-- 049ac45508e335c6f010f2d28d71016b9fa65b4e by Derek Mauro <dmauro@google.com>: Fix librt detection PiperOrigin-RevId: 280207723 -- 6382c3a9fb2643af9dc031f92ca846c4a78e249c by Andy Getzendanner <durandal@google.com>: Fix Conan builds Import of https://github.com/abseil/abseil-cpp/pull/400 PiperOrigin-RevId: 280025424 -- aebcd52b1686ac82663a8d0193b60d0122a43372 by Samuel Benzaquen <sbenza@google.com>: Enable the assertion in the iterator's operator== and operator!= PiperOrigin-RevId: 279998951 -- 5b61d909e2159ac6fd45e0e456818db1e725ecd1 by Derek Mauro <dmauro@google.com>: Add best effort support for compiling much of Abseil with MinGW. This involves disabling ABSL_ATTRIBUTE_WEAK and adding link flags. A change to CCTZ is still necessary. Tests were not run yet, but most of them now build. PiperOrigin-RevId: 279966541 -- 4336f8b10cff906e2defdd7d1d449cde4907da5d by Abseil Team <absl-team@google.com>: Add comments and relax memory orders in base_internal::CallOnceImpl. Add a comment to document the memory order guarantee if base_internal::SpinLockWait() is called and returns kOnceDone. Add a comment for the load/store sequence in base_internal::CallOnceImpl based on Mike Burrows' explanation. The atomic load of 'control' in the #ifndef NDEBUG block does not need std::memory_order_acquire. It can use std::memory_order_relaxed. The atomic compare_exchange_strong of 'control' does not need std::memory_order_acquire in the success case. It can use std::memory_order_relaxed. PiperOrigin-RevId: 279814155 -- 407de3a5e9af957cded54a136ca0468bde620d4d by Abseil Team <absl-team@google.com>: Added a script to generate abseil.podspec from all BUILD.bazel files automatically. PiperOrigin-RevId: 279811441 -- 26139497d4a363d6c7bc989c554da593e8819a07 by Derek Mauro <dmauro@google.com>: Add missing copyright and Apache License to //absl/functional/BUILD.bazel PiperOrigin-RevId: 279795227 -- 98ed625b02af6e5834edf52a920d8ca2dab4cd90 by Matt Kulukundis <kfm@google.com>: Switch the implementation of hashtablez to *only* work on platforms that have a PER_THREAD_TLS. The old case is very slow (global mutex) and nobody collects data from that configuration anyway. PiperOrigin-RevId: 279775149 -- 07225900ef672c005c38f467ad3f92f38d0922b3 by Derek Mauro <dmauro@google.com>: Remove the minumum glibc version check PiperOrigin-RevId: 279750412 -- ec09956a951b4f52228ecc81968b8db7ae19ed15 by Derek Mauro <dmauro@google.com>: CMake only: link with -lrt to support older glibc versions PiperOrigin-RevId: 279741661 -- 97b113fb2e8246f6152c36330ba13793b37154b6 by Xiaoyi Zhang <zhangxy@google.com>: Internal change. PiperOrigin-RevId: 279390188 -- ca8f72f2721546cc9b01bd01b2ea144962e6e0c5 by Andy Getzendanner <durandal@google.com>: Expose PutTwoDigits for internal use within Abseil. PiperOrigin-RevId: 279374239 -- 14c6384cc03bbdfdefd2e4b635f104af5dd7e026 by Derek Mauro <dmauro@google.com>: Remove log_severity sources from the base target. They are already compiled as part of a separate library. PiperOrigin-RevId: 279372619 -- 3c5d926c718f8bf394e3bee87b6ba8d94601e0d3 by Abseil Team <absl-team@google.com>: s/indepdent/independent/g in SimpleAtof's documentation. PiperOrigin-RevId: 279350836 -- de2c44be8a8edf9efa1fe2007cba3564f3e5b0b8 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 279346990 -- 2ba078341423fcf6d0ba5ca1831f86570a26e615 by Samuel Benzaquen <sbenza@google.com>: Add hash support for std::wstring, std::u16string and std::u32string. PiperOrigin-RevId: 279320672 -- 3272d3ffcfa55283a04f90e5868701912da95ef7 by Andy Soffer <asoffer@google.com>: Removing a bunch of __restricts that amount to no performance differences. One of these is the cause of https://github.com/abseil/abseil-cpp/issues/396. In particular, in one of the Vector128Store functions, restricts on two pointers that were indeed aliased seems to be the root cause of the issues. Closes #396 PiperOrigin-RevId: 279318999 -- 342f338ab31cc24344d5de8f28cf455bbb629a17 by Jorg Brown <jorg@google.com>: Support uint128 in SimpleAtoi PiperOrigin-RevId: 279234038 -- 81cb0a04cf2dc4515d303679fc60968712191571 by Derek Mauro <dmauro@google.com>: Change the check for futex availability to support older Linux systems PiperOrigin-RevId: 279147079 -- cb4ca4aa4c8d2d710a5d483c56c4ce4f979e14b1 by Abseil Team <absl-team@google.com>: Add IWYU pragma: export for int128 .inc files. PiperOrigin-RevId: 279107098 -- b8df86ef610c366729f07326c726f3e34817b4dd by Abseil Team <absl-team@google.com>: An optimization for Waiter::Post() in the SEM waiter mode. Like the FUTEX waiter mode, Waiter::Post() only needs to call Poke() if it incremented the atomic variable from 0. PiperOrigin-RevId: 279086133 GitOrigin-RevId: 049ac45508e335c6f010f2d28d71016b9fa65b4e Change-Id: I4c1a4073fff62cb6a1fcb1c104aa7d62dad588c2
		
			
				
	
	
		
			1916 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1916 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2018 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/container/internal/raw_hash_set.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <deque>
 | |
| #include <functional>
 | |
| #include <memory>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <string>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/base/attributes.h"
 | |
| #include "absl/base/internal/cycleclock.h"
 | |
| #include "absl/base/internal/raw_logging.h"
 | |
| #include "absl/container/internal/container_memory.h"
 | |
| #include "absl/container/internal/hash_function_defaults.h"
 | |
| #include "absl/container/internal/hash_policy_testing.h"
 | |
| #include "absl/container/internal/hashtable_debug.h"
 | |
| #include "absl/strings/string_view.h"
 | |
| 
 | |
| namespace absl {
 | |
| namespace container_internal {
 | |
| 
 | |
| struct RawHashSetTestOnlyAccess {
 | |
|   template <typename C>
 | |
|   static auto GetSlots(const C& c) -> decltype(c.slots_) {
 | |
|     return c.slots_;
 | |
|   }
 | |
| };
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using ::testing::DoubleNear;
 | |
| using ::testing::ElementsAre;
 | |
| using ::testing::Ge;
 | |
| using ::testing::Lt;
 | |
| using ::testing::Optional;
 | |
| using ::testing::Pair;
 | |
| using ::testing::UnorderedElementsAre;
 | |
| 
 | |
| TEST(Util, NormalizeCapacity) {
 | |
|   EXPECT_EQ(1, NormalizeCapacity(0));
 | |
|   EXPECT_EQ(1, NormalizeCapacity(1));
 | |
|   EXPECT_EQ(3, NormalizeCapacity(2));
 | |
|   EXPECT_EQ(3, NormalizeCapacity(3));
 | |
|   EXPECT_EQ(7, NormalizeCapacity(4));
 | |
|   EXPECT_EQ(7, NormalizeCapacity(7));
 | |
|   EXPECT_EQ(15, NormalizeCapacity(8));
 | |
|   EXPECT_EQ(15, NormalizeCapacity(15));
 | |
|   EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 1));
 | |
|   EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 2));
 | |
| }
 | |
| 
 | |
| TEST(Util, GrowthAndCapacity) {
 | |
|   // Verify that GrowthToCapacity gives the minimum capacity that has enough
 | |
|   // growth.
 | |
|   for (size_t growth = 0; growth < 10000; ++growth) {
 | |
|     SCOPED_TRACE(growth);
 | |
|     size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth));
 | |
|     // The capacity is large enough for `growth`
 | |
|     EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth));
 | |
|     if (growth != 0 && capacity > 1) {
 | |
|       // There is no smaller capacity that works.
 | |
|       EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (size_t capacity = Group::kWidth - 1; capacity < 10000;
 | |
|        capacity = 2 * capacity + 1) {
 | |
|     SCOPED_TRACE(capacity);
 | |
|     size_t growth = CapacityToGrowth(capacity);
 | |
|     EXPECT_THAT(growth, Lt(capacity));
 | |
|     EXPECT_LE(GrowthToLowerboundCapacity(growth), capacity);
 | |
|     EXPECT_EQ(NormalizeCapacity(GrowthToLowerboundCapacity(growth)), capacity);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Util, probe_seq) {
 | |
|   probe_seq<16> seq(0, 127);
 | |
|   auto gen = [&]() {
 | |
|     size_t res = seq.offset();
 | |
|     seq.next();
 | |
|     return res;
 | |
|   };
 | |
|   std::vector<size_t> offsets(8);
 | |
|   std::generate_n(offsets.begin(), 8, gen);
 | |
|   EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
 | |
|   seq = probe_seq<16>(128, 127);
 | |
|   std::generate_n(offsets.begin(), 8, gen);
 | |
|   EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
 | |
| }
 | |
| 
 | |
| TEST(BitMask, Smoke) {
 | |
|   EXPECT_FALSE((BitMask<uint8_t, 8>(0)));
 | |
|   EXPECT_TRUE((BitMask<uint8_t, 8>(5)));
 | |
| 
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre());
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0));
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1));
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1));
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2));
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2));
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6));
 | |
|   EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7));
 | |
| }
 | |
| 
 | |
| TEST(BitMask, WithShift) {
 | |
|   // See the non-SSE version of Group for details on what this math is for.
 | |
|   uint64_t ctrl = 0x1716151413121110;
 | |
|   uint64_t hash = 0x12;
 | |
|   constexpr uint64_t msbs = 0x8080808080808080ULL;
 | |
|   constexpr uint64_t lsbs = 0x0101010101010101ULL;
 | |
|   auto x = ctrl ^ (lsbs * hash);
 | |
|   uint64_t mask = (x - lsbs) & ~x & msbs;
 | |
|   EXPECT_EQ(0x0000000080800000, mask);
 | |
| 
 | |
|   BitMask<uint64_t, 8, 3> b(mask);
 | |
|   EXPECT_EQ(*b, 2);
 | |
| }
 | |
| 
 | |
| TEST(BitMask, LeadingTrailing) {
 | |
|   EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).LeadingZeros()), 3);
 | |
|   EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).TrailingZeros()), 6);
 | |
| 
 | |
|   EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).LeadingZeros()), 15);
 | |
|   EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).TrailingZeros()), 0);
 | |
| 
 | |
|   EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).LeadingZeros()), 0);
 | |
|   EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).TrailingZeros()), 15);
 | |
| 
 | |
|   EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3);
 | |
|   EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1);
 | |
| 
 | |
|   EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7);
 | |
|   EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0);
 | |
| 
 | |
|   EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0);
 | |
|   EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7);
 | |
| }
 | |
| 
 | |
| TEST(Group, EmptyGroup) {
 | |
|   for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h));
 | |
| }
 | |
| 
 | |
| TEST(Group, Match) {
 | |
|   if (Group::kWidth == 16) {
 | |
|     ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
 | |
|                       7,      5, 3,        1, 1,      1, 1,         1};
 | |
|     EXPECT_THAT(Group{group}.Match(0), ElementsAre());
 | |
|     EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15));
 | |
|     EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10));
 | |
|     EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9));
 | |
|     EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8));
 | |
|   } else if (Group::kWidth == 8) {
 | |
|     ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
 | |
|     EXPECT_THAT(Group{group}.Match(0), ElementsAre());
 | |
|     EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7));
 | |
|     EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4));
 | |
|   } else {
 | |
|     FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Group, MatchEmpty) {
 | |
|   if (Group::kWidth == 16) {
 | |
|     ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
 | |
|                       7,      5, 3,        1, 1,      1, 1,         1};
 | |
|     EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4));
 | |
|   } else if (Group::kWidth == 8) {
 | |
|     ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
 | |
|     EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0));
 | |
|   } else {
 | |
|     FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Group, MatchEmptyOrDeleted) {
 | |
|   if (Group::kWidth == 16) {
 | |
|     ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
 | |
|                       7,      5, 3,        1, 1,      1, 1,         1};
 | |
|     EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4));
 | |
|   } else if (Group::kWidth == 8) {
 | |
|     ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
 | |
|     EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3));
 | |
|   } else {
 | |
|     FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Batch, DropDeletes) {
 | |
|   constexpr size_t kCapacity = 63;
 | |
|   constexpr size_t kGroupWidth = container_internal::Group::kWidth;
 | |
|   std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth);
 | |
|   ctrl[kCapacity] = kSentinel;
 | |
|   std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted};
 | |
|   for (size_t i = 0; i != kCapacity; ++i) {
 | |
|     ctrl[i] = pattern[i % pattern.size()];
 | |
|     if (i < kGroupWidth - 1)
 | |
|       ctrl[i + kCapacity + 1] = pattern[i % pattern.size()];
 | |
|   }
 | |
|   ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity);
 | |
|   ASSERT_EQ(ctrl[kCapacity], kSentinel);
 | |
|   for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) {
 | |
|     ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()];
 | |
|     if (i == kCapacity) expected = kSentinel;
 | |
|     if (expected == kDeleted) expected = kEmpty;
 | |
|     if (IsFull(expected)) expected = kDeleted;
 | |
|     EXPECT_EQ(ctrl[i], expected)
 | |
|         << i << " " << int{pattern[i % pattern.size()]};
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Group, CountLeadingEmptyOrDeleted) {
 | |
|   const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted};
 | |
|   const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel};
 | |
| 
 | |
|   for (ctrl_t empty : empty_examples) {
 | |
|     std::vector<ctrl_t> e(Group::kWidth, empty);
 | |
|     EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted());
 | |
|     for (ctrl_t full : full_examples) {
 | |
|       for (size_t i = 0; i != Group::kWidth; ++i) {
 | |
|         std::vector<ctrl_t> f(Group::kWidth, empty);
 | |
|         f[i] = full;
 | |
|         EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted());
 | |
|       }
 | |
|       std::vector<ctrl_t> f(Group::kWidth, empty);
 | |
|       f[Group::kWidth * 2 / 3] = full;
 | |
|       f[Group::kWidth / 2] = full;
 | |
|       EXPECT_EQ(
 | |
|           Group::kWidth / 2, Group{f.data()}.CountLeadingEmptyOrDeleted());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| struct IntPolicy {
 | |
|   using slot_type = int64_t;
 | |
|   using key_type = int64_t;
 | |
|   using init_type = int64_t;
 | |
| 
 | |
|   static void construct(void*, int64_t* slot, int64_t v) { *slot = v; }
 | |
|   static void destroy(void*, int64_t*) {}
 | |
|   static void transfer(void*, int64_t* new_slot, int64_t* old_slot) {
 | |
|     *new_slot = *old_slot;
 | |
|   }
 | |
| 
 | |
|   static int64_t& element(slot_type* slot) { return *slot; }
 | |
| 
 | |
|   template <class F>
 | |
|   static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) {
 | |
|     return std::forward<F>(f)(x, x);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class StringPolicy {
 | |
|   template <class F, class K, class V,
 | |
|             class = typename std::enable_if<
 | |
|                 std::is_convertible<const K&, absl::string_view>::value>::type>
 | |
|   decltype(std::declval<F>()(
 | |
|       std::declval<const absl::string_view&>(), std::piecewise_construct,
 | |
|       std::declval<std::tuple<K>>(),
 | |
|       std::declval<V>())) static apply_impl(F&& f,
 | |
|                                             std::pair<std::tuple<K>, V> p) {
 | |
|     const absl::string_view& key = std::get<0>(p.first);
 | |
|     return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
 | |
|                               std::move(p.second));
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   struct slot_type {
 | |
|     struct ctor {};
 | |
| 
 | |
|     template <class... Ts>
 | |
|     slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {}
 | |
| 
 | |
|     std::pair<std::string, std::string> pair;
 | |
|   };
 | |
| 
 | |
|   using key_type = std::string;
 | |
|   using init_type = std::pair<std::string, std::string>;
 | |
| 
 | |
|   template <class allocator_type, class... Args>
 | |
|   static void construct(allocator_type* alloc, slot_type* slot, Args... args) {
 | |
|     std::allocator_traits<allocator_type>::construct(
 | |
|         *alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <class allocator_type>
 | |
|   static void destroy(allocator_type* alloc, slot_type* slot) {
 | |
|     std::allocator_traits<allocator_type>::destroy(*alloc, slot);
 | |
|   }
 | |
| 
 | |
|   template <class allocator_type>
 | |
|   static void transfer(allocator_type* alloc, slot_type* new_slot,
 | |
|                        slot_type* old_slot) {
 | |
|     construct(alloc, new_slot, std::move(old_slot->pair));
 | |
|     destroy(alloc, old_slot);
 | |
|   }
 | |
| 
 | |
|   static std::pair<std::string, std::string>& element(slot_type* slot) {
 | |
|     return slot->pair;
 | |
|   }
 | |
| 
 | |
|   template <class F, class... Args>
 | |
|   static auto apply(F&& f, Args&&... args)
 | |
|       -> decltype(apply_impl(std::forward<F>(f),
 | |
|                              PairArgs(std::forward<Args>(args)...))) {
 | |
|     return apply_impl(std::forward<F>(f),
 | |
|                       PairArgs(std::forward<Args>(args)...));
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct StringHash : absl::Hash<absl::string_view> {
 | |
|   using is_transparent = void;
 | |
| };
 | |
| struct StringEq : std::equal_to<absl::string_view> {
 | |
|   using is_transparent = void;
 | |
| };
 | |
| 
 | |
| struct StringTable
 | |
|     : raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> {
 | |
|   using Base = typename StringTable::raw_hash_set;
 | |
|   StringTable() {}
 | |
|   using Base::Base;
 | |
| };
 | |
| 
 | |
| struct IntTable
 | |
|     : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
 | |
|                    std::equal_to<int64_t>, std::allocator<int64_t>> {
 | |
|   using Base = typename IntTable::raw_hash_set;
 | |
|   using Base::Base;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct CustomAlloc : std::allocator<T> {
 | |
|   CustomAlloc() {}
 | |
| 
 | |
|   template <typename U>
 | |
|   CustomAlloc(const CustomAlloc<U>& other) {}
 | |
| 
 | |
|   template<class U> struct rebind {
 | |
|     using other = CustomAlloc<U>;
 | |
|   };
 | |
| };
 | |
| 
 | |
| struct CustomAllocIntTable
 | |
|     : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
 | |
|                    std::equal_to<int64_t>, CustomAlloc<int64_t>> {
 | |
|   using Base = typename CustomAllocIntTable::raw_hash_set;
 | |
|   using Base::Base;
 | |
| };
 | |
| 
 | |
| struct BadFastHash {
 | |
|   template <class T>
 | |
|   size_t operator()(const T&) const {
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>,
 | |
|                                std::allocator<int>> {
 | |
|   using Base = typename BadTable::raw_hash_set;
 | |
|   BadTable() {}
 | |
|   using Base::Base;
 | |
| };
 | |
| 
 | |
| TEST(Table, EmptyFunctorOptimization) {
 | |
|   static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, "");
 | |
|   static_assert(std::is_empty<std::allocator<int>>::value, "");
 | |
| 
 | |
|   struct MockTable {
 | |
|     void* ctrl;
 | |
|     void* slots;
 | |
|     size_t size;
 | |
|     size_t capacity;
 | |
|     size_t growth_left;
 | |
|     void* infoz;
 | |
|   };
 | |
|   struct StatelessHash {
 | |
|     size_t operator()(absl::string_view) const { return 0; }
 | |
|   };
 | |
|   struct StatefulHash : StatelessHash {
 | |
|     size_t dummy;
 | |
|   };
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       sizeof(MockTable),
 | |
|       sizeof(
 | |
|           raw_hash_set<StringPolicy, StatelessHash,
 | |
|                        std::equal_to<absl::string_view>, std::allocator<int>>));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       sizeof(MockTable) + sizeof(StatefulHash),
 | |
|       sizeof(
 | |
|           raw_hash_set<StringPolicy, StatefulHash,
 | |
|                        std::equal_to<absl::string_view>, std::allocator<int>>));
 | |
| }
 | |
| 
 | |
| TEST(Table, Empty) {
 | |
|   IntTable t;
 | |
|   EXPECT_EQ(0, t.size());
 | |
|   EXPECT_TRUE(t.empty());
 | |
| }
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| template <class T>
 | |
| ABSL_ATTRIBUTE_ALWAYS_INLINE inline void DoNotOptimize(const T& v) {
 | |
|   asm volatile("" : : "r,m"(v) : "memory");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| TEST(Table, Prefetch) {
 | |
|   IntTable t;
 | |
|   t.emplace(1);
 | |
|   // Works for both present and absent keys.
 | |
|   t.prefetch(1);
 | |
|   t.prefetch(2);
 | |
| 
 | |
|   // Do not run in debug mode, when prefetch is not implemented, or when
 | |
|   // sanitizers are enabled, or on WebAssembly.
 | |
| #if defined(NDEBUG) && defined(__GNUC__) && defined(__x86_64__) &&          \
 | |
|     !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) &&            \
 | |
|     !defined(THREAD_SANITIZER) && !defined(UNDEFINED_BEHAVIOR_SANITIZER) && \
 | |
|     !defined(__EMSCRIPTEN__)
 | |
|   const auto now = [] { return absl::base_internal::CycleClock::Now(); };
 | |
| 
 | |
|   // Make size enough to not fit in L2 cache (16.7 Mb)
 | |
|   static constexpr int size = 1 << 22;
 | |
|   for (int i = 0; i < size; ++i) t.insert(i);
 | |
| 
 | |
|   int64_t no_prefetch = 0, prefetch = 0;
 | |
|   for (int iter = 0; iter < 10; ++iter) {
 | |
|     int64_t time = now();
 | |
|     for (int i = 0; i < size; ++i) {
 | |
|       DoNotOptimize(t.find(i));
 | |
|     }
 | |
|     no_prefetch += now() - time;
 | |
| 
 | |
|     time = now();
 | |
|     for (int i = 0; i < size; ++i) {
 | |
|       t.prefetch(i + 20);
 | |
|       DoNotOptimize(t.find(i));
 | |
|     }
 | |
|     prefetch += now() - time;
 | |
|   }
 | |
| 
 | |
|   // no_prefetch is at least 30% slower.
 | |
|   EXPECT_GE(1.0 * no_prefetch / prefetch, 1.3);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| TEST(Table, LookupEmpty) {
 | |
|   IntTable t;
 | |
|   auto it = t.find(0);
 | |
|   EXPECT_TRUE(it == t.end());
 | |
| }
 | |
| 
 | |
| TEST(Table, Insert1) {
 | |
|   IntTable t;
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   auto res = t.emplace(0);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_THAT(*res.first, 0);
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   EXPECT_THAT(*t.find(0), 0);
 | |
| }
 | |
| 
 | |
| TEST(Table, Insert2) {
 | |
|   IntTable t;
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   auto res = t.emplace(0);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_THAT(*res.first, 0);
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   EXPECT_TRUE(t.find(1) == t.end());
 | |
|   res = t.emplace(1);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_THAT(*res.first, 1);
 | |
|   EXPECT_EQ(2, t.size());
 | |
|   EXPECT_THAT(*t.find(0), 0);
 | |
|   EXPECT_THAT(*t.find(1), 1);
 | |
| }
 | |
| 
 | |
| TEST(Table, InsertCollision) {
 | |
|   BadTable t;
 | |
|   EXPECT_TRUE(t.find(1) == t.end());
 | |
|   auto res = t.emplace(1);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_THAT(*res.first, 1);
 | |
|   EXPECT_EQ(1, t.size());
 | |
| 
 | |
|   EXPECT_TRUE(t.find(2) == t.end());
 | |
|   res = t.emplace(2);
 | |
|   EXPECT_THAT(*res.first, 2);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_EQ(2, t.size());
 | |
| 
 | |
|   EXPECT_THAT(*t.find(1), 1);
 | |
|   EXPECT_THAT(*t.find(2), 2);
 | |
| }
 | |
| 
 | |
| // Test that we do not add existent element in case we need to search through
 | |
| // many groups with deleted elements
 | |
| TEST(Table, InsertCollisionAndFindAfterDelete) {
 | |
|   BadTable t;  // all elements go to the same group.
 | |
|   // Have at least 2 groups with Group::kWidth collisions
 | |
|   // plus some extra collisions in the last group.
 | |
|   constexpr size_t kNumInserts = Group::kWidth * 2 + 5;
 | |
|   for (size_t i = 0; i < kNumInserts; ++i) {
 | |
|     auto res = t.emplace(i);
 | |
|     EXPECT_TRUE(res.second);
 | |
|     EXPECT_THAT(*res.first, i);
 | |
|     EXPECT_EQ(i + 1, t.size());
 | |
|   }
 | |
| 
 | |
|   // Remove elements one by one and check
 | |
|   // that we still can find all other elements.
 | |
|   for (size_t i = 0; i < kNumInserts; ++i) {
 | |
|     EXPECT_EQ(1, t.erase(i)) << i;
 | |
|     for (size_t j = i + 1; j < kNumInserts; ++j) {
 | |
|       EXPECT_THAT(*t.find(j), j);
 | |
|       auto res = t.emplace(j);
 | |
|       EXPECT_FALSE(res.second) << i << " " << j;
 | |
|       EXPECT_THAT(*res.first, j);
 | |
|       EXPECT_EQ(kNumInserts - i - 1, t.size());
 | |
|     }
 | |
|   }
 | |
|   EXPECT_TRUE(t.empty());
 | |
| }
 | |
| 
 | |
| TEST(Table, LazyEmplace) {
 | |
|   StringTable t;
 | |
|   bool called = false;
 | |
|   auto it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
 | |
|     called = true;
 | |
|     f("abc", "ABC");
 | |
|   });
 | |
|   EXPECT_TRUE(called);
 | |
|   EXPECT_THAT(*it, Pair("abc", "ABC"));
 | |
|   called = false;
 | |
|   it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
 | |
|     called = true;
 | |
|     f("abc", "DEF");
 | |
|   });
 | |
|   EXPECT_FALSE(called);
 | |
|   EXPECT_THAT(*it, Pair("abc", "ABC"));
 | |
| }
 | |
| 
 | |
| TEST(Table, ContainsEmpty) {
 | |
|   IntTable t;
 | |
| 
 | |
|   EXPECT_FALSE(t.contains(0));
 | |
| }
 | |
| 
 | |
| TEST(Table, Contains1) {
 | |
|   IntTable t;
 | |
| 
 | |
|   EXPECT_TRUE(t.insert(0).second);
 | |
|   EXPECT_TRUE(t.contains(0));
 | |
|   EXPECT_FALSE(t.contains(1));
 | |
| 
 | |
|   EXPECT_EQ(1, t.erase(0));
 | |
|   EXPECT_FALSE(t.contains(0));
 | |
| }
 | |
| 
 | |
| TEST(Table, Contains2) {
 | |
|   IntTable t;
 | |
| 
 | |
|   EXPECT_TRUE(t.insert(0).second);
 | |
|   EXPECT_TRUE(t.contains(0));
 | |
|   EXPECT_FALSE(t.contains(1));
 | |
| 
 | |
|   t.clear();
 | |
|   EXPECT_FALSE(t.contains(0));
 | |
| }
 | |
| 
 | |
| int decompose_constructed;
 | |
| struct DecomposeType {
 | |
|   DecomposeType(int i) : i(i) {  // NOLINT
 | |
|     ++decompose_constructed;
 | |
|   }
 | |
| 
 | |
|   explicit DecomposeType(const char* d) : DecomposeType(*d) {}
 | |
| 
 | |
|   int i;
 | |
| };
 | |
| 
 | |
| struct DecomposeHash {
 | |
|   using is_transparent = void;
 | |
|   size_t operator()(DecomposeType a) const { return a.i; }
 | |
|   size_t operator()(int a) const { return a; }
 | |
|   size_t operator()(const char* a) const { return *a; }
 | |
| };
 | |
| 
 | |
| struct DecomposeEq {
 | |
|   using is_transparent = void;
 | |
|   bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; }
 | |
|   bool operator()(DecomposeType a, int b) const { return a.i == b; }
 | |
|   bool operator()(DecomposeType a, const char* b) const { return a.i == *b; }
 | |
| };
 | |
| 
 | |
| struct DecomposePolicy {
 | |
|   using slot_type = DecomposeType;
 | |
|   using key_type = DecomposeType;
 | |
|   using init_type = DecomposeType;
 | |
| 
 | |
|   template <typename T>
 | |
|   static void construct(void*, DecomposeType* slot, T&& v) {
 | |
|     *slot = DecomposeType(std::forward<T>(v));
 | |
|   }
 | |
|   static void destroy(void*, DecomposeType*) {}
 | |
|   static DecomposeType& element(slot_type* slot) { return *slot; }
 | |
| 
 | |
|   template <class F, class T>
 | |
|   static auto apply(F&& f, const T& x) -> decltype(std::forward<F>(f)(x, x)) {
 | |
|     return std::forward<F>(f)(x, x);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Hash, typename Eq>
 | |
| void TestDecompose(bool construct_three) {
 | |
|   DecomposeType elem{0};
 | |
|   const int one = 1;
 | |
|   const char* three_p = "3";
 | |
|   const auto& three = three_p;
 | |
| 
 | |
|   raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1;
 | |
| 
 | |
|   decompose_constructed = 0;
 | |
|   int expected_constructed = 0;
 | |
|   EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   set1.insert(elem);
 | |
|   EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   set1.insert(1);
 | |
|   EXPECT_EQ(++expected_constructed, decompose_constructed);
 | |
|   set1.emplace("3");
 | |
|   EXPECT_EQ(++expected_constructed, decompose_constructed);
 | |
|   EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
| 
 | |
|   {  // insert(T&&)
 | |
|     set1.insert(1);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   }
 | |
| 
 | |
|   {  // insert(const T&)
 | |
|     set1.insert(one);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   }
 | |
| 
 | |
|   {  // insert(hint, T&&)
 | |
|     set1.insert(set1.begin(), 1);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   }
 | |
| 
 | |
|   {  // insert(hint, const T&)
 | |
|     set1.insert(set1.begin(), one);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   }
 | |
| 
 | |
|   {  // emplace(...)
 | |
|     set1.emplace(1);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|     set1.emplace("3");
 | |
|     expected_constructed += construct_three;
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|     set1.emplace(one);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|     set1.emplace(three);
 | |
|     expected_constructed += construct_three;
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   }
 | |
| 
 | |
|   {  // emplace_hint(...)
 | |
|     set1.emplace_hint(set1.begin(), 1);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|     set1.emplace_hint(set1.begin(), "3");
 | |
|     expected_constructed += construct_three;
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|     set1.emplace_hint(set1.begin(), one);
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|     set1.emplace_hint(set1.begin(), three);
 | |
|     expected_constructed += construct_three;
 | |
|     EXPECT_EQ(expected_constructed, decompose_constructed);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, Decompose) {
 | |
|   TestDecompose<DecomposeHash, DecomposeEq>(false);
 | |
| 
 | |
|   struct TransparentHashIntOverload {
 | |
|     size_t operator()(DecomposeType a) const { return a.i; }
 | |
|     size_t operator()(int a) const { return a; }
 | |
|   };
 | |
|   struct TransparentEqIntOverload {
 | |
|     bool operator()(DecomposeType a, DecomposeType b) const {
 | |
|       return a.i == b.i;
 | |
|     }
 | |
|     bool operator()(DecomposeType a, int b) const { return a.i == b; }
 | |
|   };
 | |
|   TestDecompose<TransparentHashIntOverload, DecomposeEq>(true);
 | |
|   TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true);
 | |
|   TestDecompose<DecomposeHash, TransparentEqIntOverload>(true);
 | |
| }
 | |
| 
 | |
| // Returns the largest m such that a table with m elements has the same number
 | |
| // of buckets as a table with n elements.
 | |
| size_t MaxDensitySize(size_t n) {
 | |
|   IntTable t;
 | |
|   t.reserve(n);
 | |
|   for (size_t i = 0; i != n; ++i) t.emplace(i);
 | |
|   const size_t c = t.bucket_count();
 | |
|   while (c == t.bucket_count()) t.emplace(n++);
 | |
|   return t.size() - 1;
 | |
| }
 | |
| 
 | |
| struct Modulo1000Hash {
 | |
|   size_t operator()(int x) const { return x % 1000; }
 | |
| };
 | |
| 
 | |
| struct Modulo1000HashTable
 | |
|     : public raw_hash_set<IntPolicy, Modulo1000Hash, std::equal_to<int>,
 | |
|                           std::allocator<int>> {};
 | |
| 
 | |
| // Test that rehash with no resize happen in case of many deleted slots.
 | |
| TEST(Table, RehashWithNoResize) {
 | |
|   Modulo1000HashTable t;
 | |
|   // Adding the same length (and the same hash) strings
 | |
|   // to have at least kMinFullGroups groups
 | |
|   // with Group::kWidth collisions. Then fill up to MaxDensitySize;
 | |
|   const size_t kMinFullGroups = 7;
 | |
|   std::vector<int> keys;
 | |
|   for (size_t i = 0; i < MaxDensitySize(Group::kWidth * kMinFullGroups); ++i) {
 | |
|     int k = i * 1000;
 | |
|     t.emplace(k);
 | |
|     keys.push_back(k);
 | |
|   }
 | |
|   const size_t capacity = t.capacity();
 | |
| 
 | |
|   // Remove elements from all groups except the first and the last one.
 | |
|   // All elements removed from full groups will be marked as kDeleted.
 | |
|   const size_t erase_begin = Group::kWidth / 2;
 | |
|   const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth;
 | |
|   for (size_t i = erase_begin; i < erase_end; ++i) {
 | |
|     EXPECT_EQ(1, t.erase(keys[i])) << i;
 | |
|   }
 | |
|   keys.erase(keys.begin() + erase_begin, keys.begin() + erase_end);
 | |
| 
 | |
|   auto last_key = keys.back();
 | |
|   size_t last_key_num_probes = GetHashtableDebugNumProbes(t, last_key);
 | |
| 
 | |
|   // Make sure that we have to make a lot of probes for last key.
 | |
|   ASSERT_GT(last_key_num_probes, kMinFullGroups);
 | |
| 
 | |
|   int x = 1;
 | |
|   // Insert and erase one element, before inplace rehash happen.
 | |
|   while (last_key_num_probes == GetHashtableDebugNumProbes(t, last_key)) {
 | |
|     t.emplace(x);
 | |
|     ASSERT_EQ(capacity, t.capacity());
 | |
|     // All elements should be there.
 | |
|     ASSERT_TRUE(t.find(x) != t.end()) << x;
 | |
|     for (const auto& k : keys) {
 | |
|       ASSERT_TRUE(t.find(k) != t.end()) << k;
 | |
|     }
 | |
|     t.erase(x);
 | |
|     ++x;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, InsertEraseStressTest) {
 | |
|   IntTable t;
 | |
|   const size_t kMinElementCount = 250;
 | |
|   std::deque<int> keys;
 | |
|   size_t i = 0;
 | |
|   for (; i < MaxDensitySize(kMinElementCount); ++i) {
 | |
|     t.emplace(i);
 | |
|     keys.push_back(i);
 | |
|   }
 | |
|   const size_t kNumIterations = 1000000;
 | |
|   for (; i < kNumIterations; ++i) {
 | |
|     ASSERT_EQ(1, t.erase(keys.front()));
 | |
|     keys.pop_front();
 | |
|     t.emplace(i);
 | |
|     keys.push_back(i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, InsertOverloads) {
 | |
|   StringTable t;
 | |
|   // These should all trigger the insert(init_type) overload.
 | |
|   t.insert({{}, {}});
 | |
|   t.insert({"ABC", {}});
 | |
|   t.insert({"DEF", "!!!"});
 | |
| 
 | |
|   EXPECT_THAT(t, UnorderedElementsAre(Pair("", ""), Pair("ABC", ""),
 | |
|                                       Pair("DEF", "!!!")));
 | |
| }
 | |
| 
 | |
| TEST(Table, LargeTable) {
 | |
|   IntTable t;
 | |
|   for (int64_t i = 0; i != 100000; ++i) t.emplace(i << 40);
 | |
|   for (int64_t i = 0; i != 100000; ++i) ASSERT_EQ(i << 40, *t.find(i << 40));
 | |
| }
 | |
| 
 | |
| // Timeout if copy is quadratic as it was in Rust.
 | |
| TEST(Table, EnsureNonQuadraticAsInRust) {
 | |
|   static const size_t kLargeSize = 1 << 15;
 | |
| 
 | |
|   IntTable t;
 | |
|   for (size_t i = 0; i != kLargeSize; ++i) {
 | |
|     t.insert(i);
 | |
|   }
 | |
| 
 | |
|   // If this is quadratic, the test will timeout.
 | |
|   IntTable t2;
 | |
|   for (const auto& entry : t) t2.insert(entry);
 | |
| }
 | |
| 
 | |
| TEST(Table, ClearBug) {
 | |
|   IntTable t;
 | |
|   constexpr size_t capacity = container_internal::Group::kWidth - 1;
 | |
|   constexpr size_t max_size = capacity / 2 + 1;
 | |
|   for (size_t i = 0; i < max_size; ++i) {
 | |
|     t.insert(i);
 | |
|   }
 | |
|   ASSERT_EQ(capacity, t.capacity());
 | |
|   intptr_t original = reinterpret_cast<intptr_t>(&*t.find(2));
 | |
|   t.clear();
 | |
|   ASSERT_EQ(capacity, t.capacity());
 | |
|   for (size_t i = 0; i < max_size; ++i) {
 | |
|     t.insert(i);
 | |
|   }
 | |
|   ASSERT_EQ(capacity, t.capacity());
 | |
|   intptr_t second = reinterpret_cast<intptr_t>(&*t.find(2));
 | |
|   // We are checking that original and second are close enough to each other
 | |
|   // that they are probably still in the same group.  This is not strictly
 | |
|   // guaranteed.
 | |
|   EXPECT_LT(std::abs(original - second),
 | |
|             capacity * sizeof(IntTable::value_type));
 | |
| }
 | |
| 
 | |
| TEST(Table, Erase) {
 | |
|   IntTable t;
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   auto res = t.emplace(0);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   t.erase(res.first);
 | |
|   EXPECT_EQ(0, t.size());
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
| }
 | |
| 
 | |
| TEST(Table, EraseMaintainsValidIterator) {
 | |
|   IntTable t;
 | |
|   const int kNumElements = 100;
 | |
|   for (int i = 0; i < kNumElements; i ++) {
 | |
|     EXPECT_TRUE(t.emplace(i).second);
 | |
|   }
 | |
|   EXPECT_EQ(t.size(), kNumElements);
 | |
| 
 | |
|   int num_erase_calls = 0;
 | |
|   auto it = t.begin();
 | |
|   while (it != t.end()) {
 | |
|     t.erase(it++);
 | |
|     num_erase_calls++;
 | |
|   }
 | |
| 
 | |
|   EXPECT_TRUE(t.empty());
 | |
|   EXPECT_EQ(num_erase_calls, kNumElements);
 | |
| }
 | |
| 
 | |
| // Collect N bad keys by following algorithm:
 | |
| // 1. Create an empty table and reserve it to 2 * N.
 | |
| // 2. Insert N random elements.
 | |
| // 3. Take first Group::kWidth - 1 to bad_keys array.
 | |
| // 4. Clear the table without resize.
 | |
| // 5. Go to point 2 while N keys not collected
 | |
| std::vector<int64_t> CollectBadMergeKeys(size_t N) {
 | |
|   static constexpr int kGroupSize = Group::kWidth - 1;
 | |
| 
 | |
|   auto topk_range = [](size_t b, size_t e, IntTable* t) -> std::vector<int64_t> {
 | |
|     for (size_t i = b; i != e; ++i) {
 | |
|       t->emplace(i);
 | |
|     }
 | |
|     std::vector<int64_t> res;
 | |
|     res.reserve(kGroupSize);
 | |
|     auto it = t->begin();
 | |
|     for (size_t i = b; i != e && i != b + kGroupSize; ++i, ++it) {
 | |
|       res.push_back(*it);
 | |
|     }
 | |
|     return res;
 | |
|   };
 | |
| 
 | |
|   std::vector<int64_t> bad_keys;
 | |
|   bad_keys.reserve(N);
 | |
|   IntTable t;
 | |
|   t.reserve(N * 2);
 | |
| 
 | |
|   for (size_t b = 0; bad_keys.size() < N; b += N) {
 | |
|     auto keys = topk_range(b, b + N, &t);
 | |
|     bad_keys.insert(bad_keys.end(), keys.begin(), keys.end());
 | |
|     t.erase(t.begin(), t.end());
 | |
|     EXPECT_TRUE(t.empty());
 | |
|   }
 | |
|   return bad_keys;
 | |
| }
 | |
| 
 | |
| struct ProbeStats {
 | |
|   // Number of elements with specific probe length over all tested tables.
 | |
|   std::vector<size_t> all_probes_histogram;
 | |
|   // Ratios total_probe_length/size for every tested table.
 | |
|   std::vector<double> single_table_ratios;
 | |
| 
 | |
|   friend ProbeStats operator+(const ProbeStats& a, const ProbeStats& b) {
 | |
|     ProbeStats res = a;
 | |
|     res.all_probes_histogram.resize(std::max(res.all_probes_histogram.size(),
 | |
|                                              b.all_probes_histogram.size()));
 | |
|     std::transform(b.all_probes_histogram.begin(), b.all_probes_histogram.end(),
 | |
|                    res.all_probes_histogram.begin(),
 | |
|                    res.all_probes_histogram.begin(), std::plus<size_t>());
 | |
|     res.single_table_ratios.insert(res.single_table_ratios.end(),
 | |
|                                    b.single_table_ratios.begin(),
 | |
|                                    b.single_table_ratios.end());
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   // Average ratio total_probe_length/size over tables.
 | |
|   double AvgRatio() const {
 | |
|     return std::accumulate(single_table_ratios.begin(),
 | |
|                            single_table_ratios.end(), 0.0) /
 | |
|            single_table_ratios.size();
 | |
|   }
 | |
| 
 | |
|   // Maximum ratio total_probe_length/size over tables.
 | |
|   double MaxRatio() const {
 | |
|     return *std::max_element(single_table_ratios.begin(),
 | |
|                              single_table_ratios.end());
 | |
|   }
 | |
| 
 | |
|   // Percentile ratio total_probe_length/size over tables.
 | |
|   double PercentileRatio(double Percentile = 0.95) const {
 | |
|     auto r = single_table_ratios;
 | |
|     auto mid = r.begin() + static_cast<size_t>(r.size() * Percentile);
 | |
|     if (mid != r.end()) {
 | |
|       std::nth_element(r.begin(), mid, r.end());
 | |
|       return *mid;
 | |
|     } else {
 | |
|       return MaxRatio();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Maximum probe length over all elements and all tables.
 | |
|   size_t MaxProbe() const { return all_probes_histogram.size(); }
 | |
| 
 | |
|   // Fraction of elements with specified probe length.
 | |
|   std::vector<double> ProbeNormalizedHistogram() const {
 | |
|     double total_elements = std::accumulate(all_probes_histogram.begin(),
 | |
|                                             all_probes_histogram.end(), 0ull);
 | |
|     std::vector<double> res;
 | |
|     for (size_t p : all_probes_histogram) {
 | |
|       res.push_back(p / total_elements);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   size_t PercentileProbe(double Percentile = 0.99) const {
 | |
|     size_t idx = 0;
 | |
|     for (double p : ProbeNormalizedHistogram()) {
 | |
|       if (Percentile > p) {
 | |
|         Percentile -= p;
 | |
|         ++idx;
 | |
|       } else {
 | |
|         return idx;
 | |
|       }
 | |
|     }
 | |
|     return idx;
 | |
|   }
 | |
| 
 | |
|   friend std::ostream& operator<<(std::ostream& out, const ProbeStats& s) {
 | |
|     out << "{AvgRatio:" << s.AvgRatio() << ", MaxRatio:" << s.MaxRatio()
 | |
|         << ", PercentileRatio:" << s.PercentileRatio()
 | |
|         << ", MaxProbe:" << s.MaxProbe() << ", Probes=[";
 | |
|     for (double p : s.ProbeNormalizedHistogram()) {
 | |
|       out << p << ",";
 | |
|     }
 | |
|     out << "]}";
 | |
| 
 | |
|     return out;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct ExpectedStats {
 | |
|   double avg_ratio;
 | |
|   double max_ratio;
 | |
|   std::vector<std::pair<double, double>> pecentile_ratios;
 | |
|   std::vector<std::pair<double, double>> pecentile_probes;
 | |
| 
 | |
|   friend std::ostream& operator<<(std::ostream& out, const ExpectedStats& s) {
 | |
|     out << "{AvgRatio:" << s.avg_ratio << ", MaxRatio:" << s.max_ratio
 | |
|         << ", PercentileRatios: [";
 | |
|     for (auto el : s.pecentile_ratios) {
 | |
|       out << el.first << ":" << el.second << ", ";
 | |
|     }
 | |
|     out << "], PercentileProbes: [";
 | |
|     for (auto el : s.pecentile_probes) {
 | |
|       out << el.first << ":" << el.second << ", ";
 | |
|     }
 | |
|     out << "]}";
 | |
| 
 | |
|     return out;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void VerifyStats(size_t size, const ExpectedStats& exp,
 | |
|                  const ProbeStats& stats) {
 | |
|   EXPECT_LT(stats.AvgRatio(), exp.avg_ratio) << size << " " << stats;
 | |
|   EXPECT_LT(stats.MaxRatio(), exp.max_ratio) << size << " " << stats;
 | |
|   for (auto pr : exp.pecentile_ratios) {
 | |
|     EXPECT_LE(stats.PercentileRatio(pr.first), pr.second)
 | |
|         << size << " " << pr.first << " " << stats;
 | |
|   }
 | |
| 
 | |
|   for (auto pr : exp.pecentile_probes) {
 | |
|     EXPECT_LE(stats.PercentileProbe(pr.first), pr.second)
 | |
|         << size << " " << pr.first << " " << stats;
 | |
|   }
 | |
| }
 | |
| 
 | |
| using ProbeStatsPerSize = std::map<size_t, ProbeStats>;
 | |
| 
 | |
| // Collect total ProbeStats on num_iters iterations of the following algorithm:
 | |
| // 1. Create new table and reserve it to keys.size() * 2
 | |
| // 2. Insert all keys xored with seed
 | |
| // 3. Collect ProbeStats from final table.
 | |
| ProbeStats CollectProbeStatsOnKeysXoredWithSeed(const std::vector<int64_t>& keys,
 | |
|                                                 size_t num_iters) {
 | |
|   const size_t reserve_size = keys.size() * 2;
 | |
| 
 | |
|   ProbeStats stats;
 | |
| 
 | |
|   int64_t seed = 0x71b1a19b907d6e33;
 | |
|   while (num_iters--) {
 | |
|     seed = static_cast<int64_t>(static_cast<uint64_t>(seed) * 17 + 13);
 | |
|     IntTable t1;
 | |
|     t1.reserve(reserve_size);
 | |
|     for (const auto& key : keys) {
 | |
|       t1.emplace(key ^ seed);
 | |
|     }
 | |
| 
 | |
|     auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
 | |
|     stats.all_probes_histogram.resize(
 | |
|         std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
 | |
|     std::transform(probe_histogram.begin(), probe_histogram.end(),
 | |
|                    stats.all_probes_histogram.begin(),
 | |
|                    stats.all_probes_histogram.begin(), std::plus<size_t>());
 | |
| 
 | |
|     size_t total_probe_seq_length = 0;
 | |
|     for (size_t i = 0; i < probe_histogram.size(); ++i) {
 | |
|       total_probe_seq_length += i * probe_histogram[i];
 | |
|     }
 | |
|     stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
 | |
|                                         keys.size());
 | |
|     t1.erase(t1.begin(), t1.end());
 | |
|   }
 | |
|   return stats;
 | |
| }
 | |
| 
 | |
| ExpectedStats XorSeedExpectedStats() {
 | |
|   constexpr bool kRandomizesInserts =
 | |
| #ifdef NDEBUG
 | |
|       false;
 | |
| #else   // NDEBUG
 | |
|       true;
 | |
| #endif  // NDEBUG
 | |
| 
 | |
|   // The effective load factor is larger in non-opt mode because we insert
 | |
|   // elements out of order.
 | |
|   switch (container_internal::Group::kWidth) {
 | |
|     case 8:
 | |
|       if (kRandomizesInserts) {
 | |
|   return {0.05,
 | |
|           1.0,
 | |
|           {{0.95, 0.5}},
 | |
|           {{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
 | |
|       } else {
 | |
|   return {0.05,
 | |
|           2.0,
 | |
|           {{0.95, 0.1}},
 | |
|           {{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
 | |
|       }
 | |
|     case 16:
 | |
|       if (kRandomizesInserts) {
 | |
|         return {0.1,
 | |
|                 1.0,
 | |
|                 {{0.95, 0.1}},
 | |
|                 {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
 | |
|       } else {
 | |
|         return {0.05,
 | |
|                 1.0,
 | |
|                 {{0.95, 0.05}},
 | |
|                 {{0.95, 0}, {0.99, 1}, {0.999, 4}, {0.9999, 10}}};
 | |
|       }
 | |
|   }
 | |
|   ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| TEST(Table, DISABLED_EnsureNonQuadraticTopNXorSeedByProbeSeqLength) {
 | |
|   ProbeStatsPerSize stats;
 | |
|   std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
 | |
|   for (size_t size : sizes) {
 | |
|     stats[size] =
 | |
|         CollectProbeStatsOnKeysXoredWithSeed(CollectBadMergeKeys(size), 200);
 | |
|   }
 | |
|   auto expected = XorSeedExpectedStats();
 | |
|   for (size_t size : sizes) {
 | |
|     auto& stat = stats[size];
 | |
|     VerifyStats(size, expected, stat);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Collect total ProbeStats on num_iters iterations of the following algorithm:
 | |
| // 1. Create new table
 | |
| // 2. Select 10% of keys and insert 10 elements key * 17 + j * 13
 | |
| // 3. Collect ProbeStats from final table
 | |
| ProbeStats CollectProbeStatsOnLinearlyTransformedKeys(
 | |
|     const std::vector<int64_t>& keys, size_t num_iters) {
 | |
|   ProbeStats stats;
 | |
| 
 | |
|   std::random_device rd;
 | |
|   std::mt19937 rng(rd());
 | |
|   auto linear_transform = [](size_t x, size_t y) { return x * 17 + y * 13; };
 | |
|   std::uniform_int_distribution<size_t> dist(0, keys.size()-1);
 | |
|   while (num_iters--) {
 | |
|     IntTable t1;
 | |
|     size_t num_keys = keys.size() / 10;
 | |
|     size_t start = dist(rng);
 | |
|     for (size_t i = 0; i != num_keys; ++i) {
 | |
|       for (size_t j = 0; j != 10; ++j) {
 | |
|         t1.emplace(linear_transform(keys[(i + start) % keys.size()], j));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
 | |
|     stats.all_probes_histogram.resize(
 | |
|         std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
 | |
|     std::transform(probe_histogram.begin(), probe_histogram.end(),
 | |
|                    stats.all_probes_histogram.begin(),
 | |
|                    stats.all_probes_histogram.begin(), std::plus<size_t>());
 | |
| 
 | |
|     size_t total_probe_seq_length = 0;
 | |
|     for (size_t i = 0; i < probe_histogram.size(); ++i) {
 | |
|       total_probe_seq_length += i * probe_histogram[i];
 | |
|     }
 | |
|     stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
 | |
|                                         t1.size());
 | |
|     t1.erase(t1.begin(), t1.end());
 | |
|   }
 | |
|   return stats;
 | |
| }
 | |
| 
 | |
| ExpectedStats LinearTransformExpectedStats() {
 | |
|   constexpr bool kRandomizesInserts =
 | |
| #ifdef NDEBUG
 | |
|       false;
 | |
| #else   // NDEBUG
 | |
|       true;
 | |
| #endif  // NDEBUG
 | |
| 
 | |
|   // The effective load factor is larger in non-opt mode because we insert
 | |
|   // elements out of order.
 | |
|   switch (container_internal::Group::kWidth) {
 | |
|     case 8:
 | |
|       if (kRandomizesInserts) {
 | |
|         return {0.1,
 | |
|                 0.5,
 | |
|                 {{0.95, 0.3}},
 | |
|                 {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
 | |
|       } else {
 | |
|         return {0.15,
 | |
|                 0.5,
 | |
|                 {{0.95, 0.3}},
 | |
|                 {{0.95, 0}, {0.99, 3}, {0.999, 15}, {0.9999, 25}}};
 | |
|       }
 | |
|     case 16:
 | |
|       if (kRandomizesInserts) {
 | |
|         return {0.1,
 | |
|                 0.4,
 | |
|                 {{0.95, 0.3}},
 | |
|                 {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
 | |
|       } else {
 | |
|         return {0.05,
 | |
|                 0.2,
 | |
|                 {{0.95, 0.1}},
 | |
|                 {{0.95, 0}, {0.99, 1}, {0.999, 6}, {0.9999, 10}}};
 | |
|       }
 | |
|   }
 | |
|   ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| TEST(Table, DISABLED_EnsureNonQuadraticTopNLinearTransformByProbeSeqLength) {
 | |
|   ProbeStatsPerSize stats;
 | |
|   std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
 | |
|   for (size_t size : sizes) {
 | |
|     stats[size] = CollectProbeStatsOnLinearlyTransformedKeys(
 | |
|         CollectBadMergeKeys(size), 300);
 | |
|   }
 | |
|   auto expected = LinearTransformExpectedStats();
 | |
|   for (size_t size : sizes) {
 | |
|     auto& stat = stats[size];
 | |
|     VerifyStats(size, expected, stat);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, EraseCollision) {
 | |
|   BadTable t;
 | |
| 
 | |
|   // 1 2 3
 | |
|   t.emplace(1);
 | |
|   t.emplace(2);
 | |
|   t.emplace(3);
 | |
|   EXPECT_THAT(*t.find(1), 1);
 | |
|   EXPECT_THAT(*t.find(2), 2);
 | |
|   EXPECT_THAT(*t.find(3), 3);
 | |
|   EXPECT_EQ(3, t.size());
 | |
| 
 | |
|   // 1 DELETED 3
 | |
|   t.erase(t.find(2));
 | |
|   EXPECT_THAT(*t.find(1), 1);
 | |
|   EXPECT_TRUE(t.find(2) == t.end());
 | |
|   EXPECT_THAT(*t.find(3), 3);
 | |
|   EXPECT_EQ(2, t.size());
 | |
| 
 | |
|   // DELETED DELETED 3
 | |
|   t.erase(t.find(1));
 | |
|   EXPECT_TRUE(t.find(1) == t.end());
 | |
|   EXPECT_TRUE(t.find(2) == t.end());
 | |
|   EXPECT_THAT(*t.find(3), 3);
 | |
|   EXPECT_EQ(1, t.size());
 | |
| 
 | |
|   // DELETED DELETED DELETED
 | |
|   t.erase(t.find(3));
 | |
|   EXPECT_TRUE(t.find(1) == t.end());
 | |
|   EXPECT_TRUE(t.find(2) == t.end());
 | |
|   EXPECT_TRUE(t.find(3) == t.end());
 | |
|   EXPECT_EQ(0, t.size());
 | |
| }
 | |
| 
 | |
| TEST(Table, EraseInsertProbing) {
 | |
|   BadTable t(100);
 | |
| 
 | |
|   // 1 2 3 4
 | |
|   t.emplace(1);
 | |
|   t.emplace(2);
 | |
|   t.emplace(3);
 | |
|   t.emplace(4);
 | |
| 
 | |
|   // 1 DELETED 3 DELETED
 | |
|   t.erase(t.find(2));
 | |
|   t.erase(t.find(4));
 | |
| 
 | |
|   // 1 10 3 11 12
 | |
|   t.emplace(10);
 | |
|   t.emplace(11);
 | |
|   t.emplace(12);
 | |
| 
 | |
|   EXPECT_EQ(5, t.size());
 | |
|   EXPECT_THAT(t, UnorderedElementsAre(1, 10, 3, 11, 12));
 | |
| }
 | |
| 
 | |
| TEST(Table, Clear) {
 | |
|   IntTable t;
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   t.clear();
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   auto res = t.emplace(0);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   t.clear();
 | |
|   EXPECT_EQ(0, t.size());
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
| }
 | |
| 
 | |
| TEST(Table, Swap) {
 | |
|   IntTable t;
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   auto res = t.emplace(0);
 | |
|   EXPECT_TRUE(res.second);
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   IntTable u;
 | |
|   t.swap(u);
 | |
|   EXPECT_EQ(0, t.size());
 | |
|   EXPECT_EQ(1, u.size());
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   EXPECT_THAT(*u.find(0), 0);
 | |
| }
 | |
| 
 | |
| TEST(Table, Rehash) {
 | |
|   IntTable t;
 | |
|   EXPECT_TRUE(t.find(0) == t.end());
 | |
|   t.emplace(0);
 | |
|   t.emplace(1);
 | |
|   EXPECT_EQ(2, t.size());
 | |
|   t.rehash(128);
 | |
|   EXPECT_EQ(2, t.size());
 | |
|   EXPECT_THAT(*t.find(0), 0);
 | |
|   EXPECT_THAT(*t.find(1), 1);
 | |
| }
 | |
| 
 | |
| TEST(Table, RehashDoesNotRehashWhenNotNecessary) {
 | |
|   IntTable t;
 | |
|   t.emplace(0);
 | |
|   t.emplace(1);
 | |
|   auto* p = &*t.find(0);
 | |
|   t.rehash(1);
 | |
|   EXPECT_EQ(p, &*t.find(0));
 | |
| }
 | |
| 
 | |
| TEST(Table, RehashZeroDoesNotAllocateOnEmptyTable) {
 | |
|   IntTable t;
 | |
|   t.rehash(0);
 | |
|   EXPECT_EQ(0, t.bucket_count());
 | |
| }
 | |
| 
 | |
| TEST(Table, RehashZeroDeallocatesEmptyTable) {
 | |
|   IntTable t;
 | |
|   t.emplace(0);
 | |
|   t.clear();
 | |
|   EXPECT_NE(0, t.bucket_count());
 | |
|   t.rehash(0);
 | |
|   EXPECT_EQ(0, t.bucket_count());
 | |
| }
 | |
| 
 | |
| TEST(Table, RehashZeroForcesRehash) {
 | |
|   IntTable t;
 | |
|   t.emplace(0);
 | |
|   t.emplace(1);
 | |
|   auto* p = &*t.find(0);
 | |
|   t.rehash(0);
 | |
|   EXPECT_NE(p, &*t.find(0));
 | |
| }
 | |
| 
 | |
| TEST(Table, ConstructFromInitList) {
 | |
|   using P = std::pair<std::string, std::string>;
 | |
|   struct Q {
 | |
|     operator P() const { return {}; }
 | |
|   };
 | |
|   StringTable t = {P(), Q(), {}, {{}, {}}};
 | |
| }
 | |
| 
 | |
| TEST(Table, CopyConstruct) {
 | |
|   IntTable t;
 | |
|   t.emplace(0);
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   {
 | |
|     IntTable u(t);
 | |
|     EXPECT_EQ(1, u.size());
 | |
|     EXPECT_THAT(*u.find(0), 0);
 | |
|   }
 | |
|   {
 | |
|     IntTable u{t};
 | |
|     EXPECT_EQ(1, u.size());
 | |
|     EXPECT_THAT(*u.find(0), 0);
 | |
|   }
 | |
|   {
 | |
|     IntTable u = t;
 | |
|     EXPECT_EQ(1, u.size());
 | |
|     EXPECT_THAT(*u.find(0), 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, CopyConstructWithAlloc) {
 | |
|   StringTable t;
 | |
|   t.emplace("a", "b");
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   StringTable u(t, Alloc<std::pair<std::string, std::string>>());
 | |
|   EXPECT_EQ(1, u.size());
 | |
|   EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
| }
 | |
| 
 | |
| struct ExplicitAllocIntTable
 | |
|     : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
 | |
|                    std::equal_to<int64_t>, Alloc<int64_t>> {
 | |
|   ExplicitAllocIntTable() {}
 | |
| };
 | |
| 
 | |
| TEST(Table, AllocWithExplicitCtor) {
 | |
|   ExplicitAllocIntTable t;
 | |
|   EXPECT_EQ(0, t.size());
 | |
| }
 | |
| 
 | |
| TEST(Table, MoveConstruct) {
 | |
|   {
 | |
|     StringTable t;
 | |
|     t.emplace("a", "b");
 | |
|     EXPECT_EQ(1, t.size());
 | |
| 
 | |
|     StringTable u(std::move(t));
 | |
|     EXPECT_EQ(1, u.size());
 | |
|     EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
|   }
 | |
|   {
 | |
|     StringTable t;
 | |
|     t.emplace("a", "b");
 | |
|     EXPECT_EQ(1, t.size());
 | |
| 
 | |
|     StringTable u{std::move(t)};
 | |
|     EXPECT_EQ(1, u.size());
 | |
|     EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
|   }
 | |
|   {
 | |
|     StringTable t;
 | |
|     t.emplace("a", "b");
 | |
|     EXPECT_EQ(1, t.size());
 | |
| 
 | |
|     StringTable u = std::move(t);
 | |
|     EXPECT_EQ(1, u.size());
 | |
|     EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, MoveConstructWithAlloc) {
 | |
|   StringTable t;
 | |
|   t.emplace("a", "b");
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   StringTable u(std::move(t), Alloc<std::pair<std::string, std::string>>());
 | |
|   EXPECT_EQ(1, u.size());
 | |
|   EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
| }
 | |
| 
 | |
| TEST(Table, CopyAssign) {
 | |
|   StringTable t;
 | |
|   t.emplace("a", "b");
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   StringTable u;
 | |
|   u = t;
 | |
|   EXPECT_EQ(1, u.size());
 | |
|   EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
| }
 | |
| 
 | |
| TEST(Table, CopySelfAssign) {
 | |
|   StringTable t;
 | |
|   t.emplace("a", "b");
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   t = *&t;
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   EXPECT_THAT(*t.find("a"), Pair("a", "b"));
 | |
| }
 | |
| 
 | |
| TEST(Table, MoveAssign) {
 | |
|   StringTable t;
 | |
|   t.emplace("a", "b");
 | |
|   EXPECT_EQ(1, t.size());
 | |
|   StringTable u;
 | |
|   u = std::move(t);
 | |
|   EXPECT_EQ(1, u.size());
 | |
|   EXPECT_THAT(*u.find("a"), Pair("a", "b"));
 | |
| }
 | |
| 
 | |
| TEST(Table, Equality) {
 | |
|   StringTable t;
 | |
|   std::vector<std::pair<std::string, std::string>> v = {{"a", "b"},
 | |
|                                                         {"aa", "bb"}};
 | |
|   t.insert(std::begin(v), std::end(v));
 | |
|   StringTable u = t;
 | |
|   EXPECT_EQ(u, t);
 | |
| }
 | |
| 
 | |
| TEST(Table, Equality2) {
 | |
|   StringTable t;
 | |
|   std::vector<std::pair<std::string, std::string>> v1 = {{"a", "b"},
 | |
|                                                          {"aa", "bb"}};
 | |
|   t.insert(std::begin(v1), std::end(v1));
 | |
|   StringTable u;
 | |
|   std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"},
 | |
|                                                          {"aa", "aa"}};
 | |
|   u.insert(std::begin(v2), std::end(v2));
 | |
|   EXPECT_NE(u, t);
 | |
| }
 | |
| 
 | |
| TEST(Table, Equality3) {
 | |
|   StringTable t;
 | |
|   std::vector<std::pair<std::string, std::string>> v1 = {{"b", "b"},
 | |
|                                                          {"bb", "bb"}};
 | |
|   t.insert(std::begin(v1), std::end(v1));
 | |
|   StringTable u;
 | |
|   std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"},
 | |
|                                                          {"aa", "aa"}};
 | |
|   u.insert(std::begin(v2), std::end(v2));
 | |
|   EXPECT_NE(u, t);
 | |
| }
 | |
| 
 | |
| TEST(Table, NumDeletedRegression) {
 | |
|   IntTable t;
 | |
|   t.emplace(0);
 | |
|   t.erase(t.find(0));
 | |
|   // construct over a deleted slot.
 | |
|   t.emplace(0);
 | |
|   t.clear();
 | |
| }
 | |
| 
 | |
| TEST(Table, FindFullDeletedRegression) {
 | |
|   IntTable t;
 | |
|   for (int i = 0; i < 1000; ++i) {
 | |
|     t.emplace(i);
 | |
|     t.erase(t.find(i));
 | |
|   }
 | |
|   EXPECT_EQ(0, t.size());
 | |
| }
 | |
| 
 | |
| TEST(Table, ReplacingDeletedSlotDoesNotRehash) {
 | |
|   size_t n;
 | |
|   {
 | |
|     // Compute n such that n is the maximum number of elements before rehash.
 | |
|     IntTable t;
 | |
|     t.emplace(0);
 | |
|     size_t c = t.bucket_count();
 | |
|     for (n = 1; c == t.bucket_count(); ++n) t.emplace(n);
 | |
|     --n;
 | |
|   }
 | |
|   IntTable t;
 | |
|   t.rehash(n);
 | |
|   const size_t c = t.bucket_count();
 | |
|   for (size_t i = 0; i != n; ++i) t.emplace(i);
 | |
|   EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
 | |
|   t.erase(0);
 | |
|   t.emplace(0);
 | |
|   EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
 | |
| }
 | |
| 
 | |
| TEST(Table, NoThrowMoveConstruct) {
 | |
|   ASSERT_TRUE(
 | |
|       std::is_nothrow_copy_constructible<absl::Hash<absl::string_view>>::value);
 | |
|   ASSERT_TRUE(std::is_nothrow_copy_constructible<
 | |
|               std::equal_to<absl::string_view>>::value);
 | |
|   ASSERT_TRUE(std::is_nothrow_copy_constructible<std::allocator<int>>::value);
 | |
|   EXPECT_TRUE(std::is_nothrow_move_constructible<StringTable>::value);
 | |
| }
 | |
| 
 | |
| TEST(Table, NoThrowMoveAssign) {
 | |
|   ASSERT_TRUE(
 | |
|       std::is_nothrow_move_assignable<absl::Hash<absl::string_view>>::value);
 | |
|   ASSERT_TRUE(
 | |
|       std::is_nothrow_move_assignable<std::equal_to<absl::string_view>>::value);
 | |
|   ASSERT_TRUE(std::is_nothrow_move_assignable<std::allocator<int>>::value);
 | |
|   ASSERT_TRUE(
 | |
|       absl::allocator_traits<std::allocator<int>>::is_always_equal::value);
 | |
|   EXPECT_TRUE(std::is_nothrow_move_assignable<StringTable>::value);
 | |
| }
 | |
| 
 | |
| TEST(Table, NoThrowSwappable) {
 | |
|   ASSERT_TRUE(
 | |
|       container_internal::IsNoThrowSwappable<absl::Hash<absl::string_view>>());
 | |
|   ASSERT_TRUE(container_internal::IsNoThrowSwappable<
 | |
|               std::equal_to<absl::string_view>>());
 | |
|   ASSERT_TRUE(container_internal::IsNoThrowSwappable<std::allocator<int>>());
 | |
|   EXPECT_TRUE(container_internal::IsNoThrowSwappable<StringTable>());
 | |
| }
 | |
| 
 | |
| TEST(Table, HeterogeneousLookup) {
 | |
|   struct Hash {
 | |
|     size_t operator()(int64_t i) const { return i; }
 | |
|     size_t operator()(double i) const {
 | |
|       ADD_FAILURE();
 | |
|       return i;
 | |
|     }
 | |
|   };
 | |
|   struct Eq {
 | |
|     bool operator()(int64_t a, int64_t b) const { return a == b; }
 | |
|     bool operator()(double a, int64_t b) const {
 | |
|       ADD_FAILURE();
 | |
|       return a == b;
 | |
|     }
 | |
|     bool operator()(int64_t a, double b) const {
 | |
|       ADD_FAILURE();
 | |
|       return a == b;
 | |
|     }
 | |
|     bool operator()(double a, double b) const {
 | |
|       ADD_FAILURE();
 | |
|       return a == b;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct THash {
 | |
|     using is_transparent = void;
 | |
|     size_t operator()(int64_t i) const { return i; }
 | |
|     size_t operator()(double i) const { return i; }
 | |
|   };
 | |
|   struct TEq {
 | |
|     using is_transparent = void;
 | |
|     bool operator()(int64_t a, int64_t b) const { return a == b; }
 | |
|     bool operator()(double a, int64_t b) const { return a == b; }
 | |
|     bool operator()(int64_t a, double b) const { return a == b; }
 | |
|     bool operator()(double a, double b) const { return a == b; }
 | |
|   };
 | |
| 
 | |
|   raw_hash_set<IntPolicy, Hash, Eq, Alloc<int64_t>> s{0, 1, 2};
 | |
|   // It will convert to int64_t before the query.
 | |
|   EXPECT_EQ(1, *s.find(double{1.1}));
 | |
| 
 | |
|   raw_hash_set<IntPolicy, THash, TEq, Alloc<int64_t>> ts{0, 1, 2};
 | |
|   // It will try to use the double, and fail to find the object.
 | |
|   EXPECT_TRUE(ts.find(1.1) == ts.end());
 | |
| }
 | |
| 
 | |
| template <class Table>
 | |
| using CallFind = decltype(std::declval<Table&>().find(17));
 | |
| 
 | |
| template <class Table>
 | |
| using CallErase = decltype(std::declval<Table&>().erase(17));
 | |
| 
 | |
| template <class Table>
 | |
| using CallExtract = decltype(std::declval<Table&>().extract(17));
 | |
| 
 | |
| template <class Table>
 | |
| using CallPrefetch = decltype(std::declval<Table&>().prefetch(17));
 | |
| 
 | |
| template <class Table>
 | |
| using CallCount = decltype(std::declval<Table&>().count(17));
 | |
| 
 | |
| template <template <typename> class C, class Table, class = void>
 | |
| struct VerifyResultOf : std::false_type {};
 | |
| 
 | |
| template <template <typename> class C, class Table>
 | |
| struct VerifyResultOf<C, Table, absl::void_t<C<Table>>> : std::true_type {};
 | |
| 
 | |
| TEST(Table, HeterogeneousLookupOverloads) {
 | |
|   using NonTransparentTable =
 | |
|       raw_hash_set<StringPolicy, absl::Hash<absl::string_view>,
 | |
|                    std::equal_to<absl::string_view>, std::allocator<int>>;
 | |
| 
 | |
|   EXPECT_FALSE((VerifyResultOf<CallFind, NonTransparentTable>()));
 | |
|   EXPECT_FALSE((VerifyResultOf<CallErase, NonTransparentTable>()));
 | |
|   EXPECT_FALSE((VerifyResultOf<CallExtract, NonTransparentTable>()));
 | |
|   EXPECT_FALSE((VerifyResultOf<CallPrefetch, NonTransparentTable>()));
 | |
|   EXPECT_FALSE((VerifyResultOf<CallCount, NonTransparentTable>()));
 | |
| 
 | |
|   using TransparentTable = raw_hash_set<
 | |
|       StringPolicy,
 | |
|       absl::container_internal::hash_default_hash<absl::string_view>,
 | |
|       absl::container_internal::hash_default_eq<absl::string_view>,
 | |
|       std::allocator<int>>;
 | |
| 
 | |
|   EXPECT_TRUE((VerifyResultOf<CallFind, TransparentTable>()));
 | |
|   EXPECT_TRUE((VerifyResultOf<CallErase, TransparentTable>()));
 | |
|   EXPECT_TRUE((VerifyResultOf<CallExtract, TransparentTable>()));
 | |
|   EXPECT_TRUE((VerifyResultOf<CallPrefetch, TransparentTable>()));
 | |
|   EXPECT_TRUE((VerifyResultOf<CallCount, TransparentTable>()));
 | |
| }
 | |
| 
 | |
| // TODO(alkis): Expand iterator tests.
 | |
| TEST(Iterator, IsDefaultConstructible) {
 | |
|   StringTable::iterator i;
 | |
|   EXPECT_TRUE(i == StringTable::iterator());
 | |
| }
 | |
| 
 | |
| TEST(ConstIterator, IsDefaultConstructible) {
 | |
|   StringTable::const_iterator i;
 | |
|   EXPECT_TRUE(i == StringTable::const_iterator());
 | |
| }
 | |
| 
 | |
| TEST(Iterator, ConvertsToConstIterator) {
 | |
|   StringTable::iterator i;
 | |
|   EXPECT_TRUE(i == StringTable::const_iterator());
 | |
| }
 | |
| 
 | |
| TEST(Iterator, Iterates) {
 | |
|   IntTable t;
 | |
|   for (size_t i = 3; i != 6; ++i) EXPECT_TRUE(t.emplace(i).second);
 | |
|   EXPECT_THAT(t, UnorderedElementsAre(3, 4, 5));
 | |
| }
 | |
| 
 | |
| TEST(Table, Merge) {
 | |
|   StringTable t1, t2;
 | |
|   t1.emplace("0", "-0");
 | |
|   t1.emplace("1", "-1");
 | |
|   t2.emplace("0", "~0");
 | |
|   t2.emplace("2", "~2");
 | |
| 
 | |
|   EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1")));
 | |
|   EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"), Pair("2", "~2")));
 | |
| 
 | |
|   t1.merge(t2);
 | |
|   EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"),
 | |
|                                        Pair("2", "~2")));
 | |
|   EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0")));
 | |
| }
 | |
| 
 | |
| TEST(Nodes, EmptyNodeType) {
 | |
|   using node_type = StringTable::node_type;
 | |
|   node_type n;
 | |
|   EXPECT_FALSE(n);
 | |
|   EXPECT_TRUE(n.empty());
 | |
| 
 | |
|   EXPECT_TRUE((std::is_same<node_type::allocator_type,
 | |
|                             StringTable::allocator_type>::value));
 | |
| }
 | |
| 
 | |
| TEST(Nodes, ExtractInsert) {
 | |
|   constexpr char k0[] = "Very long std::string zero.";
 | |
|   constexpr char k1[] = "Very long std::string one.";
 | |
|   constexpr char k2[] = "Very long std::string two.";
 | |
|   StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}};
 | |
|   EXPECT_THAT(t,
 | |
|               UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, "")));
 | |
| 
 | |
|   auto node = t.extract(k0);
 | |
|   EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
 | |
|   EXPECT_TRUE(node);
 | |
|   EXPECT_FALSE(node.empty());
 | |
| 
 | |
|   StringTable t2;
 | |
|   StringTable::insert_return_type res = t2.insert(std::move(node));
 | |
|   EXPECT_TRUE(res.inserted);
 | |
|   EXPECT_THAT(*res.position, Pair(k0, ""));
 | |
|   EXPECT_FALSE(res.node);
 | |
|   EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
 | |
| 
 | |
|   // Not there.
 | |
|   EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
 | |
|   node = t.extract("Not there!");
 | |
|   EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
 | |
|   EXPECT_FALSE(node);
 | |
| 
 | |
|   // Inserting nothing.
 | |
|   res = t2.insert(std::move(node));
 | |
|   EXPECT_FALSE(res.inserted);
 | |
|   EXPECT_EQ(res.position, t2.end());
 | |
|   EXPECT_FALSE(res.node);
 | |
|   EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
 | |
| 
 | |
|   t.emplace(k0, "1");
 | |
|   node = t.extract(k0);
 | |
| 
 | |
|   // Insert duplicate.
 | |
|   res = t2.insert(std::move(node));
 | |
|   EXPECT_FALSE(res.inserted);
 | |
|   EXPECT_THAT(*res.position, Pair(k0, ""));
 | |
|   EXPECT_TRUE(res.node);
 | |
|   EXPECT_FALSE(node);
 | |
| }
 | |
| 
 | |
| IntTable MakeSimpleTable(size_t size) {
 | |
|   IntTable t;
 | |
|   while (t.size() < size) t.insert(t.size());
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| std::vector<int> OrderOfIteration(const IntTable& t) {
 | |
|   return {t.begin(), t.end()};
 | |
| }
 | |
| 
 | |
| // These IterationOrderChanges tests depend on non-deterministic behavior.
 | |
| // We are injecting non-determinism from the pointer of the table, but do so in
 | |
| // a way that only the page matters. We have to retry enough times to make sure
 | |
| // we are touching different memory pages to cause the ordering to change.
 | |
| // We also need to keep the old tables around to avoid getting the same memory
 | |
| // blocks over and over.
 | |
| TEST(Table, IterationOrderChangesByInstance) {
 | |
|   for (size_t size : {2, 6, 12, 20}) {
 | |
|     const auto reference_table = MakeSimpleTable(size);
 | |
|     const auto reference = OrderOfIteration(reference_table);
 | |
| 
 | |
|     std::vector<IntTable> tables;
 | |
|     bool found_difference = false;
 | |
|     for (int i = 0; !found_difference && i < 5000; ++i) {
 | |
|       tables.push_back(MakeSimpleTable(size));
 | |
|       found_difference = OrderOfIteration(tables.back()) != reference;
 | |
|     }
 | |
|     if (!found_difference) {
 | |
|       FAIL()
 | |
|           << "Iteration order remained the same across many attempts with size "
 | |
|           << size;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Table, IterationOrderChangesOnRehash) {
 | |
|   std::vector<IntTable> garbage;
 | |
|   for (int i = 0; i < 5000; ++i) {
 | |
|     auto t = MakeSimpleTable(20);
 | |
|     const auto reference = OrderOfIteration(t);
 | |
|     // Force rehash to the same size.
 | |
|     t.rehash(0);
 | |
|     auto trial = OrderOfIteration(t);
 | |
|     if (trial != reference) {
 | |
|       // We are done.
 | |
|       return;
 | |
|     }
 | |
|     garbage.push_back(std::move(t));
 | |
|   }
 | |
|   FAIL() << "Iteration order remained the same across many attempts.";
 | |
| }
 | |
| 
 | |
| // Verify that pointers are invalidated as soon as a second element is inserted.
 | |
| // This prevents dependency on pointer stability on small tables.
 | |
| TEST(Table, UnstablePointers) {
 | |
|   IntTable table;
 | |
| 
 | |
|   const auto addr = [&](int i) {
 | |
|     return reinterpret_cast<uintptr_t>(&*table.find(i));
 | |
|   };
 | |
| 
 | |
|   table.insert(0);
 | |
|   const uintptr_t old_ptr = addr(0);
 | |
| 
 | |
|   // This causes a rehash.
 | |
|   table.insert(1);
 | |
| 
 | |
|   EXPECT_NE(old_ptr, addr(0));
 | |
| }
 | |
| 
 | |
| // Confirm that we assert if we try to erase() end().
 | |
| TEST(TableDeathTest, EraseOfEndAsserts) {
 | |
|   // Use an assert with side-effects to figure out if they are actually enabled.
 | |
|   bool assert_enabled = false;
 | |
|   assert([&]() {
 | |
|     assert_enabled = true;
 | |
|     return true;
 | |
|   }());
 | |
|   if (!assert_enabled) return;
 | |
| 
 | |
|   IntTable t;
 | |
|   // Extra simple "regexp" as regexp support is highly varied across platforms.
 | |
|   constexpr char kDeathMsg[] = "IsFull";
 | |
|   EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg);
 | |
| }
 | |
| 
 | |
| #if ABSL_PER_THREAD_TLS == 1
 | |
| TEST(RawHashSamplerTest, Sample) {
 | |
|   // Enable the feature even if the prod default is off.
 | |
|   SetHashtablezEnabled(true);
 | |
|   SetHashtablezSampleParameter(100);
 | |
| 
 | |
|   auto& sampler = HashtablezSampler::Global();
 | |
|   size_t start_size = 0;
 | |
|   start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
 | |
| 
 | |
|   std::vector<IntTable> tables;
 | |
|   for (int i = 0; i < 1000000; ++i) {
 | |
|     tables.emplace_back();
 | |
|     tables.back().insert(1);
 | |
|   }
 | |
|   size_t end_size = 0;
 | |
|   end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; });
 | |
| 
 | |
|   EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()),
 | |
|               0.01, 0.005);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| TEST(RawHashSamplerTest, DoNotSampleCustomAllocators) {
 | |
|   // Enable the feature even if the prod default is off.
 | |
|   SetHashtablezEnabled(true);
 | |
|   SetHashtablezSampleParameter(100);
 | |
| 
 | |
|   auto& sampler = HashtablezSampler::Global();
 | |
|   size_t start_size = 0;
 | |
|   start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
 | |
| 
 | |
|   std::vector<CustomAllocIntTable> tables;
 | |
|   for (int i = 0; i < 1000000; ++i) {
 | |
|     tables.emplace_back();
 | |
|     tables.back().insert(1);
 | |
|   }
 | |
|   size_t end_size = 0;
 | |
|   end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; });
 | |
| 
 | |
|   EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()),
 | |
|               0.00, 0.001);
 | |
| }
 | |
| 
 | |
| #ifdef ADDRESS_SANITIZER
 | |
| TEST(Sanitizer, PoisoningUnused) {
 | |
|   IntTable t;
 | |
|   t.reserve(5);
 | |
|   // Insert something to force an allocation.
 | |
|   int64_t& v1 = *t.insert(0).first;
 | |
| 
 | |
|   // Make sure there is something to test.
 | |
|   ASSERT_GT(t.capacity(), 1);
 | |
| 
 | |
|   int64_t* slots = RawHashSetTestOnlyAccess::GetSlots(t);
 | |
|   for (size_t i = 0; i < t.capacity(); ++i) {
 | |
|     EXPECT_EQ(slots + i != &v1, __asan_address_is_poisoned(slots + i));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(Sanitizer, PoisoningOnErase) {
 | |
|   IntTable t;
 | |
|   int64_t& v = *t.insert(0).first;
 | |
| 
 | |
|   EXPECT_FALSE(__asan_address_is_poisoned(&v));
 | |
|   t.erase(0);
 | |
|   EXPECT_TRUE(__asan_address_is_poisoned(&v));
 | |
| }
 | |
| #endif  // ADDRESS_SANITIZER
 | |
| 
 | |
| }  // namespace
 | |
| }  // namespace container_internal
 | |
| }  // namespace absl
 |