-- 7fb969986d7d5a1b30233a94ae7ea29e1abf8937 by Greg Falcon <gfalcon@google.com>: Fix whitespace in str_join.h. PiperOrigin-RevId: 208082852 -- 85428003a8a29fbcd92c0b48708a69460eeb0e8f by Abseil Team <absl-team@google.com>: Add missing back-ticks to the comments. PiperOrigin-RevId: 207985417 -- 0bbac248d5649ac1d7bc71ff1025a11332fb2026 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 207927484 -- f587324b99570b403b4626fb03fce16f0d950b05 by Abseil Team <absl-team@google.com>: Update BaseCountedInstance to have comparison operators and allow them to be tracked by InstanceTracker. PiperOrigin-RevId: 207919218 -- d7f410e4f15328412941f16e25ba3735d5bdfda6 by Derek Mauro <dmauro@google.com>: Internal import of GitHub PR #153 Removed "warning treated as error" flag from MSVC PiperOrigin-RevId: 207908806 -- 59eefc78f8571ffc51cb636894015ce2580508d7 by Abseil Team <absl-team@google.com>: Fix namespace references in examples from 'std::' to 'absl::'. PiperOrigin-RevId: 207895230 -- 151df17b6544222e29913b034a1296c0e14374d5 by Abseil Team <absl-team@google.com>: Internal Change PiperOrigin-RevId: 207894949 GitOrigin-RevId: 7fb969986d7d5a1b30233a94ae7ea29e1abf8937 Change-Id: I00097afbe9610ddb3f2330a2a86dcffde7bb6675
		
			
				
	
	
		
			849 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			849 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2018 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// variant.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// This header file defines an `absl::variant` type for holding a type-safe
 | 
						|
// value of some prescribed set of types (noted as alternative types), and
 | 
						|
// associated functions for managing variants.
 | 
						|
//
 | 
						|
// The `absl::variant` type is a form of type-safe union. An `absl::variant`
 | 
						|
// should always hold a value of one of its alternative types (except in the
 | 
						|
// "valueless by exception state" -- see below). A default-constructed
 | 
						|
// `absl::variant` will hold the value of its first alternative type, provided
 | 
						|
// it is default-constructable.
 | 
						|
//
 | 
						|
// In exceptional cases due to error, an `absl::variant` can hold no
 | 
						|
// value (known as a "valueless by exception" state), though this is not the
 | 
						|
// norm.
 | 
						|
//
 | 
						|
// As with `absl::optional`, an `absl::variant` -- when it holds a value --
 | 
						|
// allocates a value of that type directly within the `variant` itself; it
 | 
						|
// cannot hold a reference, array, or the type `void`; it can, however, hold a
 | 
						|
// pointer to externally managed memory.
 | 
						|
//
 | 
						|
// `absl::variant` is a C++11 compatible version of the C++17 `std::variant`
 | 
						|
// abstraction and is designed to be a drop-in replacement for code compliant
 | 
						|
// with C++17.
 | 
						|
 | 
						|
#ifndef ABSL_TYPES_VARIANT_H_
 | 
						|
#define ABSL_TYPES_VARIANT_H_
 | 
						|
 | 
						|
#include "absl/base/config.h"
 | 
						|
#include "absl/utility/utility.h"
 | 
						|
 | 
						|
#ifdef ABSL_HAVE_STD_VARIANT
 | 
						|
 | 
						|
#include <variant>
 | 
						|
 | 
						|
namespace absl {
 | 
						|
using std::bad_variant_access;
 | 
						|
using std::get;
 | 
						|
using std::get_if;
 | 
						|
using std::holds_alternative;
 | 
						|
using std::monostate;
 | 
						|
using std::variant;
 | 
						|
using std::variant_alternative;
 | 
						|
using std::variant_alternative_t;
 | 
						|
using std::variant_npos;
 | 
						|
using std::variant_size;
 | 
						|
using std::variant_size_v;
 | 
						|
using std::visit;
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#else  // ABSL_HAVE_STD_VARIANT
 | 
						|
 | 
						|
#include <functional>
 | 
						|
#include <new>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "absl/base/macros.h"
 | 
						|
#include "absl/base/port.h"
 | 
						|
#include "absl/meta/type_traits.h"
 | 
						|
#include "absl/types/internal/variant.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::variant
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// An 'absl::variant` type is a form of type-safe union. An `absl::variant` --
 | 
						|
// except in exceptional cases -- always holds a value of one of its alternative
 | 
						|
// types.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   // Construct a variant that holds either an integer or a std::string and
 | 
						|
//   // assign it to a std::string.
 | 
						|
//   absl::variant<int, std::string> v = std::string("abc");
 | 
						|
//
 | 
						|
//   // A default-contructed variant will hold a value-initialized value of
 | 
						|
//   // the first alternative type.
 | 
						|
//   auto a = absl::variant<int, std::string>();   // Holds an int of value '0'.
 | 
						|
//
 | 
						|
//   // variants are assignable.
 | 
						|
//
 | 
						|
//   // copy assignment
 | 
						|
//   auto v1 = absl::variant<int, std::string>("abc");
 | 
						|
//   auto v2 = absl::variant<int, std::string>(10);
 | 
						|
//   v2 = v1;  // copy assign
 | 
						|
//
 | 
						|
//   // move assignment
 | 
						|
//   auto v1 = absl::variant<int, std::string>("abc");
 | 
						|
//   v1 = absl::variant<int, std::string>(10);
 | 
						|
//
 | 
						|
//   // assignment through type conversion
 | 
						|
//   a = 128;         // variant contains int
 | 
						|
//   a = "128";       // variant contains std::string
 | 
						|
//
 | 
						|
// An `absl::variant` holding a value of one of its alternative types `T` holds
 | 
						|
// an allocation of `T` directly within the variant itself. An `absl::variant`
 | 
						|
// is not allowed to allocate additional storage, such as dynamic memory, to
 | 
						|
// allocate the contained value. The contained value shall be allocated in a
 | 
						|
// region of the variant storage suitably aligned for all alternative types.
 | 
						|
template <typename... Ts>
 | 
						|
class variant;
 | 
						|
 | 
						|
// swap()
 | 
						|
//
 | 
						|
// Swaps two `absl::variant` values. This function is equivalent to `v.swap(w)`
 | 
						|
// where `v` and `w` are `absl::variant` types.
 | 
						|
//
 | 
						|
// Note that this function requires all alternative types to be both swappable
 | 
						|
// and move-constructible, because any two variants may refer to either the same
 | 
						|
// type (in which case, they will be swapped) or to two different types (in
 | 
						|
// which case the values will need to be moved).
 | 
						|
//
 | 
						|
template <typename... Ts>
 | 
						|
void swap(variant<Ts...>& v, variant<Ts...>& w) noexcept(noexcept(v.swap(w))) {
 | 
						|
  v.swap(w);
 | 
						|
}
 | 
						|
 | 
						|
// variant_size
 | 
						|
//
 | 
						|
// Returns the number of alterative types available for a given `absl::variant`
 | 
						|
// type as a compile-time constant expression. As this is a class template, it
 | 
						|
// is not generally useful for accessing the number of alternative types of
 | 
						|
// any given `absl::variant` instance.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   auto a = absl::variant<int, std::string>;
 | 
						|
//   constexpr int num_types =
 | 
						|
//       absl::variant_size<absl::variant<int, std::string>>();
 | 
						|
//
 | 
						|
//   // You can also use the member constant `value`.
 | 
						|
//   constexpr int num_types =
 | 
						|
//       absl::variant_size<absl::variant<int, std::string>>::value;
 | 
						|
//
 | 
						|
//   // `absl::variant_size` is more valuable for use in generic code:
 | 
						|
//   template <typename Variant>
 | 
						|
//   constexpr bool IsVariantMultivalue() {
 | 
						|
//       return absl::variant_size<Variant>() > 1;
 | 
						|
//   }
 | 
						|
//
 | 
						|
// Note that the set of cv-qualified specializations of `variant_size` are
 | 
						|
// provided to ensure that those specializations compile (especially when passed
 | 
						|
// within template logic).
 | 
						|
template <class T>
 | 
						|
struct variant_size;
 | 
						|
 | 
						|
template <class... Ts>
 | 
						|
struct variant_size<variant<Ts...>>
 | 
						|
    : std::integral_constant<std::size_t, sizeof...(Ts)> {};
 | 
						|
 | 
						|
// Specialization of `variant_size` for const qualified variants.
 | 
						|
template <class T>
 | 
						|
struct variant_size<const T> : variant_size<T>::type {};
 | 
						|
 | 
						|
// Specialization of `variant_size` for volatile qualified variants.
 | 
						|
template <class T>
 | 
						|
struct variant_size<volatile T> : variant_size<T>::type {};
 | 
						|
 | 
						|
// Specialization of `variant_size` for const volatile qualified variants.
 | 
						|
template <class T>
 | 
						|
struct variant_size<const volatile T> : variant_size<T>::type {};
 | 
						|
 | 
						|
// variant_alternative
 | 
						|
//
 | 
						|
// Returns the alternative type for a given `absl::variant` at the passed
 | 
						|
// index value as a compile-time constant expression. As this is a class
 | 
						|
// template resulting in a type, it is not useful for access of the run-time
 | 
						|
// value of any given `absl::variant` variable.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   // The type of the 0th alternative is "int".
 | 
						|
//   using alternative_type_0
 | 
						|
//     = absl::variant_alternative<0, absl::variant<int, std::string>>::type;
 | 
						|
//
 | 
						|
//   static_assert(std::is_same<alternative_type_0, int>::value, "");
 | 
						|
//
 | 
						|
//   // `absl::variant_alternative` is more valuable for use in generic code:
 | 
						|
//   template <typename Variant>
 | 
						|
//   constexpr bool IsFirstElementTrivial() {
 | 
						|
//       return std::is_trivial_v<variant_alternative<0, Variant>::type>;
 | 
						|
//   }
 | 
						|
//
 | 
						|
// Note that the set of cv-qualified specializations of `variant_alternative`
 | 
						|
// are provided to ensure that those specializations compile (especially when
 | 
						|
// passed within template logic).
 | 
						|
template <std::size_t I, class T>
 | 
						|
struct variant_alternative;
 | 
						|
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
struct variant_alternative<I, variant<Types...>> {
 | 
						|
  using type =
 | 
						|
      variant_internal::VariantAlternativeSfinaeT<I, variant<Types...>>;
 | 
						|
};
 | 
						|
 | 
						|
// Specialization of `variant_alternative` for const qualified variants.
 | 
						|
template <std::size_t I, class T>
 | 
						|
struct variant_alternative<I, const T> {
 | 
						|
  using type = const typename variant_alternative<I, T>::type;
 | 
						|
};
 | 
						|
 | 
						|
// Specialization of `variant_alternative` for volatile qualified variants.
 | 
						|
template <std::size_t I, class T>
 | 
						|
struct variant_alternative<I, volatile T> {
 | 
						|
  using type = volatile typename variant_alternative<I, T>::type;
 | 
						|
};
 | 
						|
 | 
						|
// Specialization of `variant_alternative` for const volatile qualified
 | 
						|
// variants.
 | 
						|
template <std::size_t I, class T>
 | 
						|
struct variant_alternative<I, const volatile T> {
 | 
						|
  using type = const volatile typename variant_alternative<I, T>::type;
 | 
						|
};
 | 
						|
 | 
						|
// Template type alias for variant_alternative<I, T>::type.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   using alternative_type_0
 | 
						|
//     = absl::variant_alternative_t<0, absl::variant<int, std::string>>;
 | 
						|
//   static_assert(std::is_same<alternative_type_0, int>::value, "");
 | 
						|
template <std::size_t I, class T>
 | 
						|
using variant_alternative_t = typename variant_alternative<I, T>::type;
 | 
						|
 | 
						|
// holds_alternative()
 | 
						|
//
 | 
						|
// Checks whether the given variant currently holds a given alternative type,
 | 
						|
// returning `true` if so.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::variant<int, std::string> foo = 42;
 | 
						|
//   if (absl::holds_alternative<int>(foo)) {
 | 
						|
//       std::cout << "The variant holds an integer";
 | 
						|
//   }
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr bool holds_alternative(const variant<Types...>& v) noexcept {
 | 
						|
  static_assert(
 | 
						|
      variant_internal::UnambiguousIndexOfImpl<variant<Types...>, T,
 | 
						|
                                               0>::value != sizeof...(Types),
 | 
						|
      "The type T must occur exactly once in Types...");
 | 
						|
  return v.index() ==
 | 
						|
         variant_internal::UnambiguousIndexOf<variant<Types...>, T>::value;
 | 
						|
}
 | 
						|
 | 
						|
// get()
 | 
						|
//
 | 
						|
// Returns a reference to the value currently within a given variant, using
 | 
						|
// either a unique alternative type amongst the variant's set of alternative
 | 
						|
// types, or the variant's index value. Attempting to get a variant's value
 | 
						|
// using a type that is not unique within the variant's set of alternative types
 | 
						|
// is a compile-time error. If the index of the alternative being specified is
 | 
						|
// different from the index of the alternative that is currently stored, throws
 | 
						|
// `absl::bad_variant_access`.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   auto a = absl::variant<int, std::string>;
 | 
						|
//
 | 
						|
//   // Get the value by type (if unique).
 | 
						|
//   int i = absl::get<int>(a);
 | 
						|
//
 | 
						|
//   auto b = absl::variant<int, int>;
 | 
						|
//
 | 
						|
//   // Getting the value by a type that is not unique is ill-formed.
 | 
						|
//   int j = absl::get<int>(b);     // Compile Error!
 | 
						|
//
 | 
						|
//   // Getting value by index not ambiguous and allowed.
 | 
						|
//   int k = absl::get<1>(b);
 | 
						|
 | 
						|
// Overload for getting a variant's lvalue by type.
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr T& get(variant<Types...>& v) {  // NOLINT
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<
 | 
						|
      variant_internal::IndexOf<T, Types...>::value>(v);
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's rvalue by type.
 | 
						|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr T&& get(variant<Types...>&& v) {
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<
 | 
						|
      variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's const lvalue by type.
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr const T& get(const variant<Types...>& v) {
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<
 | 
						|
      variant_internal::IndexOf<T, Types...>::value>(v);
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's const rvalue by type.
 | 
						|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr const T&& get(const variant<Types...>&& v) {
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<
 | 
						|
      variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's lvalue by index.
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
constexpr variant_alternative_t<I, variant<Types...>>& get(
 | 
						|
    variant<Types...>& v) {  // NOLINT
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's rvalue by index.
 | 
						|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
constexpr variant_alternative_t<I, variant<Types...>>&& get(
 | 
						|
    variant<Types...>&& v) {
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's const lvalue by index.
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
constexpr const variant_alternative_t<I, variant<Types...>>& get(
 | 
						|
    const variant<Types...>& v) {
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a variant's const rvalue by index.
 | 
						|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
constexpr const variant_alternative_t<I, variant<Types...>>&& get(
 | 
						|
    const variant<Types...>&& v) {
 | 
						|
  return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
 | 
						|
}
 | 
						|
 | 
						|
// get_if()
 | 
						|
//
 | 
						|
// Returns a pointer to the value currently stored within a given variant, if
 | 
						|
// present, using either a unique alternative type amongst the variant's set of
 | 
						|
// alternative types, or the variant's index value. If such a value does not
 | 
						|
// exist, returns `nullptr`.
 | 
						|
//
 | 
						|
// As with `get`, attempting to get a variant's value using a type that is not
 | 
						|
// unique within the variant's set of alternative types is a compile-time error.
 | 
						|
 | 
						|
// Overload for getting a pointer to the value stored in the given variant by
 | 
						|
// index.
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>>
 | 
						|
get_if(variant<Types...>* v) noexcept {
 | 
						|
  return (v != nullptr && v->index() == I)
 | 
						|
             ? std::addressof(
 | 
						|
                   variant_internal::VariantCoreAccess::Access<I>(*v))
 | 
						|
             : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a pointer to the const value stored in the given
 | 
						|
// variant by index.
 | 
						|
template <std::size_t I, class... Types>
 | 
						|
constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
 | 
						|
get_if(const variant<Types...>* v) noexcept {
 | 
						|
  return (v != nullptr && v->index() == I)
 | 
						|
             ? std::addressof(
 | 
						|
                   variant_internal::VariantCoreAccess::Access<I>(*v))
 | 
						|
             : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a pointer to the value stored in the given variant by
 | 
						|
// type.
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr absl::add_pointer_t<T> get_if(variant<Types...>* v) noexcept {
 | 
						|
  return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
 | 
						|
}
 | 
						|
 | 
						|
// Overload for getting a pointer to the const value stored in the given variant
 | 
						|
// by type.
 | 
						|
template <class T, class... Types>
 | 
						|
constexpr absl::add_pointer_t<const T> get_if(
 | 
						|
    const variant<Types...>* v) noexcept {
 | 
						|
  return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
 | 
						|
}
 | 
						|
 | 
						|
// visit()
 | 
						|
//
 | 
						|
// Calls a provided functor on a given set of variants. `absl::visit()` is
 | 
						|
// commonly used to conditionally inspect the state of a given variant (or set
 | 
						|
// of variants).
 | 
						|
// Requires: The expression in the Effects: element shall be a valid expression
 | 
						|
// of the same type and value category, for all combinations of alternative
 | 
						|
// types of all variants. Otherwise, the program is ill-formed.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   // Define a visitor functor
 | 
						|
//   struct GetVariant {
 | 
						|
//       template<typename T>
 | 
						|
//       void operator()(const T& i) const {
 | 
						|
//         std::cout << "The variant's value is: " << i;
 | 
						|
//       }
 | 
						|
//   };
 | 
						|
//
 | 
						|
//   // Declare our variant, and call `absl::visit()` on it.
 | 
						|
//   absl::variant<int, std::string> foo = std::string("foo");
 | 
						|
//   GetVariant visitor;
 | 
						|
//   absl::visit(visitor, foo);  // Prints `The variant's value is: foo'
 | 
						|
template <typename Visitor, typename... Variants>
 | 
						|
variant_internal::VisitResult<Visitor, Variants...> visit(Visitor&& vis,
 | 
						|
                                                          Variants&&... vars) {
 | 
						|
  return variant_internal::
 | 
						|
      VisitIndices<variant_size<absl::decay_t<Variants> >::value...>::Run(
 | 
						|
          variant_internal::PerformVisitation<Visitor, Variants...>{
 | 
						|
              std::forward_as_tuple(absl::forward<Variants>(vars)...),
 | 
						|
              absl::forward<Visitor>(vis)},
 | 
						|
          vars.index()...);
 | 
						|
}
 | 
						|
 | 
						|
// monostate
 | 
						|
//
 | 
						|
// The monostate class serves as a first alternative type for a variant for
 | 
						|
// which the first variant type is otherwise not default-constructible.
 | 
						|
struct monostate {};
 | 
						|
 | 
						|
// `absl::monostate` Relational Operators
 | 
						|
 | 
						|
constexpr bool operator<(monostate, monostate) noexcept { return false; }
 | 
						|
constexpr bool operator>(monostate, monostate) noexcept { return false; }
 | 
						|
constexpr bool operator<=(monostate, monostate) noexcept { return true; }
 | 
						|
constexpr bool operator>=(monostate, monostate) noexcept { return true; }
 | 
						|
constexpr bool operator==(monostate, monostate) noexcept { return true; }
 | 
						|
constexpr bool operator!=(monostate, monostate) noexcept { return false; }
 | 
						|
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// `absl::variant` Template Definition
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
template <typename T0, typename... Tn>
 | 
						|
class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
 | 
						|
  static_assert(absl::conjunction<std::is_object<T0>,
 | 
						|
                                  std::is_object<Tn>...>::value,
 | 
						|
                "Attempted to instantiate a variant containing a non-object "
 | 
						|
                "type.");
 | 
						|
  // Intentionally not qualifing `negation` with `absl::` to work around a bug
 | 
						|
  // in MSVC 2015 with inline namespace and variadic template.
 | 
						|
  static_assert(absl::conjunction<negation<std::is_array<T0> >,
 | 
						|
                                  negation<std::is_array<Tn> >...>::value,
 | 
						|
                "Attempted to instantiate a variant containing an array type.");
 | 
						|
  static_assert(absl::conjunction<std::is_nothrow_destructible<T0>,
 | 
						|
                                  std::is_nothrow_destructible<Tn>...>::value,
 | 
						|
                "Attempted to instantiate a variant containing a non-nothrow "
 | 
						|
                "destructible type.");
 | 
						|
 | 
						|
  friend struct variant_internal::VariantCoreAccess;
 | 
						|
 | 
						|
 private:
 | 
						|
  using Base = variant_internal::VariantBase<T0, Tn...>;
 | 
						|
 | 
						|
 public:
 | 
						|
  // Constructors
 | 
						|
 | 
						|
  // Constructs a variant holding a default-initialized value of the first
 | 
						|
  // alternative type.
 | 
						|
  constexpr variant() /*noexcept(see 111above)*/ = default;
 | 
						|
 | 
						|
  // Copy constructor, standard semantics
 | 
						|
  variant(const variant& other) = default;
 | 
						|
 | 
						|
  // Move constructor, standard semantics
 | 
						|
  variant(variant&& other) /*noexcept(see above)*/ = default;
 | 
						|
 | 
						|
  // Constructs a variant of an alternative type specified by overload
 | 
						|
  // resolution of the provided forwarding arguments through
 | 
						|
  // direct-initialization.
 | 
						|
  //
 | 
						|
  // Note: If the selected constructor is a constexpr constructor, this
 | 
						|
  // constructor shall be a constexpr constructor.
 | 
						|
  //
 | 
						|
  // NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
 | 
						|
  // has been voted passed the design phase in the C++ standard meeting in Mar
 | 
						|
  // 2018. It will be implemented and integrated into `absl::variant`.
 | 
						|
  template <
 | 
						|
      class T,
 | 
						|
      std::size_t I = std::enable_if<
 | 
						|
          variant_internal::IsNeitherSelfNorInPlace<variant,
 | 
						|
                                                    absl::decay_t<T>>::value,
 | 
						|
          variant_internal::IndexOfConstructedType<variant, T>>::type::value,
 | 
						|
      class Tj = absl::variant_alternative_t<I, variant>,
 | 
						|
      absl::enable_if_t<std::is_constructible<Tj, T>::value>* =
 | 
						|
          nullptr>
 | 
						|
  constexpr variant(T&& t) noexcept(std::is_nothrow_constructible<Tj, T>::value)
 | 
						|
      : Base(variant_internal::EmplaceTag<I>(), absl::forward<T>(t)) {}
 | 
						|
 | 
						|
  // Constructs a variant of an alternative type from the arguments through
 | 
						|
  // direct-initialization.
 | 
						|
  //
 | 
						|
  // Note: If the selected constructor is a constexpr constructor, this
 | 
						|
  // constructor shall be a constexpr constructor.
 | 
						|
  template <class T, class... Args,
 | 
						|
            typename std::enable_if<std::is_constructible<
 | 
						|
                variant_internal::UnambiguousTypeOfT<variant, T>,
 | 
						|
                Args...>::value>::type* = nullptr>
 | 
						|
  constexpr explicit variant(in_place_type_t<T>, Args&&... args)
 | 
						|
      : Base(variant_internal::EmplaceTag<
 | 
						|
                 variant_internal::UnambiguousIndexOf<variant, T>::value>(),
 | 
						|
             absl::forward<Args>(args)...) {}
 | 
						|
 | 
						|
  // Constructs a variant of an alternative type from an initializer list
 | 
						|
  // and other arguments through direct-initialization.
 | 
						|
  //
 | 
						|
  // Note: If the selected constructor is a constexpr constructor, this
 | 
						|
  // constructor shall be a constexpr constructor.
 | 
						|
  template <class T, class U, class... Args,
 | 
						|
            typename std::enable_if<std::is_constructible<
 | 
						|
                variant_internal::UnambiguousTypeOfT<variant, T>,
 | 
						|
                std::initializer_list<U>&, Args...>::value>::type* = nullptr>
 | 
						|
  constexpr explicit variant(in_place_type_t<T>, std::initializer_list<U> il,
 | 
						|
                             Args&&... args)
 | 
						|
      : Base(variant_internal::EmplaceTag<
 | 
						|
                 variant_internal::UnambiguousIndexOf<variant, T>::value>(),
 | 
						|
             il, absl::forward<Args>(args)...) {}
 | 
						|
 | 
						|
  // Constructs a variant of an alternative type from a provided index,
 | 
						|
  // through value-initialization using the provided forwarded arguments.
 | 
						|
  template <std::size_t I, class... Args,
 | 
						|
            typename std::enable_if<std::is_constructible<
 | 
						|
                variant_internal::VariantAlternativeSfinaeT<I, variant>,
 | 
						|
                Args...>::value>::type* = nullptr>
 | 
						|
  constexpr explicit variant(in_place_index_t<I>, Args&&... args)
 | 
						|
      : Base(variant_internal::EmplaceTag<I>(), absl::forward<Args>(args)...) {}
 | 
						|
 | 
						|
  // Constructs a variant of an alternative type from a provided index,
 | 
						|
  // through value-initialization of an initializer list and the provided
 | 
						|
  // forwarded arguments.
 | 
						|
  template <std::size_t I, class U, class... Args,
 | 
						|
            typename std::enable_if<std::is_constructible<
 | 
						|
                variant_internal::VariantAlternativeSfinaeT<I, variant>,
 | 
						|
                std::initializer_list<U>&, Args...>::value>::type* = nullptr>
 | 
						|
  constexpr explicit variant(in_place_index_t<I>, std::initializer_list<U> il,
 | 
						|
                             Args&&... args)
 | 
						|
      : Base(variant_internal::EmplaceTag<I>(), il,
 | 
						|
             absl::forward<Args>(args)...) {}
 | 
						|
 | 
						|
  // Destructors
 | 
						|
 | 
						|
  // Destroys the variant's currently contained value, provided that
 | 
						|
  // `absl::valueless_by_exception()` is false.
 | 
						|
  ~variant() = default;
 | 
						|
 | 
						|
  // Assignment Operators
 | 
						|
 | 
						|
  // Copy assignement operator
 | 
						|
  variant& operator=(const variant& other) = default;
 | 
						|
 | 
						|
  // Move assignment operator
 | 
						|
  variant& operator=(variant&& other) /*noexcept(see above)*/ = default;
 | 
						|
 | 
						|
  // Converting assignment operator
 | 
						|
  //
 | 
						|
  // NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
 | 
						|
  // has been voted passed the design phase in the C++ standard meeting in Mar
 | 
						|
  // 2018. It will be implemented and integrated into `absl::variant`.
 | 
						|
  template <
 | 
						|
      class T,
 | 
						|
      std::size_t I = std::enable_if<
 | 
						|
          !std::is_same<absl::decay_t<T>, variant>::value,
 | 
						|
          variant_internal::IndexOfConstructedType<variant, T>>::type::value,
 | 
						|
      class Tj = absl::variant_alternative_t<I, variant>,
 | 
						|
      typename std::enable_if<std::is_assignable<Tj&, T>::value &&
 | 
						|
                              std::is_constructible<Tj, T>::value>::type* =
 | 
						|
          nullptr>
 | 
						|
  variant& operator=(T&& t) noexcept(
 | 
						|
      std::is_nothrow_assignable<Tj&, T>::value&&
 | 
						|
          std::is_nothrow_constructible<Tj, T>::value) {
 | 
						|
    variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
 | 
						|
        variant_internal::VariantCoreAccess::MakeConversionAssignVisitor(
 | 
						|
            this, absl::forward<T>(t)),
 | 
						|
        index());
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // emplace() Functions
 | 
						|
 | 
						|
  // Constructs a value of the given alternative type T within the variant.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   absl::variant<std::vector<int>, int, std::string> v;
 | 
						|
  //   v.emplace<int>(99);
 | 
						|
  //   v.emplace<std::string>("abc");
 | 
						|
  template <
 | 
						|
      class T, class... Args,
 | 
						|
      typename std::enable_if<std::is_constructible<
 | 
						|
          absl::variant_alternative_t<
 | 
						|
              variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
 | 
						|
          Args...>::value>::type* = nullptr>
 | 
						|
  T& emplace(Args&&... args) {
 | 
						|
    return variant_internal::VariantCoreAccess::Replace<
 | 
						|
        variant_internal::UnambiguousIndexOf<variant, T>::value>(
 | 
						|
        this, absl::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  // Constructs a value of the given alternative type T within the variant using
 | 
						|
  // an initializer list.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   absl::variant<std::vector<int>, int, std::string> v;
 | 
						|
  //   v.emplace<std::vector<int>>({0, 1, 2});
 | 
						|
  template <
 | 
						|
      class T, class U, class... Args,
 | 
						|
      typename std::enable_if<std::is_constructible<
 | 
						|
          absl::variant_alternative_t<
 | 
						|
              variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
 | 
						|
          std::initializer_list<U>&, Args...>::value>::type* = nullptr>
 | 
						|
  T& emplace(std::initializer_list<U> il, Args&&... args) {
 | 
						|
    return variant_internal::VariantCoreAccess::Replace<
 | 
						|
        variant_internal::UnambiguousIndexOf<variant, T>::value>(
 | 
						|
        this, il, absl::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  // Destroys the current value of the variant (provided that
 | 
						|
  // `absl::valueless_by_exception()` is false, and constructs a new value at
 | 
						|
  // the given index.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   absl::variant<std::vector<int>, int, int> v;
 | 
						|
  //   v.emplace<1>(99);
 | 
						|
  //   v.emplace<2>(98);
 | 
						|
  //   v.emplace<int>(99);  // Won't compile. 'int' isn't a unique type.
 | 
						|
  template <std::size_t I, class... Args,
 | 
						|
            typename std::enable_if<
 | 
						|
                std::is_constructible<absl::variant_alternative_t<I, variant>,
 | 
						|
                                      Args...>::value>::type* = nullptr>
 | 
						|
  absl::variant_alternative_t<I, variant>& emplace(Args&&... args) {
 | 
						|
    return variant_internal::VariantCoreAccess::Replace<I>(
 | 
						|
        this, absl::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  // Destroys the current value of the variant (provided that
 | 
						|
  // `absl::valueless_by_exception()` is false, and constructs a new value at
 | 
						|
  // the given index using an initializer list and the provided arguments.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   absl::variant<std::vector<int>, int, int> v;
 | 
						|
  //   v.emplace<0>({0, 1, 2});
 | 
						|
  template <std::size_t I, class U, class... Args,
 | 
						|
            typename std::enable_if<std::is_constructible<
 | 
						|
                absl::variant_alternative_t<I, variant>,
 | 
						|
                std::initializer_list<U>&, Args...>::value>::type* = nullptr>
 | 
						|
  absl::variant_alternative_t<I, variant>& emplace(std::initializer_list<U> il,
 | 
						|
                                                   Args&&... args) {
 | 
						|
    return variant_internal::VariantCoreAccess::Replace<I>(
 | 
						|
        this, il, absl::forward<Args>(args)...);
 | 
						|
  }
 | 
						|
 | 
						|
  // variant::valueless_by_exception()
 | 
						|
  //
 | 
						|
  // Returns false if and only if the variant currently holds a valid value.
 | 
						|
  constexpr bool valueless_by_exception() const noexcept {
 | 
						|
    return this->index_ == absl::variant_npos;
 | 
						|
  }
 | 
						|
 | 
						|
  // variant::index()
 | 
						|
  //
 | 
						|
  // Returns the index value of the variant's currently selected alternative
 | 
						|
  // type.
 | 
						|
  constexpr std::size_t index() const noexcept { return this->index_; }
 | 
						|
 | 
						|
  // variant::swap()
 | 
						|
  //
 | 
						|
  // Swaps the values of two variant objects.
 | 
						|
  //
 | 
						|
  // TODO(calabrese)
 | 
						|
  //   `variant::swap()` and `swap()` rely on `std::is_(nothrow)_swappable()`
 | 
						|
  //   which is introduced in C++17. So we assume `is_swappable()` is always
 | 
						|
  //   true and `is_nothrow_swappable()` is same as `std::is_trivial()`.
 | 
						|
  void swap(variant& rhs) noexcept(
 | 
						|
      absl::conjunction<std::is_trivial<T0>, std::is_trivial<Tn>...>::value) {
 | 
						|
    return variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
 | 
						|
        variant_internal::Swap<T0, Tn...>{this, &rhs}, rhs.index());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// We need a valid declaration of variant<> for SFINAE and overload resolution
 | 
						|
// to work properly above, but we don't need a full declaration since this type
 | 
						|
// will never be constructed. This declaration, though incomplete, suffices.
 | 
						|
template <>
 | 
						|
class variant<>;
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// Relational Operators
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// If neither operand is in the `variant::valueless_by_exception` state:
 | 
						|
//
 | 
						|
//   * If the index of both variants is the same, the relational operator
 | 
						|
//     returns the result of the corresponding relational operator for the
 | 
						|
//     corresponding alternative type.
 | 
						|
//   * If the index of both variants is not the same, the relational operator
 | 
						|
//     returns the result of that operation applied to the value of the left
 | 
						|
//     operand's index and the value of the right operand's index.
 | 
						|
//   * If at least one operand is in the valueless_by_exception state:
 | 
						|
//     - A variant in the valueless_by_exception state is only considered equal
 | 
						|
//       to another variant in the valueless_by_exception state.
 | 
						|
//     - If exactly one operand is in the valueless_by_exception state, the
 | 
						|
//       variant in the valueless_by_exception state is less than the variant
 | 
						|
//       that is not in the valueless_by_exception state.
 | 
						|
//
 | 
						|
// Note: The value 1 is added to each index in the relational comparisons such
 | 
						|
// that the index corresponding to the valueless_by_exception state wraps around
 | 
						|
// to 0 (the lowest value for the index type), and the remaining indices stay in
 | 
						|
// the same relative order.
 | 
						|
 | 
						|
// Equal-to operator
 | 
						|
template <typename... Types>
 | 
						|
constexpr variant_internal::RequireAllHaveEqualT<Types...> operator==(
 | 
						|
    const variant<Types...>& a, const variant<Types...>& b) {
 | 
						|
  return (a.index() == b.index()) &&
 | 
						|
         variant_internal::VisitIndices<sizeof...(Types)>::Run(
 | 
						|
             variant_internal::EqualsOp<Types...>{&a, &b}, a.index());
 | 
						|
}
 | 
						|
 | 
						|
// Not equal operator
 | 
						|
template <typename... Types>
 | 
						|
constexpr variant_internal::RequireAllHaveNotEqualT<Types...> operator!=(
 | 
						|
    const variant<Types...>& a, const variant<Types...>& b) {
 | 
						|
  return (a.index() != b.index()) ||
 | 
						|
         variant_internal::VisitIndices<sizeof...(Types)>::Run(
 | 
						|
             variant_internal::NotEqualsOp<Types...>{&a, &b}, a.index());
 | 
						|
}
 | 
						|
 | 
						|
// Less-than operator
 | 
						|
template <typename... Types>
 | 
						|
constexpr variant_internal::RequireAllHaveLessThanT<Types...> operator<(
 | 
						|
    const variant<Types...>& a, const variant<Types...>& b) {
 | 
						|
  return (a.index() != b.index())
 | 
						|
             ? (a.index() + 1) < (b.index() + 1)
 | 
						|
             : variant_internal::VisitIndices<sizeof...(Types)>::Run(
 | 
						|
                   variant_internal::LessThanOp<Types...>{&a, &b}, a.index());
 | 
						|
}
 | 
						|
 | 
						|
// Greater-than operator
 | 
						|
template <typename... Types>
 | 
						|
constexpr variant_internal::RequireAllHaveGreaterThanT<Types...> operator>(
 | 
						|
    const variant<Types...>& a, const variant<Types...>& b) {
 | 
						|
  return (a.index() != b.index())
 | 
						|
             ? (a.index() + 1) > (b.index() + 1)
 | 
						|
             : variant_internal::VisitIndices<sizeof...(Types)>::Run(
 | 
						|
                   variant_internal::GreaterThanOp<Types...>{&a, &b},
 | 
						|
                   a.index());
 | 
						|
}
 | 
						|
 | 
						|
// Less-than or equal-to operator
 | 
						|
template <typename... Types>
 | 
						|
constexpr variant_internal::RequireAllHaveLessThanOrEqualT<Types...> operator<=(
 | 
						|
    const variant<Types...>& a, const variant<Types...>& b) {
 | 
						|
  return (a.index() != b.index())
 | 
						|
             ? (a.index() + 1) < (b.index() + 1)
 | 
						|
             : variant_internal::VisitIndices<sizeof...(Types)>::Run(
 | 
						|
                   variant_internal::LessThanOrEqualsOp<Types...>{&a, &b},
 | 
						|
                   a.index());
 | 
						|
}
 | 
						|
 | 
						|
// Greater-than or equal-to operator
 | 
						|
template <typename... Types>
 | 
						|
constexpr variant_internal::RequireAllHaveGreaterThanOrEqualT<Types...>
 | 
						|
operator>=(const variant<Types...>& a, const variant<Types...>& b) {
 | 
						|
  return (a.index() != b.index())
 | 
						|
             ? (a.index() + 1) > (b.index() + 1)
 | 
						|
             : variant_internal::VisitIndices<sizeof...(Types)>::Run(
 | 
						|
                   variant_internal::GreaterThanOrEqualsOp<Types...>{&a, &b},
 | 
						|
                   a.index());
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
namespace std {
 | 
						|
 | 
						|
// hash()
 | 
						|
template <>  // NOLINT
 | 
						|
struct hash<absl::monostate> {
 | 
						|
  std::size_t operator()(absl::monostate) const { return 0; }
 | 
						|
};
 | 
						|
 | 
						|
template <class... T>  // NOLINT
 | 
						|
struct hash<absl::variant<T...>>
 | 
						|
    : absl::variant_internal::VariantHashBase<absl::variant<T...>, void,
 | 
						|
                                              absl::remove_const_t<T>...> {};
 | 
						|
 | 
						|
}  // namespace std
 | 
						|
 | 
						|
#endif  // ABSL_HAVE_STD_VARIANT
 | 
						|
 | 
						|
namespace absl {
 | 
						|
namespace variant_internal {
 | 
						|
 | 
						|
// Helper visitor for converting a variant<Ts...>` into another type (mostly
 | 
						|
// variant) that can be constructed from any type.
 | 
						|
template <typename To>
 | 
						|
struct ConversionVisitor {
 | 
						|
  template <typename T>
 | 
						|
  To operator()(T&& v) const {
 | 
						|
    return To(std::forward<T>(v));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace variant_internal
 | 
						|
 | 
						|
// ConvertVariantTo()
 | 
						|
//
 | 
						|
// Helper functions to convert an `absl::variant` to a variant of another set of
 | 
						|
// types, provided that the alternative type of the new variant type can be
 | 
						|
// converted from any type in the source variant.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::variant<name1, name2, float> InternalReq(const Req&);
 | 
						|
//
 | 
						|
//   // name1 and name2 are convertible to name
 | 
						|
//   absl::variant<name, float> ExternalReq(const Req& req) {
 | 
						|
//     return absl::ConvertVariantTo<absl::variant<name, float>>(
 | 
						|
//              InternalReq(req));
 | 
						|
//   }
 | 
						|
template <typename To, typename Variant>
 | 
						|
To ConvertVariantTo(Variant&& variant) {
 | 
						|
  return absl::visit(variant_internal::ConversionVisitor<To>{},
 | 
						|
                     std::forward<Variant>(variant));
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_TYPES_VARIANT_H_
 |