasonable answer if asked for a thread ID (e.g., in a signal handler).
 | 
						|
  // Thread 0 always exists, so if we are in vcore context, we return that.
 | 
						|
  //
 | 
						|
  // Otherwise, we know (since we are using pthreads) that the uthread struct
 | 
						|
  // current_uthread is pointing to is the first element of a
 | 
						|
  // struct pthread_tcb, so we extract and return the thread ID from that.
 | 
						|
  //
 | 
						|
  // TODO(dcross): Akaros anticipates moving the thread ID to the uthread
 | 
						|
  // structure at some point. We should modify this code to remove the cast
 | 
						|
  // when that happens.
 | 
						|
  if (in_vcore_context())
 | 
						|
    return 0;
 | 
						|
  return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(__myriad2__)
 | 
						|
 | 
						|
pid_t GetTID() {
 | 
						|
  uint32_t tid;
 | 
						|
  rtems_task_ident(RTEMS_SELF, 0, &tid);
 | 
						|
  return tid;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
// Fallback implementation of GetTID using pthread_getspecific.
 | 
						|
ABSL_CONST_INIT static once_flag tid_once;
 | 
						|
ABSL_CONST_INIT static pthread_key_t tid_key;
 | 
						|
ABSL_CONST_INIT static absl::base_internal::SpinLock tid_lock(
 | 
						|
    absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
 | 
						|
 | 
						|
// We set a bit per thread in this array to indicate that an ID is in
 | 
						|
// use. ID 0 is unused because it is the default value returned by
 | 
						|
// pthread_getspecific().
 | 
						|
ABSL_CONST_INIT static std::vector<uint32_t> *tid_array
 | 
						|
    ABSL_GUARDED_BY(tid_lock) = nullptr;
 | 
						|
static constexpr int kBitsPerWord = 32;  // tid_array is uint32_t.
 | 
						|
 | 
						|
// Returns the TID to tid_array.
 | 
						|
static void FreeTID(void *v) {
 | 
						|
  intptr_t tid = reinterpret_cast<intptr_t>(v);
 | 
						|
  int word = tid / kBitsPerWord;
 | 
						|
  uint32_t mask = ~(1u << (tid % kBitsPerWord));
 | 
						|
  absl::base_internal::SpinLockHolder lock(&tid_lock);
 | 
						|
  assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
 | 
						|
  (*tid_array)[word] &= mask;
 | 
						|
}
 | 
						|
 | 
						|
static void InitGetTID() {
 | 
						|
  if (pthread_key_create(&tid_key, FreeTID) != 0) {
 | 
						|
    // The logging system calls GetTID() so it can't be used here.
 | 
						|
    perror("pthread_key_create failed");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize tid_array.
 | 
						|
  absl::base_internal::SpinLockHolder lock(&tid_lock);
 | 
						|
  tid_array = new std::vector<uint32_t>(1);
 | 
						|
  (*tid_array)[0] = 1;  // ID 0 is never-allocated.
 | 
						|
}
 | 
						|
 | 
						|
// Return a per-thread small integer ID from pthread's thread-specific data.
 | 
						|
pid_t GetTID() {
 | 
						|
  absl::call_once(tid_once, InitGetTID);
 | 
						|
 | 
						|
  intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
 | 
						|
  if (tid != 0) {
 | 
						|
    return tid;
 | 
						|
  }
 | 
						|
 | 
						|
  int bit;  // tid_array[word] = 1u << bit;
 | 
						|
  size_t word;
 | 
						|
  {
 | 
						|
    // Search for the first unused ID.
 | 
						|
    absl::base_internal::SpinLockHolder lock(&tid_lock);
 | 
						|
    // First search for a word in the array that is not all ones.
 | 
						|
    word = 0;
 | 
						|
    while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
 | 
						|
      ++word;
 | 
						|
    }
 | 
						|
    if (word == tid_array->size()) {
 | 
						|
      tid_array->push_back(0);  // No space left, add kBitsPerWord more IDs.
 | 
						|
    }
 | 
						|
    // Search for a zero bit in the word.
 | 
						|
    bit = 0;
 | 
						|
    while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
 | 
						|
      ++bit;
 | 
						|
    }
 | 
						|
    tid = (word * kBitsPerWord) + bit;
 | 
						|
    (*tid_array)[word] |= 1u << bit;  // Mark the TID as allocated.
 | 
						|
  }
 | 
						|
 | 
						|
  if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
 | 
						|
    perror("pthread_setspecific failed");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  return static_cast<pid_t>(tid);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
}  // namespace base_internal
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 |