git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			735 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			735 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <functional>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <unordered_map>
 | |
| #include <unordered_set>
 | |
| #include <vector>
 | |
| 
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/container/btree_map.h"
 | |
| #include "absl/container/btree_set.h"
 | |
| #include "absl/container/btree_test.h"
 | |
| #include "absl/container/flat_hash_map.h"
 | |
| #include "absl/container/flat_hash_set.h"
 | |
| #include "absl/container/internal/hashtable_debug.h"
 | |
| #include "absl/flags/flag.h"
 | |
| #include "absl/hash/hash.h"
 | |
| #include "absl/memory/memory.h"
 | |
| #include "absl/strings/cord.h"
 | |
| #include "absl/strings/str_format.h"
 | |
| #include "absl/time/time.h"
 | |
| #include "benchmark/benchmark.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace container_internal {
 | |
| namespace {
 | |
| 
 | |
| constexpr size_t kBenchmarkValues = 1 << 20;
 | |
| 
 | |
| // How many times we add and remove sub-batches in one batch of *AddRem
 | |
| // benchmarks.
 | |
| constexpr size_t kAddRemBatchSize = 1 << 2;
 | |
| 
 | |
| // Generates n values in the range [0, 4 * n].
 | |
| template <typename V>
 | |
| std::vector<V> GenerateValues(int n) {
 | |
|   constexpr int kSeed = 23;
 | |
|   return GenerateValuesWithSeed<V>(n, 4 * n, kSeed);
 | |
| }
 | |
| 
 | |
| // Benchmark insertion of values into a container.
 | |
| template <typename T>
 | |
| void BM_InsertImpl(benchmark::State& state, bool sorted) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
| 
 | |
|   std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | |
|   if (sorted) {
 | |
|     std::sort(values.begin(), values.end());
 | |
|   }
 | |
|   T container(values.begin(), values.end());
 | |
| 
 | |
|   // Remove and re-insert 10% of the keys per batch.
 | |
|   const int batch_size = (kBenchmarkValues + 9) / 10;
 | |
|   while (state.KeepRunningBatch(batch_size)) {
 | |
|     state.PauseTiming();
 | |
|     const auto i = static_cast<int>(state.iterations());
 | |
| 
 | |
|     for (int j = i; j < i + batch_size; j++) {
 | |
|       int x = j % kBenchmarkValues;
 | |
|       container.erase(key_of_value(values[x]));
 | |
|     }
 | |
| 
 | |
|     state.ResumeTiming();
 | |
| 
 | |
|     for (int j = i; j < i + batch_size; j++) {
 | |
|       int x = j % kBenchmarkValues;
 | |
|       container.insert(values[x]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_Insert(benchmark::State& state) {
 | |
|   BM_InsertImpl<T>(state, false);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_InsertSorted(benchmark::State& state) {
 | |
|   BM_InsertImpl<T>(state, true);
 | |
| }
 | |
| 
 | |
| // container::insert sometimes returns a pair<iterator, bool> and sometimes
 | |
| // returns an iterator (for multi- containers).
 | |
| template <typename Iter>
 | |
| Iter GetIterFromInsert(const std::pair<Iter, bool>& pair) {
 | |
|   return pair.first;
 | |
| }
 | |
| template <typename Iter>
 | |
| Iter GetIterFromInsert(const Iter iter) {
 | |
|   return iter;
 | |
| }
 | |
| 
 | |
| // Benchmark insertion of values into a container at the end.
 | |
| template <typename T>
 | |
| void BM_InsertEnd(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
| 
 | |
|   T container;
 | |
|   const int kSize = 10000;
 | |
|   for (int i = 0; i < kSize; ++i) {
 | |
|     container.insert(Generator<V>(kSize)(i));
 | |
|   }
 | |
|   V v = Generator<V>(kSize)(kSize - 1);
 | |
|   typename T::key_type k = key_of_value(v);
 | |
| 
 | |
|   auto it = container.find(k);
 | |
|   while (state.KeepRunning()) {
 | |
|     // Repeatedly removing then adding v.
 | |
|     container.erase(it);
 | |
|     it = GetIterFromInsert(container.insert(v));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Benchmark inserting the first few elements in a container. In b-tree, this is
 | |
| // when the root node grows.
 | |
| template <typename T>
 | |
| void BM_InsertSmall(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
| 
 | |
|   const int kSize = 8;
 | |
|   std::vector<V> values = GenerateValues<V>(kSize);
 | |
|   T container;
 | |
| 
 | |
|   while (state.KeepRunningBatch(kSize)) {
 | |
|     for (int i = 0; i < kSize; ++i) {
 | |
|       benchmark::DoNotOptimize(container.insert(values[i]));
 | |
|     }
 | |
|     state.PauseTiming();
 | |
|     // Do not measure the time it takes to clear the container.
 | |
|     container.clear();
 | |
|     state.ResumeTiming();
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_LookupImpl(benchmark::State& state, bool sorted) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
| 
 | |
|   std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | |
|   if (sorted) {
 | |
|     std::sort(values.begin(), values.end());
 | |
|   }
 | |
|   T container(values.begin(), values.end());
 | |
| 
 | |
|   while (state.KeepRunning()) {
 | |
|     int idx = state.iterations() % kBenchmarkValues;
 | |
|     benchmark::DoNotOptimize(container.find(key_of_value(values[idx])));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Benchmark lookup of values in a container.
 | |
| template <typename T>
 | |
| void BM_Lookup(benchmark::State& state) {
 | |
|   BM_LookupImpl<T>(state, false);
 | |
| }
 | |
| 
 | |
| // Benchmark lookup of values in a full container, meaning that values
 | |
| // are inserted in-order to take advantage of biased insertion, which
 | |
| // yields a full tree.
 | |
| template <typename T>
 | |
| void BM_FullLookup(benchmark::State& state) {
 | |
|   BM_LookupImpl<T>(state, true);
 | |
| }
 | |
| 
 | |
| // Benchmark deletion of values from a container.
 | |
| template <typename T>
 | |
| void BM_Delete(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
|   std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | |
|   T container(values.begin(), values.end());
 | |
| 
 | |
|   // Remove and re-insert 10% of the keys per batch.
 | |
|   const int batch_size = (kBenchmarkValues + 9) / 10;
 | |
|   while (state.KeepRunningBatch(batch_size)) {
 | |
|     const int i = state.iterations();
 | |
| 
 | |
|     for (int j = i; j < i + batch_size; j++) {
 | |
|       int x = j % kBenchmarkValues;
 | |
|       container.erase(key_of_value(values[x]));
 | |
|     }
 | |
| 
 | |
|     state.PauseTiming();
 | |
|     for (int j = i; j < i + batch_size; j++) {
 | |
|       int x = j % kBenchmarkValues;
 | |
|       container.insert(values[x]);
 | |
|     }
 | |
|     state.ResumeTiming();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Benchmark deletion of multiple values from a container.
 | |
| template <typename T>
 | |
| void BM_DeleteRange(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
|   std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | |
|   T container(values.begin(), values.end());
 | |
| 
 | |
|   // Remove and re-insert 10% of the keys per batch.
 | |
|   const int batch_size = (kBenchmarkValues + 9) / 10;
 | |
|   while (state.KeepRunningBatch(batch_size)) {
 | |
|     const int i = state.iterations();
 | |
| 
 | |
|     const int start_index = i % kBenchmarkValues;
 | |
| 
 | |
|     state.PauseTiming();
 | |
|     {
 | |
|       std::vector<V> removed;
 | |
|       removed.reserve(batch_size);
 | |
|       auto itr = container.find(key_of_value(values[start_index]));
 | |
|       auto start = itr;
 | |
|       for (int j = 0; j < batch_size; j++) {
 | |
|         if (itr == container.end()) {
 | |
|           state.ResumeTiming();
 | |
|           container.erase(start, itr);
 | |
|           state.PauseTiming();
 | |
|           itr = container.begin();
 | |
|           start = itr;
 | |
|         }
 | |
|         removed.push_back(*itr++);
 | |
|       }
 | |
| 
 | |
|       state.ResumeTiming();
 | |
|       container.erase(start, itr);
 | |
|       state.PauseTiming();
 | |
| 
 | |
|       container.insert(removed.begin(), removed.end());
 | |
|     }
 | |
|     state.ResumeTiming();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Benchmark steady-state insert (into first half of range) and remove (from
 | |
| // second half of range), treating the container approximately like a queue with
 | |
| // log-time access for all elements. This benchmark does not test the case where
 | |
| // insertion and removal happen in the same region of the tree.  This benchmark
 | |
| // counts two value constructors.
 | |
| template <typename T>
 | |
| void BM_QueueAddRem(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
| 
 | |
|   ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
 | |
| 
 | |
|   T container;
 | |
| 
 | |
|   const size_t half = kBenchmarkValues / 2;
 | |
|   std::vector<int> remove_keys(half);
 | |
|   std::vector<int> add_keys(half);
 | |
| 
 | |
|   // We want to do the exact same work repeatedly, and the benchmark can end
 | |
|   // after a different number of iterations depending on the speed of the
 | |
|   // individual run so we use a large batch size here and ensure that we do
 | |
|   // deterministic work every batch.
 | |
|   while (state.KeepRunningBatch(half * kAddRemBatchSize)) {
 | |
|     state.PauseTiming();
 | |
| 
 | |
|     container.clear();
 | |
| 
 | |
|     for (size_t i = 0; i < half; ++i) {
 | |
|       remove_keys[i] = i;
 | |
|       add_keys[i] = i;
 | |
|     }
 | |
|     constexpr int kSeed = 5;
 | |
|     std::mt19937_64 rand(kSeed);
 | |
|     std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
 | |
|     std::shuffle(add_keys.begin(), add_keys.end(), rand);
 | |
| 
 | |
|     // Note needs lazy generation of values.
 | |
|     Generator<V> g(kBenchmarkValues * kAddRemBatchSize);
 | |
| 
 | |
|     for (size_t i = 0; i < half; ++i) {
 | |
|       container.insert(g(add_keys[i]));
 | |
|       container.insert(g(half + remove_keys[i]));
 | |
|     }
 | |
| 
 | |
|     // There are three parts each of size "half":
 | |
|     // 1 is being deleted from  [offset - half, offset)
 | |
|     // 2 is standing            [offset, offset + half)
 | |
|     // 3 is being inserted into [offset + half, offset + 2 * half)
 | |
|     size_t offset = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < kAddRemBatchSize; ++i) {
 | |
|       std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
 | |
|       std::shuffle(add_keys.begin(), add_keys.end(), rand);
 | |
|       offset += half;
 | |
| 
 | |
|       state.ResumeTiming();
 | |
|       for (size_t idx = 0; idx < half; ++idx) {
 | |
|         container.erase(key_of_value(g(offset - half + remove_keys[idx])));
 | |
|         container.insert(g(offset + half + add_keys[idx]));
 | |
|       }
 | |
|       state.PauseTiming();
 | |
|     }
 | |
|     state.ResumeTiming();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Mixed insertion and deletion in the same range using pre-constructed values.
 | |
| template <typename T>
 | |
| void BM_MixedAddRem(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   typename KeyOfValue<typename T::key_type, V>::type key_of_value;
 | |
| 
 | |
|   ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
 | |
| 
 | |
|   T container;
 | |
| 
 | |
|   // Create two random shuffles
 | |
|   std::vector<int> remove_keys(kBenchmarkValues);
 | |
|   std::vector<int> add_keys(kBenchmarkValues);
 | |
| 
 | |
|   // We want to do the exact same work repeatedly, and the benchmark can end
 | |
|   // after a different number of iterations depending on the speed of the
 | |
|   // individual run so we use a large batch size here and ensure that we do
 | |
|   // deterministic work every batch.
 | |
|   while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) {
 | |
|     state.PauseTiming();
 | |
| 
 | |
|     container.clear();
 | |
| 
 | |
|     constexpr int kSeed = 7;
 | |
|     std::mt19937_64 rand(kSeed);
 | |
| 
 | |
|     std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2);
 | |
| 
 | |
|     // Insert the first half of the values (already in random order)
 | |
|     container.insert(values.begin(), values.begin() + kBenchmarkValues);
 | |
| 
 | |
|     // Insert the first half of the values (already in random order)
 | |
|     for (size_t i = 0; i < kBenchmarkValues; ++i) {
 | |
|       // remove_keys and add_keys will be swapped before each round,
 | |
|       // therefore fill add_keys here w/ the keys being inserted, so
 | |
|       // they'll be the first to be removed.
 | |
|       remove_keys[i] = i + kBenchmarkValues;
 | |
|       add_keys[i] = i;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < kAddRemBatchSize; ++i) {
 | |
|       remove_keys.swap(add_keys);
 | |
|       std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
 | |
|       std::shuffle(add_keys.begin(), add_keys.end(), rand);
 | |
| 
 | |
|       state.ResumeTiming();
 | |
|       for (size_t idx = 0; idx < kBenchmarkValues; ++idx) {
 | |
|         container.erase(key_of_value(values[remove_keys[idx]]));
 | |
|         container.insert(values[add_keys[idx]]);
 | |
|       }
 | |
|       state.PauseTiming();
 | |
|     }
 | |
|     state.ResumeTiming();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Insertion at end, removal from the beginning.  This benchmark
 | |
| // counts two value constructors.
 | |
| // TODO(ezb): we could add a GenerateNext version of generator that could reduce
 | |
| // noise for string-like types.
 | |
| template <typename T>
 | |
| void BM_Fifo(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
| 
 | |
|   T container;
 | |
|   // Need lazy generation of values as state.max_iterations is large.
 | |
|   Generator<V> g(kBenchmarkValues + state.max_iterations);
 | |
| 
 | |
|   for (int i = 0; i < kBenchmarkValues; i++) {
 | |
|     container.insert(g(i));
 | |
|   }
 | |
| 
 | |
|   while (state.KeepRunning()) {
 | |
|     container.erase(container.begin());
 | |
|     container.insert(container.end(), g(state.iterations() + kBenchmarkValues));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Iteration (forward) through the tree
 | |
| template <typename T>
 | |
| void BM_FwdIter(benchmark::State& state) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
|   using R = typename T::value_type const*;
 | |
| 
 | |
|   std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | |
|   T container(values.begin(), values.end());
 | |
| 
 | |
|   auto iter = container.end();
 | |
| 
 | |
|   R r = nullptr;
 | |
| 
 | |
|   while (state.KeepRunning()) {
 | |
|     if (iter == container.end()) iter = container.begin();
 | |
|     r = &(*iter);
 | |
|     ++iter;
 | |
|   }
 | |
| 
 | |
|   benchmark::DoNotOptimize(r);
 | |
| }
 | |
| 
 | |
| // Benchmark random range-construction of a container.
 | |
| template <typename T>
 | |
| void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) {
 | |
|   using V = typename remove_pair_const<typename T::value_type>::type;
 | |
| 
 | |
|   std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
 | |
|   if (sorted) {
 | |
|     std::sort(values.begin(), values.end());
 | |
|   }
 | |
|   {
 | |
|     T container(values.begin(), values.end());
 | |
|   }
 | |
| 
 | |
|   while (state.KeepRunning()) {
 | |
|     T container(values.begin(), values.end());
 | |
|     benchmark::DoNotOptimize(container);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_InsertRangeRandom(benchmark::State& state) {
 | |
|   BM_RangeConstructionImpl<T>(state, false);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void BM_InsertRangeSorted(benchmark::State& state) {
 | |
|   BM_RangeConstructionImpl<T>(state, true);
 | |
| }
 | |
| 
 | |
| #define STL_ORDERED_TYPES(value)                     \
 | |
|   using stl_set_##value = std::set<value>;           \
 | |
|   using stl_map_##value = std::map<value, intptr_t>; \
 | |
|   using stl_multiset_##value = std::multiset<value>; \
 | |
|   using stl_multimap_##value = std::multimap<value, intptr_t>
 | |
| 
 | |
| using StdString = std::string;
 | |
| STL_ORDERED_TYPES(int32_t);
 | |
| STL_ORDERED_TYPES(int64_t);
 | |
| STL_ORDERED_TYPES(StdString);
 | |
| STL_ORDERED_TYPES(Cord);
 | |
| STL_ORDERED_TYPES(Time);
 | |
| 
 | |
| #define STL_UNORDERED_TYPES(value)                                       \
 | |
|   using stl_unordered_set_##value = std::unordered_set<value>;           \
 | |
|   using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \
 | |
|   using flat_hash_set_##value = flat_hash_set<value>;                    \
 | |
|   using flat_hash_map_##value = flat_hash_map<value, intptr_t>;          \
 | |
|   using stl_unordered_multiset_##value = std::unordered_multiset<value>; \
 | |
|   using stl_unordered_multimap_##value =                                 \
 | |
|       std::unordered_multimap<value, intptr_t>
 | |
| 
 | |
| #define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash)                           \
 | |
|   using stl_unordered_set_##value = std::unordered_set<value, hash>;           \
 | |
|   using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \
 | |
|   using flat_hash_set_##value = flat_hash_set<value, hash>;                    \
 | |
|   using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>;          \
 | |
|   using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \
 | |
|   using stl_unordered_multimap_##value =                                       \
 | |
|       std::unordered_multimap<value, intptr_t, hash>
 | |
| 
 | |
| STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>);
 | |
| 
 | |
| STL_UNORDERED_TYPES(int32_t);
 | |
| STL_UNORDERED_TYPES(int64_t);
 | |
| STL_UNORDERED_TYPES(StdString);
 | |
| STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>);
 | |
| 
 | |
| #define BTREE_TYPES(value)                                            \
 | |
|   using btree_256_set_##value =                                       \
 | |
|       btree_set<value, std::less<value>, std::allocator<value>>;      \
 | |
|   using btree_256_map_##value =                                       \
 | |
|       btree_map<value, intptr_t, std::less<value>,                    \
 | |
|                 std::allocator<std::pair<const value, intptr_t>>>;    \
 | |
|   using btree_256_multiset_##value =                                  \
 | |
|       btree_multiset<value, std::less<value>, std::allocator<value>>; \
 | |
|   using btree_256_multimap_##value =                                  \
 | |
|       btree_multimap<value, intptr_t, std::less<value>,               \
 | |
|                      std::allocator<std::pair<const value, intptr_t>>>
 | |
| 
 | |
| BTREE_TYPES(int32_t);
 | |
| BTREE_TYPES(int64_t);
 | |
| BTREE_TYPES(StdString);
 | |
| BTREE_TYPES(Cord);
 | |
| BTREE_TYPES(Time);
 | |
| 
 | |
| #define MY_BENCHMARK4(type, func)                                              \
 | |
|   void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \
 | |
|   BENCHMARK(BM_##type##_##func)
 | |
| 
 | |
| #define MY_BENCHMARK3(type)               \
 | |
|   MY_BENCHMARK4(type, Insert);            \
 | |
|   MY_BENCHMARK4(type, InsertSorted);      \
 | |
|   MY_BENCHMARK4(type, InsertEnd);         \
 | |
|   MY_BENCHMARK4(type, InsertSmall);       \
 | |
|   MY_BENCHMARK4(type, Lookup);            \
 | |
|   MY_BENCHMARK4(type, FullLookup);        \
 | |
|   MY_BENCHMARK4(type, Delete);            \
 | |
|   MY_BENCHMARK4(type, DeleteRange);       \
 | |
|   MY_BENCHMARK4(type, QueueAddRem);       \
 | |
|   MY_BENCHMARK4(type, MixedAddRem);       \
 | |
|   MY_BENCHMARK4(type, Fifo);              \
 | |
|   MY_BENCHMARK4(type, FwdIter);           \
 | |
|   MY_BENCHMARK4(type, InsertRangeRandom); \
 | |
|   MY_BENCHMARK4(type, InsertRangeSorted)
 | |
| 
 | |
| #define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \
 | |
|   MY_BENCHMARK3(stl_##type);                    \
 | |
|   MY_BENCHMARK3(stl_unordered_##type);          \
 | |
|   MY_BENCHMARK3(btree_256_##type)
 | |
| 
 | |
| #define MY_BENCHMARK2(type)                \
 | |
|   MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \
 | |
|   MY_BENCHMARK3(flat_hash_##type)
 | |
| 
 | |
| // Define MULTI_TESTING to see benchmarks for multi-containers also.
 | |
| //
 | |
| // You can use --copt=-DMULTI_TESTING.
 | |
| #ifdef MULTI_TESTING
 | |
| #define MY_BENCHMARK(type)                            \
 | |
|   MY_BENCHMARK2(set_##type);                          \
 | |
|   MY_BENCHMARK2(map_##type);                          \
 | |
|   MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \
 | |
|   MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type)
 | |
| #else
 | |
| #define MY_BENCHMARK(type)   \
 | |
|   MY_BENCHMARK2(set_##type); \
 | |
|   MY_BENCHMARK2(map_##type)
 | |
| #endif
 | |
| 
 | |
| MY_BENCHMARK(int32_t);
 | |
| MY_BENCHMARK(int64_t);
 | |
| MY_BENCHMARK(StdString);
 | |
| MY_BENCHMARK(Cord);
 | |
| MY_BENCHMARK(Time);
 | |
| 
 | |
| // Define a type whose size and cost of moving are independently customizable.
 | |
| // When sizeof(value_type) increases, we expect btree to no longer have as much
 | |
| // cache-locality advantage over STL. When cost of moving increases, we expect
 | |
| // btree to actually do more work than STL because it has to move values around
 | |
| // and STL doesn't have to.
 | |
| template <int Size, int Copies>
 | |
| struct BigType {
 | |
|   BigType() : BigType(0) {}
 | |
|   explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
 | |
| 
 | |
|   void Copy(const BigType& other) {
 | |
|     for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
 | |
|     // If Copies > Size, do extra copies.
 | |
|     for (int i = Size, idx = 0; i < Copies; ++i) {
 | |
|       int64_t tmp = other.values[idx];
 | |
|       benchmark::DoNotOptimize(tmp);
 | |
|       idx = idx + 1 == Size ? 0 : idx + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BigType(const BigType& other) { Copy(other); }
 | |
|   BigType& operator=(const BigType& other) {
 | |
|     Copy(other);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Compare only the first Copies elements if Copies is less than Size.
 | |
|   bool operator<(const BigType& other) const {
 | |
|     return std::lexicographical_compare(
 | |
|         values.begin(), values.begin() + std::min(Size, Copies),
 | |
|         other.values.begin(), other.values.begin() + std::min(Size, Copies));
 | |
|   }
 | |
|   bool operator==(const BigType& other) const {
 | |
|     return std::equal(values.begin(), values.begin() + std::min(Size, Copies),
 | |
|                       other.values.begin());
 | |
|   }
 | |
| 
 | |
|   // Support absl::Hash.
 | |
|   template <typename State>
 | |
|   friend State AbslHashValue(State h, const BigType& b) {
 | |
|     for (int i = 0; i < Size && i < Copies; ++i)
 | |
|       h = State::combine(std::move(h), b.values[i]);
 | |
|     return h;
 | |
|   }
 | |
| 
 | |
|   std::array<int64_t, Size> values;
 | |
| };
 | |
| 
 | |
| #define BIG_TYPE_BENCHMARKS(SIZE, COPIES)                                     \
 | |
|   using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \
 | |
|   using stl_map_size##SIZE##copies##COPIES =                                  \
 | |
|       std::map<BigType<SIZE, COPIES>, intptr_t>;                              \
 | |
|   using stl_multiset_size##SIZE##copies##COPIES =                             \
 | |
|       std::multiset<BigType<SIZE, COPIES>>;                                   \
 | |
|   using stl_multimap_size##SIZE##copies##COPIES =                             \
 | |
|       std::multimap<BigType<SIZE, COPIES>, intptr_t>;                         \
 | |
|   using stl_unordered_set_size##SIZE##copies##COPIES =                        \
 | |
|       std::unordered_set<BigType<SIZE, COPIES>,                               \
 | |
|                          absl::Hash<BigType<SIZE, COPIES>>>;                  \
 | |
|   using stl_unordered_map_size##SIZE##copies##COPIES =                        \
 | |
|       std::unordered_map<BigType<SIZE, COPIES>, intptr_t,                     \
 | |
|                          absl::Hash<BigType<SIZE, COPIES>>>;                  \
 | |
|   using flat_hash_set_size##SIZE##copies##COPIES =                            \
 | |
|       flat_hash_set<BigType<SIZE, COPIES>>;                                   \
 | |
|   using flat_hash_map_size##SIZE##copies##COPIES =                            \
 | |
|       flat_hash_map<BigType<SIZE, COPIES>, intptr_t>;                         \
 | |
|   using stl_unordered_multiset_size##SIZE##copies##COPIES =                   \
 | |
|       std::unordered_multiset<BigType<SIZE, COPIES>,                          \
 | |
|                               absl::Hash<BigType<SIZE, COPIES>>>;             \
 | |
|   using stl_unordered_multimap_size##SIZE##copies##COPIES =                   \
 | |
|       std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t,                \
 | |
|                               absl::Hash<BigType<SIZE, COPIES>>>;             \
 | |
|   using btree_256_set_size##SIZE##copies##COPIES =                            \
 | |
|       btree_set<BigType<SIZE, COPIES>>;                                       \
 | |
|   using btree_256_map_size##SIZE##copies##COPIES =                            \
 | |
|       btree_map<BigType<SIZE, COPIES>, intptr_t>;                             \
 | |
|   using btree_256_multiset_size##SIZE##copies##COPIES =                       \
 | |
|       btree_multiset<BigType<SIZE, COPIES>>;                                  \
 | |
|   using btree_256_multimap_size##SIZE##copies##COPIES =                       \
 | |
|       btree_multimap<BigType<SIZE, COPIES>, intptr_t>;                        \
 | |
|   MY_BENCHMARK(size##SIZE##copies##COPIES)
 | |
| 
 | |
| // Define BIG_TYPE_TESTING to see benchmarks for more big types.
 | |
| //
 | |
| // You can use --copt=-DBIG_TYPE_TESTING.
 | |
| #ifndef NODESIZE_TESTING
 | |
| #ifdef BIG_TYPE_TESTING
 | |
| BIG_TYPE_BENCHMARKS(1, 4);
 | |
| BIG_TYPE_BENCHMARKS(4, 1);
 | |
| BIG_TYPE_BENCHMARKS(4, 4);
 | |
| BIG_TYPE_BENCHMARKS(1, 8);
 | |
| BIG_TYPE_BENCHMARKS(8, 1);
 | |
| BIG_TYPE_BENCHMARKS(8, 8);
 | |
| BIG_TYPE_BENCHMARKS(1, 16);
 | |
| BIG_TYPE_BENCHMARKS(16, 1);
 | |
| BIG_TYPE_BENCHMARKS(16, 16);
 | |
| BIG_TYPE_BENCHMARKS(1, 32);
 | |
| BIG_TYPE_BENCHMARKS(32, 1);
 | |
| BIG_TYPE_BENCHMARKS(32, 32);
 | |
| #else
 | |
| BIG_TYPE_BENCHMARKS(32, 32);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| // Benchmark using unique_ptrs to large value types. In order to be able to use
 | |
| // the same benchmark code as the other types, use a type that holds a
 | |
| // unique_ptr and has a copy constructor.
 | |
| template <int Size>
 | |
| struct BigTypePtr {
 | |
|   BigTypePtr() : BigTypePtr(0) {}
 | |
|   explicit BigTypePtr(int x) {
 | |
|     ptr = absl::make_unique<BigType<Size, Size>>(x);
 | |
|   }
 | |
|   BigTypePtr(const BigTypePtr& other) {
 | |
|     ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
 | |
|   }
 | |
|   BigTypePtr(BigTypePtr&& other) noexcept = default;
 | |
|   BigTypePtr& operator=(const BigTypePtr& other) {
 | |
|     ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
 | |
|   }
 | |
|   BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
 | |
| 
 | |
|   bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
 | |
|   bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
 | |
| 
 | |
|   std::unique_ptr<BigType<Size, Size>> ptr;
 | |
| };
 | |
| 
 | |
| template <int Size>
 | |
| double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) {
 | |
|   const double bytes_used =
 | |
|       b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
 | |
|   const double bytes_per_value = bytes_used / b.size();
 | |
|   BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
 | |
|   return bytes_per_value;
 | |
| }
 | |
| template <int Size>
 | |
| double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) {
 | |
|   const double bytes_used =
 | |
|       b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
 | |
|   const double bytes_per_value = bytes_used / b.size();
 | |
|   BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
 | |
|   return bytes_per_value;
 | |
| }
 | |
| 
 | |
| #define BIG_TYPE_PTR_BENCHMARKS(SIZE)                                          \
 | |
|   using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \
 | |
|   using stl_map_size##SIZE##copies##SIZE##ptr =                                \
 | |
|       std::map<int, BigType<SIZE, SIZE>>;                                      \
 | |
|   using stl_unordered_set_size##SIZE##copies##SIZE##ptr =                      \
 | |
|       std::unordered_set<BigType<SIZE, SIZE>,                                  \
 | |
|                          absl::Hash<BigType<SIZE, SIZE>>>;                     \
 | |
|   using stl_unordered_map_size##SIZE##copies##SIZE##ptr =                      \
 | |
|       std::unordered_map<int, BigType<SIZE, SIZE>>;                            \
 | |
|   using flat_hash_set_size##SIZE##copies##SIZE##ptr =                          \
 | |
|       flat_hash_set<BigType<SIZE, SIZE>>;                                      \
 | |
|   using flat_hash_map_size##SIZE##copies##SIZE##ptr =                          \
 | |
|       flat_hash_map<int, BigTypePtr<SIZE>>;                                    \
 | |
|   using btree_256_set_size##SIZE##copies##SIZE##ptr =                          \
 | |
|       btree_set<BigTypePtr<SIZE>>;                                             \
 | |
|   using btree_256_map_size##SIZE##copies##SIZE##ptr =                          \
 | |
|       btree_map<int, BigTypePtr<SIZE>>;                                        \
 | |
|   MY_BENCHMARK3(stl_set_size##SIZE##copies##SIZE##ptr);                        \
 | |
|   MY_BENCHMARK3(stl_unordered_set_size##SIZE##copies##SIZE##ptr);              \
 | |
|   MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr);                  \
 | |
|   MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr);                  \
 | |
|   MY_BENCHMARK3(stl_map_size##SIZE##copies##SIZE##ptr);                        \
 | |
|   MY_BENCHMARK3(stl_unordered_map_size##SIZE##copies##SIZE##ptr);              \
 | |
|   MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr);                  \
 | |
|   MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr)
 | |
| 
 | |
| BIG_TYPE_PTR_BENCHMARKS(32);
 | |
| 
 | |
| }  // namespace
 | |
| }  // namespace container_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |