git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			258 lines
		
	
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef ABSL_RANDOM_POISSON_DISTRIBUTION_H_
 | |
| #define ABSL_RANDOM_POISSON_DISTRIBUTION_H_
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <istream>
 | |
| #include <limits>
 | |
| #include <ostream>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "absl/random/internal/fast_uniform_bits.h"
 | |
| #include "absl/random/internal/fastmath.h"
 | |
| #include "absl/random/internal/generate_real.h"
 | |
| #include "absl/random/internal/iostream_state_saver.h"
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| 
 | |
| // absl::poisson_distribution:
 | |
| // Generates discrete variates conforming to a Poisson distribution.
 | |
| //   p(n) = (mean^n / n!) exp(-mean)
 | |
| //
 | |
| // Depending on the parameter, the distribution selects one of the following
 | |
| // algorithms:
 | |
| // * The standard algorithm, attributed to Knuth, extended using a split method
 | |
| // for larger values
 | |
| // * The "Ratio of Uniforms as a convenient method for sampling from classical
 | |
| // discrete distributions", Stadlober, 1989.
 | |
| // http://www.sciencedirect.com/science/article/pii/0377042790903495
 | |
| //
 | |
| // NOTE: param_type.mean() is a double, which permits values larger than
 | |
| // poisson_distribution<IntType>::max(), however this should be avoided and
 | |
| // the distribution results are limited to the max() value.
 | |
| //
 | |
| // The goals of this implementation are to provide good performance while still
 | |
| // beig thread-safe: This limits the implementation to not using lgamma provided
 | |
| // by <math.h>.
 | |
| //
 | |
| template <typename IntType = int>
 | |
| class poisson_distribution {
 | |
|  public:
 | |
|   using result_type = IntType;
 | |
| 
 | |
|   class param_type {
 | |
|    public:
 | |
|     using distribution_type = poisson_distribution;
 | |
|     explicit param_type(double mean = 1.0);
 | |
| 
 | |
|     double mean() const { return mean_; }
 | |
| 
 | |
|     friend bool operator==(const param_type& a, const param_type& b) {
 | |
|       return a.mean_ == b.mean_;
 | |
|     }
 | |
| 
 | |
|     friend bool operator!=(const param_type& a, const param_type& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     friend class poisson_distribution;
 | |
| 
 | |
|     double mean_;
 | |
|     double emu_;  // e ^ -mean_
 | |
|     double lmu_;  // ln(mean_)
 | |
|     double s_;
 | |
|     double log_k_;
 | |
|     int split_;
 | |
| 
 | |
|     static_assert(std::is_integral<IntType>::value,
 | |
|                   "Class-template absl::poisson_distribution<> must be "
 | |
|                   "parameterized using an integral type.");
 | |
|   };
 | |
| 
 | |
|   poisson_distribution() : poisson_distribution(1.0) {}
 | |
| 
 | |
|   explicit poisson_distribution(double mean) : param_(mean) {}
 | |
| 
 | |
|   explicit poisson_distribution(const param_type& p) : param_(p) {}
 | |
| 
 | |
|   void reset() {}
 | |
| 
 | |
|   // generating functions
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
 | |
|     return (*this)(g, param_);
 | |
|   }
 | |
| 
 | |
|   template <typename URBG>
 | |
|   result_type operator()(URBG& g,  // NOLINT(runtime/references)
 | |
|                          const param_type& p);
 | |
| 
 | |
|   param_type param() const { return param_; }
 | |
|   void param(const param_type& p) { param_ = p; }
 | |
| 
 | |
|   result_type(min)() const { return 0; }
 | |
|   result_type(max)() const { return (std::numeric_limits<result_type>::max)(); }
 | |
| 
 | |
|   double mean() const { return param_.mean(); }
 | |
| 
 | |
|   friend bool operator==(const poisson_distribution& a,
 | |
|                          const poisson_distribution& b) {
 | |
|     return a.param_ == b.param_;
 | |
|   }
 | |
|   friend bool operator!=(const poisson_distribution& a,
 | |
|                          const poisson_distribution& b) {
 | |
|     return a.param_ != b.param_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   param_type param_;
 | |
|   random_internal::FastUniformBits<uint64_t> fast_u64_;
 | |
| };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Implementation details follow
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| template <typename IntType>
 | |
| poisson_distribution<IntType>::param_type::param_type(double mean)
 | |
|     : mean_(mean), split_(0) {
 | |
|   assert(mean >= 0);
 | |
|   assert(mean <= (std::numeric_limits<result_type>::max)());
 | |
|   // As a defensive measure, avoid large values of the mean.  The rejection
 | |
|   // algorithm used does not support very large values well.  It my be worth
 | |
|   // changing algorithms to better deal with these cases.
 | |
|   assert(mean <= 1e10);
 | |
|   if (mean_ < 10) {
 | |
|     // For small lambda, use the knuth method.
 | |
|     split_ = 1;
 | |
|     emu_ = std::exp(-mean_);
 | |
|   } else if (mean_ <= 50) {
 | |
|     // Use split-knuth method.
 | |
|     split_ = 1 + static_cast<int>(mean_ / 10.0);
 | |
|     emu_ = std::exp(-mean_ / static_cast<double>(split_));
 | |
|   } else {
 | |
|     // Use ratio of uniforms method.
 | |
|     constexpr double k2E = 0.7357588823428846;
 | |
|     constexpr double kSA = 0.4494580810294493;
 | |
| 
 | |
|     lmu_ = std::log(mean_);
 | |
|     double a = mean_ + 0.5;
 | |
|     s_ = kSA + std::sqrt(k2E * a);
 | |
|     const double mode = std::ceil(mean_) - 1;
 | |
|     log_k_ = lmu_ * mode - absl::random_internal::StirlingLogFactorial(mode);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| template <typename URBG>
 | |
| typename poisson_distribution<IntType>::result_type
 | |
| poisson_distribution<IntType>::operator()(
 | |
|     URBG& g,  // NOLINT(runtime/references)
 | |
|     const param_type& p) {
 | |
|   using random_internal::GeneratePositiveTag;
 | |
|   using random_internal::GenerateRealFromBits;
 | |
|   using random_internal::GenerateSignedTag;
 | |
| 
 | |
|   if (p.split_ != 0) {
 | |
|     // Use Knuth's algorithm with range splitting to avoid floating-point
 | |
|     // errors. Knuth's algorithm is: Ui is a sequence of uniform variates on
 | |
|     // (0,1); return the number of variates required for product(Ui) <
 | |
|     // exp(-lambda).
 | |
|     //
 | |
|     // The expected number of variates required for Knuth's method can be
 | |
|     // computed as follows:
 | |
|     // The expected value of U is 0.5, so solving for 0.5^n < exp(-lambda) gives
 | |
|     // the expected number of uniform variates
 | |
|     // required for a given lambda, which is:
 | |
|     //  lambda = [2, 5,  9, 10, 11, 12, 13, 14, 15, 16, 17]
 | |
|     //  n      = [3, 8, 13, 15, 16, 18, 19, 21, 22, 24, 25]
 | |
|     //
 | |
|     result_type n = 0;
 | |
|     for (int split = p.split_; split > 0; --split) {
 | |
|       double r = 1.0;
 | |
|       do {
 | |
|         r *= GenerateRealFromBits<double, GeneratePositiveTag, true>(
 | |
|             fast_u64_(g));  // U(-1, 0)
 | |
|         ++n;
 | |
|       } while (r > p.emu_);
 | |
|       --n;
 | |
|     }
 | |
|     return n;
 | |
|   }
 | |
| 
 | |
|   // Use ratio of uniforms method.
 | |
|   //
 | |
|   // Let u ~ Uniform(0, 1), v ~ Uniform(-1, 1),
 | |
|   //     a = lambda + 1/2,
 | |
|   //     s = 1.5 - sqrt(3/e) + sqrt(2(lambda + 1/2)/e),
 | |
|   //     x = s * v/u + a.
 | |
|   // P(floor(x) = k | u^2 < f(floor(x))/k), where
 | |
|   // f(m) = lambda^m exp(-lambda)/ m!, for 0 <= m, and f(m) = 0 otherwise,
 | |
|   // and k = max(f).
 | |
|   const double a = p.mean_ + 0.5;
 | |
|   for (;;) {
 | |
|     const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>(
 | |
|         fast_u64_(g));  // U(0, 1)
 | |
|     const double v = GenerateRealFromBits<double, GenerateSignedTag, false>(
 | |
|         fast_u64_(g));  // U(-1, 1)
 | |
| 
 | |
|     const double x = std::floor(p.s_ * v / u + a);
 | |
|     if (x < 0) continue;  // f(negative) = 0
 | |
|     const double rhs = x * p.lmu_;
 | |
|     // clang-format off
 | |
|     double s = (x <= 1.0) ? 0.0
 | |
|              : (x == 2.0) ? 0.693147180559945
 | |
|              : absl::random_internal::StirlingLogFactorial(x);
 | |
|     // clang-format on
 | |
|     const double lhs = 2.0 * std::log(u) + p.log_k_ + s;
 | |
|     if (lhs < rhs) {
 | |
|       return x > (max)() ? (max)()
 | |
|                          : static_cast<result_type>(x);  // f(x)/k >= u^2
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename IntType>
 | |
| std::basic_ostream<CharT, Traits>& operator<<(
 | |
|     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
 | |
|     const poisson_distribution<IntType>& x) {
 | |
|   auto saver = random_internal::make_ostream_state_saver(os);
 | |
|   os.precision(random_internal::stream_precision_helper<double>::kPrecision);
 | |
|   os << x.mean();
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| template <typename CharT, typename Traits, typename IntType>
 | |
| std::basic_istream<CharT, Traits>& operator>>(
 | |
|     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
 | |
|     poisson_distribution<IntType>& x) {     // NOLINT(runtime/references)
 | |
|   using param_type = typename poisson_distribution<IntType>::param_type;
 | |
| 
 | |
|   auto saver = random_internal::make_istream_state_saver(is);
 | |
|   double mean = random_internal::read_floating_point<double>(is);
 | |
|   if (!is.fail()) {
 | |
|     x.param(param_type(mean));
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 | |
| 
 | |
| #endif  // ABSL_RANDOM_POISSON_DISTRIBUTION_H_
 |